1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232
|
// This file is part of VecGeom and is distributed under the
// conditions in the file LICENSE.txt in the top directory.
// For the full list of authors see CONTRIBUTORS.txt and `git log`.
/// Declaration of the unplaced parallelepiped shape.
/// @file volumes/UnplacedParallelepiped.h
/// @author: Johannes de Fine Licht, Mihaela Gheata
#ifndef VECGEOM_VOLUMES_UNPLACEDPARALLELEPIPED_H_
#define VECGEOM_VOLUMES_UNPLACEDPARALLELEPIPED_H_
#include "VecGeom/base/Cuda.h"
#include "VecGeom/base/AlignedBase.h"
#include "VecGeom/base/Vector3D.h"
#include "VecGeom/volumes/UnplacedVolume.h"
#include "ParallelepipedStruct.h"
#include "VecGeom/volumes/kernel/ParallelepipedImplementation.h"
#include "VecGeom/volumes/UnplacedVolumeImplHelper.h"
namespace vecgeom {
VECGEOM_DEVICE_FORWARD_DECLARE(class UnplacedParallelepiped;);
VECGEOM_DEVICE_DECLARE_CONV(class, UnplacedParallelepiped);
inline namespace VECGEOM_IMPL_NAMESPACE {
/// Class for parallelepiped shape primitive.
///
/// Parallepiped is a `skewed' box with half lengths dx, dy, dz.
/// Angles theta & phi are the polar and azimuthal angles of the line
/// joining centres of the faces at +/- dz.
/// Angle alpha is formed by the y-axis and the line joining
/// centres of the faces at +/- dy.
class UnplacedParallelepiped : public SIMDUnplacedVolumeImplHelper<ParallelepipedImplementation>, public AlignedBase {
private:
ParallelepipedStruct<Precision> fPara; ///< The parallelepiped structure
public:
using Kernel = ParallelepipedImplementation;
/// Constructor from a vector of dimensions and three angles
/// @param dim 3D vector with dx, dy, dz
/// @param alpha Angle between y-axis and the line joining centres of the faces at +/- dy
/// @param theta Polar angle
/// @param phi Azimuthal angle
VECCORE_ATT_HOST_DEVICE
UnplacedParallelepiped(Vector3D<Precision> const &dimensions, const Precision alpha, const Precision theta,
const Precision phi)
: fPara(dimensions, alpha, theta, phi)
{
fGlobalConvexity = true;
ComputeBBox();
}
/// Constructor from three dimensions and three angles
/// @param dx Half length in x
/// @param dy Half length in y
/// @param dz Half length in z
/// @param alpha Angle between y-axis and the line joining centres of the faces at +/- dy
/// @param theta Polar angle
/// @param phi Azimuthal angle
VECCORE_ATT_HOST_DEVICE
UnplacedParallelepiped(const Precision dx, const Precision dy, const Precision dz, const Precision alpha,
const Precision theta, const Precision phi)
: fPara(dx, dy, dz, alpha, theta, phi)
{
fGlobalConvexity = true;
ComputeBBox();
}
/// Default constructor
VECCORE_ATT_HOST_DEVICE
UnplacedParallelepiped() : fPara(0., 0., 0., 0., 0., 0.) { fGlobalConvexity = true; }
/// Getter for the structure storing parallepiped data.
VECCORE_ATT_HOST_DEVICE
ParallelepipedStruct<Precision> const &GetStruct() const { return fPara; }
/// Getter for parallelepiped dimensions
VECCORE_ATT_HOST_DEVICE
Vector3D<Precision> const &GetDimensions() const { return fPara.fDimensions; }
/// Getter for parallelepiped normals
VECCORE_ATT_HOST_DEVICE
Vector3D<Precision> const &GetNormal(int i) const { return fPara.fNormals[i]; }
/// Getter for dx
VECCORE_ATT_HOST_DEVICE
Precision GetX() const { return fPara.fDimensions[0]; }
/// Getter for dy
VECCORE_ATT_HOST_DEVICE
Precision GetY() const { return fPara.fDimensions[1]; }
/// Getter for dz
VECCORE_ATT_HOST_DEVICE
Precision GetZ() const { return fPara.fDimensions[2]; }
/// Getter for alpha
VECCORE_ATT_HOST_DEVICE
Precision GetAlpha() const { return fPara.fAlpha; }
/// Getter for theta
VECCORE_ATT_HOST_DEVICE
Precision GetTheta() const { return fPara.fTheta; }
/// Getter for phi
VECCORE_ATT_HOST_DEVICE
Precision GetPhi() const { return fPara.fPhi; }
/// Getter for tan(alpha)
VECCORE_ATT_HOST_DEVICE
Precision GetTanAlpha() const { return fPara.fTanAlpha; }
/// Getter for tan(th)*sin(phi)
VECCORE_ATT_HOST_DEVICE
Precision GetTanThetaSinPhi() const { return fPara.fTanThetaSinPhi; }
/// Getter for tan(th)*cos(phi)
VECCORE_ATT_HOST_DEVICE
Precision GetTanThetaCosPhi() const { return fPara.fTanThetaCosPhi; }
/// Getter for scale factor fCtx
VECCORE_ATT_HOST_DEVICE
Precision GetCtx() const { return fPara.fCtx; }
/// Getter for scale factor fCty
VECCORE_ATT_HOST_DEVICE
Precision GetCty() const { return fPara.fCty; }
/// Setter for dimensions in x, y, z
/// @param dimension Vector with length in x, y, z
VECCORE_ATT_HOST_DEVICE
void SetDimensions(Vector3D<Precision> const &dimensions) { fPara.fDimensions = dimensions; }
/// Setter for dimensions in x, y, z
/// @param dx Half length in x
/// @param dy Half length in y
/// @param dz Half length in z
VECCORE_ATT_HOST_DEVICE
void SetDimensions(const Precision dx, const Precision dy, const Precision dz) { fPara.fDimensions.Set(dx, dy, dz); }
/// Setter for alpha
/// @param alpha Angle between y-axis and the line joining centres of the faces at +/- dy
VECCORE_ATT_HOST_DEVICE
void SetAlpha(const Precision alpha) { fPara.SetAlpha(alpha); }
/// Setter for theta
/// @param theta Polar angle
VECCORE_ATT_HOST_DEVICE
void SetTheta(const Precision theta) { fPara.SetTheta(theta); }
/// Setter for phi
/// @param phi Azimuthal angle
VECCORE_ATT_HOST_DEVICE
void SetPhi(const Precision phi) { fPara.SetPhi(phi); }
/// Setter for theta and phi
/// @param theta Polar angle
/// @param phi Azimuthal angle
VECCORE_ATT_HOST_DEVICE
void SetThetaAndPhi(const Precision theta, const Precision phi) { fPara.SetThetaAndPhi(theta, phi); }
virtual int MemorySize() const final { return sizeof(*this); }
VECCORE_ATT_HOST_DEVICE
virtual void Print() const final;
virtual void Print(std::ostream &os) const final;
#ifndef VECCORE_CUDA
virtual SolidMesh *CreateMesh3D(Transformation3D const &trans, size_t nSegments) const override;
#endif
VECCORE_ATT_HOST_DEVICE
void Extent(Vector3D<Precision> &, Vector3D<Precision> &) const override;
/// Implementation of capacity computation
Precision volume() const { return 8.0 * fPara.fDimensions[0] * fPara.fDimensions[1] * fPara.fDimensions[2]; }
Precision Capacity() const override { return volume(); }
Vector3D<Precision> SamplePointOnSurface() const override;
Precision SurfaceArea() const override { return 2. * (fPara.fAreas[0] + fPara.fAreas[1] + fPara.fAreas[2]); }
VECCORE_ATT_HOST_DEVICE
virtual bool Normal(Vector3D<Precision> const &point, Vector3D<Precision> &normal) const override
{
bool valid;
normal = ParallelepipedImplementation::NormalKernel(fPara, point, valid);
return valid;
}
/// Get the solid type as string.
/// @return Name of the solid type
std::string GetEntityType() const { return "parallelepiped"; }
/// Templated factory for creating a placed volume
template <TranslationCode transCodeT, RotationCode rotCodeT>
#ifdef VECCORE_CUDA
VECCORE_ATT_DEVICE
#endif
static VPlacedVolume *
Create(LogicalVolume const *const logical_volume, Transformation3D const *const transformation,
#ifdef VECCORE_CUDA
const int id, const int copy_no, const int child_id,
#endif
VPlacedVolume *const placement = NULL);
#ifdef VECGEOM_CUDA_INTERFACE
virtual size_t DeviceSizeOf() const override { return DevicePtr<cuda::UnplacedParallelepiped>::SizeOf(); }
virtual DevicePtr<cuda::VUnplacedVolume> CopyToGpu() const override;
virtual DevicePtr<cuda::VUnplacedVolume> CopyToGpu(DevicePtr<cuda::VUnplacedVolume> const gpu_ptr) const override;
#endif
#ifdef VECCORE_CUDA
VECCORE_ATT_DEVICE
#endif
virtual VPlacedVolume *SpecializedVolume(LogicalVolume const *const volume,
Transformation3D const *const transformation,
const TranslationCode trans_code, const RotationCode rot_code,
#ifdef VECCORE_CUDA
const int id, const int copy_no, const int child_id,
#endif
VPlacedVolume *const placement = NULL) const final;
};
} // namespace VECGEOM_IMPL_NAMESPACE
} // namespace vecgeom
#endif // VECGEOM_VOLUMES_UNPLACEDPARALLELEPIPED_H_
|