1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 300 301 302
|
/*
* BooleanImplementation.h
*/
#ifndef BOOLEANIMPLEMENTATION_H_
#define BOOLEANIMPLEMENTATION_H_
#include "VecGeom/base/Vector3D.h"
#include "VecGeom/volumes/BooleanStruct.h"
#include <VecCore/VecCore>
namespace vecgeom {
VECGEOM_DEVICE_DECLARE_CONV_TEMPLATE_1v(struct, BooleanImplementation, BooleanOperation, Arg1);
inline namespace VECGEOM_IMPL_NAMESPACE {
template <BooleanOperation Op>
class PlacedBooleanVolume;
template <BooleanOperation Op>
class UnplacedBooleanVolume;
template <BooleanOperation boolOp>
struct BooleanImplementation {
using PlacedShape_t = PlacedBooleanVolume<boolOp>;
using UnplacedVolume_t = UnplacedBooleanVolume<boolOp>;
using UnplacedStruct_t = BooleanStruct;
// empty since functionality will be implemented in
// partially template specialized structs
};
/**
* an ordinary (non-templated) implementation of a Boolean solid
* using the virtual function interface of its constituents
*
* TEMPLATE SPECIALIZATION FOR SUBTRACTION
*/
template <>
struct BooleanImplementation<kSubtraction> {
using PlacedShape_t = PlacedBooleanVolume<kSubtraction>;
using UnplacedVolume_t = UnplacedBooleanVolume<kSubtraction>;
using UnplacedStruct_t = BooleanStruct;
VECCORE_ATT_HOST_DEVICE
static void PrintType()
{ /*printf("SpecializedBooleanVolume<%i, %i, %i>", kSubtraction, transCodeT, rotCodeT);*/
}
template <typename Stream>
static void PrintType(Stream &s)
{
/*s << "SpecializedBooleanVolume<kSubtraction"
<< "," << transCodeT << "," << rotCodeT << ">";
*/
}
template <typename Stream>
static void PrintType(Stream &st, int transCodeT = translation::kGeneric, int rotCodeT = rotation::kGeneric)
{
st << "SpecializedBooleanVolume<kSubtraction" << transCodeT << "," << rotCodeT << ">";
}
template <typename Stream>
static void PrintImplementationType(Stream &s)
{
/*
s << "BooleanImplementation<kSubtraction"
<< "," << transCodeT << "," << rotCodeT << ">";
*/
}
template <typename Stream>
static void PrintUnplacedType(Stream &s)
{
s << "BooleanStruct";
}
template <typename Real_v, typename Bool_v>
VECGEOM_FORCE_INLINE
VECCORE_ATT_HOST_DEVICE
static void Contains(BooleanStruct const &unplaced, Vector3D<Real_v> const &point, Bool_v &inside)
{
Vector3D<Real_v> tmp;
inside = unplaced.fLeftVolume->Contains(point);
if (vecCore::MaskEmpty(inside)) return;
auto rightInside = unplaced.fRightVolume->Contains(point);
inside &= !rightInside;
}
template <typename Real_v, typename Inside_t>
VECGEOM_FORCE_INLINE
VECCORE_ATT_HOST_DEVICE
static void Inside(BooleanStruct const &unplaced, Vector3D<Real_v> const &p, Inside_t &inside)
{
// now use the Inside functionality of left and right components
// algorithm taken from Geant4 implementation
VPlacedVolume const *const fPtrSolidA = unplaced.fLeftVolume;
VPlacedVolume const *const fPtrSolidB = unplaced.fRightVolume;
const auto positionA = fPtrSolidA->Inside(p);
if (positionA == EInside::kOutside) {
inside = EInside::kOutside;
return;
}
const auto positionB = fPtrSolidB->Inside(p);
if (positionA == EInside::kInside && positionB == EInside::kOutside) {
inside = EInside::kInside;
return;
} else {
if ((positionA == EInside::kInside && positionB == EInside::kSurface) ||
(positionB == EInside::kOutside && positionA == EInside::kSurface)
/*
||( positionA == EInside::kSurface && positionB == EInside::kSurface &&
( fPtrSolidA->Normal(p) -
fPtrSolidB->Normal(p) ).mag2() >
1000.0*G4GeometryTolerance::GetInstance()->GetRadialTolerance() ) )
*/) {
inside = EInside::kSurface;
return;
} else {
inside = EInside::kOutside;
return;
}
}
// going to be a bit more complicated due to Surface states
}
template <typename Real_v>
VECGEOM_FORCE_INLINE
VECCORE_ATT_HOST_DEVICE
static void DistanceToIn(BooleanStruct const &unplaced, Vector3D<Real_v> const &p, Vector3D<Real_v> const &dir,
Real_v const &stepMax, Real_v &distance)
{
// TOBEDONE: ASK Andrei about the while loop
// Compute distance from a given point outside to the shape.
Real_v d1, d2, snxt = 0.;
Vector3D<Real_v> hitpoint = p;
// check if inside '-'
auto insideRight = unplaced.fRightVolume->Contains(p);
// // epsilon is used to push across boundaries
Precision epsil(kPushTolerance);
//
// // we should never subtract a volume such that B - A > 0
//
while (1) {
if (insideRight) {
// // propagate to outside of '- / RightShape'
d1 = unplaced.fRightVolume->PlacedDistanceToOut(hitpoint, dir, stepMax);
snxt += (d1 >= 0. && d1 < kInfLength) ? (d1 + epsil) : 0.;
hitpoint += (d1 >= 0. && d1 < kInfLength) ? (d1 + epsil) * dir : 0. * dir;
// now master outside 'B'; check if inside 'A'
// Bool_t insideLeft =
if (unplaced.fLeftVolume->Contains(hitpoint)) {
auto check = unplaced.fLeftVolume->PlacedDistanceToOut(hitpoint, dir);
if (check > epsil) {
distance = snxt;
// std::cerr << "hitting " << distance << "\n";
return;
}
}
}
// if outside of both we do a max operation
// master outside '-' and outside '+' ; find distances to both
// fLeftMat->MasterToLocal(&master[0], &local[0]);
d2 = unplaced.fLeftVolume->DistanceToIn(hitpoint, dir, stepMax);
d2 = Max(d2, Precision(0.));
if (d2 == kInfLength) {
distance = kInfLength;
// std::cerr << "missing A " << d2 << "\n";
return;
}
d1 = unplaced.fRightVolume->DistanceToIn(hitpoint, dir, stepMax);
if (d2 < d1 - kTolerance) {
snxt += d2 + epsil;
// std::cerr << "returning " << snxt << "\n";
distance = snxt;
return;
}
// // propagate to '-'
snxt += (d1 >= 0. && d1 < kInfLength) ? d1 + epsil : 0.;
hitpoint += (d1 >= 0. && d1 < kInfLength) ? (d1 + epsil) * dir : epsil * dir;
insideRight = true;
} // end while
}
template <typename Real_v>
VECGEOM_FORCE_INLINE
VECCORE_ATT_HOST_DEVICE
static void DistanceToOut(BooleanStruct const &unplaced, Vector3D<Real_v> const &point,
Vector3D<Real_v> const &direction, Real_v const &stepMax, Real_v &distance)
{
const auto distancel = unplaced.fLeftVolume->PlacedDistanceToOut(point, direction, stepMax);
const Real_v dinright = unplaced.fRightVolume->DistanceToIn(point, direction, stepMax);
distance = Min(distancel, dinright);
return;
}
template <typename Real_v>
VECGEOM_FORCE_INLINE
VECCORE_ATT_HOST_DEVICE
static void SafetyToIn(BooleanStruct const &unplaced, Vector3D<Real_v> const &point, Real_v &safety)
{
VPlacedVolume const *const fPtrSolidA = unplaced.fLeftVolume;
VPlacedVolume const *const fPtrSolidB = unplaced.fRightVolume;
// very approximate
if ((fPtrSolidA->Contains(point)) && // case 1
(fPtrSolidB->Contains(point))) {
safety = fPtrSolidB->SafetyToOut(fPtrSolidB->GetTransformation()->Transform(point));
} else {
// po
safety = fPtrSolidA->SafetyToIn(point);
}
}
template <typename Real_v>
VECGEOM_FORCE_INLINE
VECCORE_ATT_HOST_DEVICE
static void SafetyToOut(BooleanStruct const &unplaced, Vector3D<Real_v> const &point, Real_v &safety)
{
const auto safetyleft = unplaced.fLeftVolume->SafetyToOut(point);
const auto safetyright = unplaced.fRightVolume->SafetyToIn(point);
safety = Min(safetyleft, safetyright);
}
template <typename Real_v, typename Bool_v>
VECGEOM_FORCE_INLINE
VECCORE_ATT_HOST_DEVICE
static void NormalKernel(BooleanStruct const &unplaced, Vector3D<Real_v> const &point, Vector3D<Real_v> &normal,
Bool_v &valid)
{
Vector3D<Real_v> localNorm;
Vector3D<Real_v> localPoint;
valid = false; // Backend::kFalse;
VPlacedVolume const *const fPtrSolidA = unplaced.fLeftVolume;
VPlacedVolume const *const fPtrSolidB = unplaced.fRightVolume;
// If point is inside B, then it must be on a surface of B
if (fPtrSolidB->Contains(point)) {
fPtrSolidB->GetTransformation()->Transform(point, localPoint);
valid = fPtrSolidB->Normal(localPoint, localNorm);
// The normal to the subtracted solid has to be inverted and transformed back
localNorm *= -1.;
fPtrSolidB->GetTransformation()->InverseTransformDirection(localNorm, normal);
return;
}
// If point is outside A, then it must be on a surface of A
if (!fPtrSolidA->Contains(point)) {
fPtrSolidA->GetTransformation()->Transform(point, localPoint);
valid = fPtrSolidA->Normal(localPoint, localNorm);
fPtrSolidA->GetTransformation()->InverseTransformDirection(localNorm, normal);
return;
}
// Point is inside A and outside B, check safety
fPtrSolidA->GetTransformation()->Transform(point, localPoint);
Real_v safetyA = fPtrSolidA->SafetyToOut(localPoint);
Real_v safetyB = fPtrSolidB->SafetyToIn(point);
Bool_v onA = safetyA < safetyB;
if (vecCore::MaskFull(onA)) {
valid = fPtrSolidA->Normal(localPoint, localNorm);
fPtrSolidA->GetTransformation()->InverseTransformDirection(localNorm, normal);
return;
} else {
// if (vecCore::MaskEmpty(onA)) { // to use real mask operation when supporting vectors
fPtrSolidB->GetTransformation()->Transform(point, localPoint);
valid = fPtrSolidB->Normal(localPoint, localNorm);
// The normal to the subtracted solid has to be inverted and transformed back
localNorm *= -1.;
fPtrSolidB->GetTransformation()->InverseTransformDirection(localNorm, normal);
return;
}
// Some particles are on A, some on B. We never arrive here in the scalar case
// If the interface to Normal will support the vector case, we have to write code here.
return;
}
}; // End struct BooleanImplementation
} // namespace VECGEOM_IMPL_NAMESPACE
} // namespace vecgeom
// include stuff for boolean union
#include "BooleanUnionImplementation.h"
// include stuff for boolean intersection
#include "BooleanIntersectionImplementation.h"
#endif /* BOOLEANIMPLEMENTATION_H_ */
|