1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 300 301 302 303 304 305 306 307 308 309 310 311 312 313 314 315 316 317 318 319 320 321 322 323 324 325 326 327 328 329 330 331 332 333 334 335 336 337 338 339 340 341 342 343 344 345 346 347 348 349 350 351 352 353 354 355 356 357 358 359 360 361 362 363 364 365 366 367 368 369 370 371 372 373 374 375 376 377 378 379 380 381 382 383 384 385 386 387 388 389 390 391 392 393 394 395 396 397 398 399 400 401 402 403 404 405 406 407 408 409 410 411 412 413 414 415 416 417 418 419 420 421 422 423 424 425 426 427 428 429 430 431 432 433 434 435 436 437 438 439 440 441 442 443 444 445 446 447 448 449 450 451 452 453 454 455 456 457 458 459 460 461 462 463 464 465 466 467 468 469 470 471 472 473 474 475 476 477
|
/*
* Wedge.h
*
* Created on: 09.10.2014
* Author: swenzel
*/
#ifndef VECGEOM_VOLUMES_WEDGE_H_
#define VECGEOM_VOLUMES_WEDGE_H_
#include "VecGeom/base/Global.h"
#include "VecGeom/volumes/kernel/GenericKernels.h"
namespace vecgeom {
inline namespace VECGEOM_IMPL_NAMESPACE {
/**
* A class representing a wedge which is represented by an angle. It
* can be used to divide 3D spaces or to clip wedges from solids.
* The wedge has an "inner" and "outer" side. For an angle = 180 degree, the wedge is essentially
* an ordinary halfspace. Usually the wedge is used to cut out "phi" sections along z-direction.
*
* Idea: should have Unplaced and PlacedWegdes, should have specializations
* for "PhiWegde" and which are used in symmetric
* shapes such as tubes or spheres.
*
* Note: This class is meant as an auxiliary class so it is a bit outside the ordinary volume
* hierarchy.
*
* / +++++++++++
* / ++++++++++++
* / +++++++++++++
* / +++++ INSIDE +
* / +++++++++++++++
* / fDPhi +++++++++
* x------------------ ( this is at angle fSPhi )
*
* OUTSIDE
*
*/
class Wedge {
private:
Precision fSPhi; // starting angle
Precision fDPhi; // delta angle representing/defining the wedge
Vector3D<Precision> fAlongVector1; // vector along the first plane
Vector3D<Precision> fAlongVector2; // vector aling the second plane
Vector3D<Precision> fNormalVector1; // normal vector for first plane
// convention is that it points inwards
Vector3D<Precision> fNormalVector2; // normal vector for second plane
// convention is that it points inwards
public:
VECCORE_ATT_HOST_DEVICE
Wedge(Precision angle, Precision zeroangle = 0);
VECCORE_ATT_HOST_DEVICE
~Wedge() {}
VECCORE_ATT_HOST_DEVICE
void SetStartPhi(Precision const &arg) { fSPhi = arg; }
VECCORE_ATT_HOST_DEVICE
void SetDeltaPhi(Precision const &arg) { fDPhi = arg; }
VECCORE_ATT_HOST_DEVICE
void Set(Precision const &dphi, Precision const &sphi)
{
SetStartPhi(sphi);
SetDeltaPhi(dphi);
}
VECCORE_ATT_HOST_DEVICE
Vector3D<Precision> GetAlong1() const { return fAlongVector1; }
VECCORE_ATT_HOST_DEVICE
Vector3D<Precision> GetAlong2() const { return fAlongVector2; }
VECCORE_ATT_HOST_DEVICE
Vector3D<Precision> GetNormal1() const { return fNormalVector1; }
VECCORE_ATT_HOST_DEVICE
Vector3D<Precision> GetNormal2() const { return fNormalVector2; }
/* Function Name : GetNormal<ForStartPhi>()
*
* The function is the templatized version GetNormal1() and GetNormal2() function and will
* return the normal depending upon the boolean template parameter "ForStartPhi"
* which if passed as true, will return normal to the StartingPhi of Wedge,
* if passed as false, will return normal to the EndingPhi of Wedge
*
* from user point of view the same work can be done by calling GetNormal1() and GetNormal2()
* functions, but this implementation will be used by "IsPointOnSurfaceAndMovingOut()" function
*/
template <bool ForStartPhi>
VECGEOM_FORCE_INLINE
VECCORE_ATT_HOST_DEVICE
Vector3D<Precision> GetNormal() const;
// very important:
template <typename Backend>
VECCORE_ATT_HOST_DEVICE
typename Backend::bool_v Contains(Vector3D<typename Backend::precision_v> const &point) const;
// GL note: for tubes, use of TubeImpl::PointInCyclicalSector outperformed next two methods in vector mode
template <typename Backend>
VECCORE_ATT_HOST_DEVICE
typename Backend::bool_v ContainsWithBoundary(Vector3D<typename Backend::precision_v> const &point) const;
template <typename Backend>
VECCORE_ATT_HOST_DEVICE
typename Backend::bool_v ContainsWithoutBoundary(Vector3D<typename Backend::precision_v> const &point) const;
template <typename Backend>
VECCORE_ATT_HOST_DEVICE
typename Backend::inside_v Inside(Vector3D<typename Backend::precision_v> const &point) const;
// static function determining if input points are on a plane surface which is part of a wedge
// ( given by along and normal )
template <typename Backend>
VECCORE_ATT_HOST_DEVICE
static typename Backend::bool_v IsOnSurfaceGeneric(Vector3D<Precision> const &alongVector,
Vector3D<Precision> const &normalVector,
Vector3D<typename Backend::precision_v> const &point);
/* Function Name : IsOnSurfaceGeneric<Backend, ForStartPhi>()
*
* This version of IsOnSurfaceGeneric is having one more template parameter of type boolean,
* which if passed as true, will check whether the point is on StartingPhi Surface of Wedge,
* and if passed as false, will check whether the point is on EndingPhi Surface of Wedge
*
* this implementation will be used by "IsPointOnSurfaceAndMovingOut()" function.
*/
template <typename Backend, bool ForStartPhi>
VECGEOM_FORCE_INLINE
VECCORE_ATT_HOST_DEVICE
typename Backend::bool_v IsOnSurfaceGeneric(Vector3D<typename Backend::precision_v> const &point) const;
/* Function Name : IsPointOnSurfaceAndMovingOut<Backend, ForStartPhi, MovingOut>
*
* This function is written to check if the point is on surface and is moving inside or outside.
* This will basically be used by "DistanceToInKernel()" and "DistanceToOutKernel()" of the shapes,
* which uses wedge.
*
* It contains two extra template boolean parameters "ForStartPhi" and "MovingOut",
* So call like "IsPointOnSurfaceAndMovingOut<Backend,true,true>" will check whether the points is on
* the StartingPhi Surface of wedge and moving outside.
*
* So overall can be called in following four combinations
* 1) "IsPointOnSurfaceAndMovingOut<Backend,true,true>" : Point on StartingPhi surface of wedge and moving OUT
* 2) "IsPointOnSurfaceAndMovingOut<Backend,true,false>" : Point on StartingPhi surface of wedge and moving IN
* 3) "IsPointOnSurfaceAndMovingOut<Backend,false,true>" : Point on EndingPhi surface of wedge and moving OUT
* 2) "IsPointOnSurfaceAndMovingOut<Backend,false,false>" : Point on EndingPhi surface of wedge and moving IN
*
* Very useful for DistanceToIn and DistanceToOut.
*/
template <typename Backend, bool ForStartPhi, bool MovingOut>
VECGEOM_FORCE_INLINE
VECCORE_ATT_HOST_DEVICE
typename Backend::bool_v IsPointOnSurfaceAndMovingOut(Vector3D<typename Backend::precision_v> const &point,
Vector3D<typename Backend::precision_v> const &dir) const;
VECCORE_ATT_HOST_DEVICE
bool IsOnSurface1(Vector3D<Precision> const &point) const
{
return Wedge::IsOnSurfaceGeneric<kScalar>(fAlongVector1, fNormalVector1, point);
}
VECCORE_ATT_HOST_DEVICE
bool IsOnSurface2(Vector3D<Precision> const &point) const
{
return Wedge::IsOnSurfaceGeneric<kScalar>(fAlongVector2, fNormalVector2, point);
}
/**
* estimate of the smallest distance to the Wedge boundary when
* the point is located outside the Wedge
*/
template <typename Backend>
VECCORE_ATT_HOST_DEVICE
typename Backend::precision_v SafetyToIn(Vector3D<typename Backend::precision_v> const &point) const;
/**
* estimate of the smallest distance to the Wedge boundary when
* the point is located inside the Wedge ( within the defining phi angle )
*/
template <typename Backend>
VECCORE_ATT_HOST_DEVICE
typename Backend::precision_v SafetyToOut(Vector3D<typename Backend::precision_v> const &point) const;
/**
* estimate of the distance to the Wedge boundary with given direction
*/
template <typename Backend>
VECCORE_ATT_HOST_DEVICE
void DistanceToIn(Vector3D<typename Backend::precision_v> const &point,
Vector3D<typename Backend::precision_v> const &dir, typename Backend::precision_v &distWedge1,
typename Backend::precision_v &distWedge2) const;
template <typename Backend>
VECCORE_ATT_HOST_DEVICE
void DistanceToOut(Vector3D<typename Backend::precision_v> const &point,
Vector3D<typename Backend::precision_v> const &dir, typename Backend::precision_v &distWedge1,
typename Backend::precision_v &distWedge2) const;
// this could be useful to be public such that other shapes can directly
// use completelyinside + completelyoutside
template <typename Backend, bool ForInside>
VECCORE_ATT_HOST_DEVICE
void GenericKernelForContainsAndInside(Vector3D<typename Backend::precision_v> const &localPoint,
typename Backend::bool_v &completelyinside,
typename Backend::bool_v &completelyoutside) const;
}; // end of class Wedge
template <bool ForStartPhi>
VECGEOM_FORCE_INLINE
VECCORE_ATT_HOST_DEVICE
Vector3D<Precision> Wedge::GetNormal() const
{
if (ForStartPhi)
return fNormalVector1;
else
return fNormalVector2;
}
template <typename Backend, bool ForStartPhi, bool MovingOut>
VECGEOM_FORCE_INLINE
VECCORE_ATT_HOST_DEVICE
typename Backend::bool_v Wedge::IsPointOnSurfaceAndMovingOut(Vector3D<typename Backend::precision_v> const &point,
Vector3D<typename Backend::precision_v> const &dir) const
{
if (MovingOut)
return IsOnSurfaceGeneric<Backend, ForStartPhi>(point) &&
(dir.Dot(-GetNormal<ForStartPhi>()) > 0.005 * kHalfTolerance);
else
return IsOnSurfaceGeneric<Backend, ForStartPhi>(point) &&
(dir.Dot(-GetNormal<ForStartPhi>()) < 0.005 * kHalfTolerance);
}
template <typename Backend, bool ForStartPhi>
VECGEOM_FORCE_INLINE
VECCORE_ATT_HOST_DEVICE
typename Backend::bool_v Wedge::IsOnSurfaceGeneric(Vector3D<typename Backend::precision_v> const &point) const
{
if (ForStartPhi)
return IsOnSurfaceGeneric<Backend>(fAlongVector1, fNormalVector1, point);
else
return IsOnSurfaceGeneric<Backend>(fAlongVector2, fNormalVector2, point);
}
template <typename Backend>
VECCORE_ATT_HOST_DEVICE
typename Backend::inside_v Wedge::Inside(Vector3D<typename Backend::precision_v> const &point) const
{
typedef typename Backend::bool_v Bool_t;
Bool_t completelyinside, completelyoutside;
GenericKernelForContainsAndInside<Backend, true>(point, completelyinside, completelyoutside);
typename Backend::inside_v inside = EInside::kSurface;
vecCore::MaskedAssign(inside, completelyoutside, EInside::kOutside);
vecCore::MaskedAssign(inside, completelyinside, EInside::kInside);
return inside;
}
template <typename Backend>
VECCORE_ATT_HOST_DEVICE
typename Backend::bool_v Wedge::ContainsWithBoundary(Vector3D<typename Backend::precision_v> const &point) const
{
typedef typename Backend::bool_v Bool_t;
Bool_t completelyinside, completelyoutside;
GenericKernelForContainsAndInside<Backend, true>(point, completelyinside, completelyoutside);
return !completelyoutside;
}
template <typename Backend>
VECCORE_ATT_HOST_DEVICE
typename Backend::bool_v Wedge::ContainsWithoutBoundary(Vector3D<typename Backend::precision_v> const &point) const
{
typedef typename Backend::bool_v Bool_t;
Bool_t completelyinside, completelyoutside;
GenericKernelForContainsAndInside<Backend, true>(point, completelyinside, completelyoutside);
return completelyinside;
}
template <typename Backend>
VECCORE_ATT_HOST_DEVICE
typename Backend::bool_v Wedge::Contains(Vector3D<typename Backend::precision_v> const &point) const
{
typedef typename Backend::bool_v Bool_t;
Bool_t unused;
Bool_t outside;
GenericKernelForContainsAndInside<Backend, false>(point, unused, outside);
return !outside;
}
// Implementation follows
template <typename Backend, bool ForInside>
VECCORE_ATT_HOST_DEVICE
void Wedge::GenericKernelForContainsAndInside(Vector3D<typename Backend::precision_v> const &localPoint,
typename Backend::bool_v &completelyinside,
typename Backend::bool_v &completelyoutside) const
{
typedef typename Backend::precision_v Real_v;
// this part of the code assumes some symmetry knowledge and is currently only
// correct for a PhiWedge assumed to be aligned along the z-axis.
Real_v x = localPoint.x();
Real_v y = localPoint.y();
Real_v startx = fAlongVector1.x();
Real_v starty = fAlongVector1.y();
Real_v endx = fAlongVector2.x();
Real_v endy = fAlongVector2.y();
Real_v startCheck = (-x * starty + y * startx);
Real_v endCheck = (-endx * y + endy * x);
completelyoutside = startCheck < 0.;
if (fDPhi < kPi)
completelyoutside |= endCheck < 0.;
else
completelyoutside &= endCheck < 0.;
if (ForInside) {
// TODO: see if the compiler optimizes across these function calls since
// a couple of multiplications inside IsOnSurfaceGeneric are already done previously
typename Backend::bool_v onSurface =
Wedge::IsOnSurfaceGeneric<Backend>(fAlongVector1, fNormalVector1, localPoint) ||
Wedge::IsOnSurfaceGeneric<Backend>(fAlongVector2, fNormalVector2, localPoint);
completelyoutside &= !onSurface;
completelyinside = !onSurface && !completelyoutside;
}
}
template <typename Backend>
VECCORE_ATT_HOST_DEVICE
typename Backend::bool_v Wedge::IsOnSurfaceGeneric(Vector3D<Precision> const &alongVector,
Vector3D<Precision> const &normalVector,
Vector3D<typename Backend::precision_v> const &point)
{
// on right side of half plane ??
typedef typename Backend::bool_v Bool_v;
Bool_v condition1 = alongVector.x() * point.x() + alongVector.y() * point.y() >= 0.;
if (vecCore::MaskEmpty(condition1)) return Bool_v(false);
// within the right distance to the plane ??
Bool_v condition2 = Abs(normalVector.x() * point.x() + normalVector.y() * point.y()) < kTolerance;
return condition1 && condition2;
}
template <typename Backend>
VECCORE_ATT_HOST_DEVICE
typename Backend::precision_v Wedge::SafetyToOut(Vector3D<typename Backend::precision_v> const &point) const
{
typedef typename Backend::precision_v Float_t;
// algorithm: calculate projections to both planes
// return minimum / maximum depending on fAngle < PI or not
// assuming that we have z wedge and the planes pass through the origin
Float_t dist1 = point.x() * fNormalVector1.x() + point.y() * fNormalVector1.y();
Float_t dist2 = point.x() * fNormalVector2.x() + point.y() * fNormalVector2.y();
// std::cerr << "d1 " << dist1<<" "<<point << "\n";
// std::cerr << "d2 " << dist2<<" "<<point << "\n";
if (fDPhi < kPi) {
return Min(dist1, dist2);
} else {
// Float_t disttocorner = Sqrt(point.x()*point.x() + point.y()*point.y());
// return Max(dist1,Max(dist2,disttocorner));
return Max(dist1, dist2);
}
}
template <typename Backend>
VECCORE_ATT_HOST_DEVICE
typename Backend::precision_v Wedge::SafetyToIn(Vector3D<typename Backend::precision_v> const &point) const
{
typedef typename Backend::precision_v Float_t;
// algorithm: calculate projections to both planes
// return maximum / minimum depending on fAngle < PI or not
// assuming that we have z wedge and the planes pass through the origin
// actually we
Float_t dist1 = point.x() * fNormalVector1.x() + point.y() * fNormalVector1.y();
Float_t dist2 = point.x() * fNormalVector2.x() + point.y() * fNormalVector2.y();
// std::cerr << "d1 " << dist1<<" "<<point << "\n";
// std::cerr << "d2 " << dist2<<" "<<point << "\n";
if (fDPhi < kPi) {
// Float_t disttocorner = Sqrt(point.x()*point.x() + point.y()*point.y());
// commented out DistanceToCorner in order to not have a differences with Geant4 and Root
return Max(-1 * dist1, -1 * dist2);
} else {
return Min(-1 * dist1, -1 * dist2);
}
}
template <class Backend>
VECCORE_ATT_HOST_DEVICE
void Wedge::DistanceToIn(Vector3D<typename Backend::precision_v> const &point,
Vector3D<typename Backend::precision_v> const &dir, typename Backend::precision_v &distWedge1,
typename Backend::precision_v &distWedge2) const
{
typedef typename Backend::precision_v Float_t;
typedef typename Backend::bool_v Bool_t;
// algorithm::first calculate projections of direction to both planes,
// then calculate real distance along given direction,
// distance can be negative
distWedge1 = kInfLength;
distWedge2 = kInfLength;
Float_t comp1 = dir.x() * fNormalVector1.x() + dir.y() * fNormalVector1.y();
Float_t comp2 = dir.x() * fNormalVector2.x() + dir.y() * fNormalVector2.y();
Bool_t cmp1 = comp1 > 0.;
if (!vecCore::MaskEmpty(cmp1)) {
Float_t tmp = -(point.x() * fNormalVector1.x() + point.y() * fNormalVector1.y()) / comp1;
vecCore::MaskedAssign(distWedge1, cmp1 && tmp > -kTolerance, tmp);
}
Bool_t cmp2 = comp2 > 0.;
if (!vecCore::MaskEmpty(cmp2)) {
Float_t tmp = -(point.x() * fNormalVector2.x() + point.y() * fNormalVector2.y()) / comp2;
vecCore::MaskedAssign(distWedge2, cmp2 && tmp > -kTolerance, tmp);
}
// std::cerr << "c1 " << comp1 <<" d1="<<distWedge1<<" p="<<point<< "\n";
// std::cerr << "c2 " << comp2 <<" d2="<<distWedge2<< "\n";
}
template <class Backend>
VECCORE_ATT_HOST_DEVICE
void Wedge::DistanceToOut(Vector3D<typename Backend::precision_v> const &point,
Vector3D<typename Backend::precision_v> const &dir, typename Backend::precision_v &distWedge1,
typename Backend::precision_v &distWedge2) const
{
typedef typename Backend::precision_v Float_t;
typedef typename Backend::bool_v Bool_t;
// algorithm::first calculate projections of direction to both planes,
// then calculate real distance along given direction,
// distance can be negative
Float_t comp1 = dir.x() * fNormalVector1.x() + dir.y() * fNormalVector1.y();
Float_t comp2 = dir.x() * fNormalVector2.x() + dir.y() * fNormalVector2.y();
// std::cerr << "c1 " << comp1 << "\n";
// std::cerr << "c2 " << comp2 << "\n";
distWedge1 = kInfLength;
distWedge2 = kInfLength;
Bool_t cmp1 = comp1 < 0.;
if (!vecCore::MaskEmpty(cmp1)) {
Float_t tmp = -(point.x() * fNormalVector1.x() + point.y() * fNormalVector1.y()) / comp1;
vecCore::MaskedAssign(distWedge1, cmp1 && tmp > -kTolerance, tmp);
}
Bool_t cmp2 = comp2 < 0.;
if (!vecCore::MaskEmpty(cmp2)) {
Float_t tmp = -(point.x() * fNormalVector2.x() + point.y() * fNormalVector2.y()) / comp2;
vecCore::MaskedAssign(distWedge2, cmp2 && tmp > -kTolerance, tmp);
}
// std::cerr << "c1 " << comp1 <<" d1="<<distWedge1<<" "<<point<< "\n";
// std::cerr << "c2 " << comp2 <<" d2=" <<distWedge2<<" "<<point<<"\n";
}
}
} // end of namespace
#endif /* VECGEOM_VOLUMES_WEDGE_H_ */
|