1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 300 301 302 303 304 305 306 307 308 309 310 311 312 313 314 315 316 317 318 319 320 321 322 323 324 325 326 327 328 329 330 331 332 333 334 335 336 337 338 339 340 341 342 343 344 345 346 347 348 349 350 351 352 353 354 355 356 357 358 359 360 361 362 363 364 365 366 367 368 369 370 371 372 373 374 375 376 377 378 379 380 381 382 383 384 385 386 387 388 389 390 391 392 393 394 395 396 397 398 399 400 401 402 403 404 405 406 407 408 409 410 411 412 413 414 415 416 417 418 419 420 421 422 423 424 425 426 427 428 429 430 431 432 433 434 435 436 437 438 439 440 441 442 443 444 445 446 447 448 449 450 451 452 453 454 455 456 457 458 459 460 461 462 463 464 465 466 467 468 469 470 471 472 473 474 475 476 477 478 479 480 481 482 483 484 485 486 487 488 489 490 491 492 493 494 495 496 497 498 499 500 501 502 503 504 505 506 507 508 509 510 511 512 513 514 515 516 517 518 519 520 521 522 523 524 525 526 527 528 529 530 531 532 533 534 535 536 537 538 539 540 541 542 543 544 545 546 547 548 549 550 551 552 553 554 555 556 557 558 559 560 561 562 563 564 565 566 567 568 569 570 571 572 573 574 575 576 577 578 579 580 581 582 583 584 585 586 587 588 589 590 591 592 593 594 595 596 597 598 599 600 601 602 603 604 605 606 607 608 609 610 611 612 613 614 615 616 617 618 619 620 621 622 623 624 625 626 627 628
|
//===-- kernel/BoxImplementation.h ----------------------------------*- C++ -*-===//
//===--------------------------------------------------------------------------===//
/// @file BoxImplementation.h
/// @author Johannes de Fine Licht (johannes.definelicht@cern.ch), Sandro Wenzel (sandro.wenzel@cern.ch)
/// History notes:
/// 2013 - 2014: original development (abstracted kernels); Johannes and Sandro
/// Oct 2015: revision + moving to new backend structure (Sandro Wenzel)
#ifndef VECGEOM_VOLUMES_KERNEL_BOXIMPLEMENTATION_H_
#define VECGEOM_VOLUMES_KERNEL_BOXIMPLEMENTATION_H_
#include "VecGeom/base/Vector3D.h"
#include "VecGeom/volumes/BoxStruct.h"
#include "VecGeom/volumes/kernel/GenericKernels.h"
#include <VecCore/VecCore>
#include <cstdio>
namespace vecgeom {
VECGEOM_DEVICE_FORWARD_DECLARE(struct BoxImplementation;);
VECGEOM_DEVICE_DECLARE_CONV(struct, BoxImplementation);
inline namespace VECGEOM_IMPL_NAMESPACE {
class PlacedBox;
template <typename T>
struct BoxStruct;
class UnplacedBox;
struct BoxImplementation {
using PlacedShape_t = PlacedBox;
using UnplacedStruct_t = BoxStruct<Precision>;
using UnplacedVolume_t = UnplacedBox;
VECCORE_ATT_HOST_DEVICE
static void PrintType()
{
// printf("SpecializedBox<%i, %i>", transCodeT, rotCodeT);
}
template <typename Stream>
static void PrintType(Stream &st, int transCodeT = translation::kGeneric, int rotCodeT = rotation::kGeneric)
{
st << "SpecializedBox<" << transCodeT << "," << rotCodeT << ">";
}
template <typename Stream>
static void PrintImplementationType(Stream &st)
{
(void)st;
// st << "BoxImplementation<" << transCodeT << "," << rotCodeT << ">";
}
template <typename Stream>
static void PrintUnplacedType(Stream &st)
{
(void)st;
// TODO: this is wrong
// st << "UnplacedBox";
}
template <typename Real_v>
VECGEOM_FORCE_INLINE
VECCORE_ATT_HOST_DEVICE
static Vector3D<Real_v> HalfSize(const UnplacedStruct_t &box)
{
return Vector3D<Real_v>(box.fDimensions[0], box.fDimensions[1], box.fDimensions[2]);
}
template <typename Real_v, typename Bool_v>
VECGEOM_FORCE_INLINE
VECCORE_ATT_HOST_DEVICE
static void Contains(UnplacedStruct_t const &box, Vector3D<Real_v> const &point, Bool_v &inside)
{
inside = (point.Abs() - HalfSize<Real_v>(box)).Max() < Real_v(0.0);
}
template <typename Real_v, typename Inside_v>
VECGEOM_FORCE_INLINE
VECCORE_ATT_HOST_DEVICE
static void Inside(UnplacedStruct_t const &box, Vector3D<Real_v> const &point, Inside_v &inside)
{
Real_v dist = (point.Abs() - HalfSize<Real_v>(box)).Max();
inside = vecCore::Blend(dist < Real_v(0.0), Inside_v(kInside), Inside_v(kOutside));
vecCore__MaskedAssignFunc(inside, Abs(dist) < Real_v(kHalfTolerance), Inside_v(kSurface));
}
template <typename Real_v, bool ForInside>
VECGEOM_FORCE_INLINE
VECCORE_ATT_HOST_DEVICE
static void GenericKernelForContainsAndInside(Vector3D<Real_v> const &halfsize, Vector3D<Real_v> const &point,
vecCore::Mask<Real_v> &completelyinside,
vecCore::Mask<Real_v> &completelyoutside)
{
Real_v dist = (point.Abs() - halfsize).Max();
if (ForInside) completelyinside = dist < Real_v(-kHalfTolerance);
completelyoutside = dist > Real_v(kHalfTolerance);
}
template <typename Real_v>
VECGEOM_FORCE_INLINE
VECCORE_ATT_HOST_DEVICE
static void DistanceToIn(UnplacedStruct_t const &box, Vector3D<Real_v> const &point,
Vector3D<Real_v> const &direction, Real_v const & /* stepMax */, Real_v &distance)
{
const Vector3D<Real_v> invDir(Real_v(1.0) / NonZero(direction[0]), Real_v(1.0) / NonZero(direction[1]),
Real_v(1.0) / NonZero(direction[2]));
const Vector3D<Real_v> signDir(Sign(direction[0]), Sign(direction[1]), Sign(direction[2]));
const Vector3D<Real_v> tempIn = -signDir * box.fDimensions - point;
const Vector3D<Real_v> tempOut = signDir * box.fDimensions - point;
// add a check for point on exit surface
const Real_v absOrthogOut = Abs((signDir * tempOut).Min());
const Real_v distOut = (tempOut * invDir).Min();
// distIn calculation
distance = (tempIn * invDir).Max();
vecCore__MaskedAssignFunc(
distance, distance >= distOut || distOut <= Real_v(kHalfTolerance) || absOrthogOut <= Real_v(kHalfTolerance),
InfinityLength<Real_v>());
}
template <typename Real_v>
VECGEOM_FORCE_INLINE
VECCORE_ATT_HOST_DEVICE
static void DistanceToOut(UnplacedStruct_t const &box, Vector3D<Real_v> const &point,
Vector3D<Real_v> const &direction, Real_v const & /* stepMax */, Real_v &distance)
{
const Vector3D<Real_v> invDir(Real_v(1.0) / NonZero(direction[0]), Real_v(1.0) / NonZero(direction[1]),
Real_v(1.0) / NonZero(direction[2]));
const Vector3D<Real_v> signDir(Sign(direction[0]), Sign(direction[1]), Sign(direction[2]));
const Real_v safetyIn = (point.Abs() - HalfSize<Real_v>(box)).Max();
const Vector3D<Real_v> tempOut = signDir * box.fDimensions - point;
distance = (tempOut * invDir).Min();
vecCore__MaskedAssignFunc(distance, safetyIn > Real_v(kHalfTolerance), Real_v(-1.0));
}
template <typename Real_v>
VECGEOM_FORCE_INLINE
VECCORE_ATT_HOST_DEVICE
static void SafetyToIn(UnplacedStruct_t const &box, Vector3D<Real_v> const &point, Real_v &safety)
{
safety = (point.Abs() - HalfSize<Real_v>(box)).Max();
}
template <typename Real_v>
VECGEOM_FORCE_INLINE
VECCORE_ATT_HOST_DEVICE
static void SafetyToOut(UnplacedStruct_t const &box, Vector3D<Real_v> const &point, Real_v &safety)
{
safety = (HalfSize<Real_v>(box) - point.Abs()).Min();
}
template <typename Real_v>
VECGEOM_FORCE_INLINE
VECCORE_ATT_HOST_DEVICE
static Vector3D<Real_v> NormalKernel(UnplacedStruct_t const &box, Vector3D<Real_v> const &point,
typename vecCore::Mask_v<Real_v> &valid)
{
// Computes the normal on a surface and returns it as a unit vector
// In case a point is further than kHalfTolerance from a surface, set valid=false
// Must return a valid vector. (even if the point is not on the surface.)
//
// On an edge or corner, provide an average normal of all facets within tolerance
const Vector3D<Real_v> safety((point.Abs() - HalfSize<Real_v>(box)).Abs());
const Real_v safmin = safety.Min();
valid = safmin < kHalfTolerance;
Vector3D<Real_v> normal(0.);
vecCore__MaskedAssignFunc(normal[0], safety[0] - safmin < kHalfTolerance, Sign(point[0]));
vecCore__MaskedAssignFunc(normal[1], safety[1] - safmin < kHalfTolerance, Sign(point[1]));
vecCore__MaskedAssignFunc(normal[2], safety[2] - safmin < kHalfTolerance, Sign(point[2]));
if (normal.Mag2() > 1.0) normal.Normalize();
return normal;
}
// an algorithm to test for intersection ( could be faster than DistanceToIn )
// actually this also calculated the distance at the same time ( in tmin )
// template <class Backend>
VECCORE_ATT_HOST_DEVICE
VECGEOM_FORCE_INLINE
static bool Intersect(Vector3D<Precision> const *corners, Vector3D<Precision> const &point,
Vector3D<Precision> const &ray, Precision /* t0 */, Precision /* t1 */)
{
// intersection algorithm 1 ( Amy Williams )
Precision tmin, tmax, tymin, tymax, tzmin, tzmax;
// IF THERE IS A STEPMAX; COULD ALSO CHECK SAFETIES
Precision inverserayx = 1. / ray[0];
Precision inverserayy = 1. / ray[1];
// TODO: we should promote this to handle multiple boxes
int sign[3];
sign[0] = inverserayx < 0;
sign[1] = inverserayy < 0;
tmin = (corners[sign[0]].x() - point.x()) * inverserayx;
tmax = (corners[1 - sign[0]].x() - point.x()) * inverserayx;
tymin = (corners[sign[1]].y() - point.y()) * inverserayy;
tymax = (corners[1 - sign[1]].y() - point.y()) * inverserayy;
if ((tmin > tymax) || (tymin > tmax)) return false;
Precision inverserayz = 1. / ray.z();
sign[2] = inverserayz < 0;
if (tymin > tmin) tmin = tymin;
if (tymax < tmax) tmax = tymax;
tzmin = (corners[sign[2]].z() - point.z()) * inverserayz;
tzmax = (corners[1 - sign[2]].z() - point.z()) * inverserayz;
if ((tmin > tzmax) || (tzmin > tmax)) return false;
// if ((tzmin > tmin)) tmin = tzmin;
// if (tzmax < tmax) tmax = tzmax;
// return ((tmin < t1) && (tmax > t0));
// std::cerr << "tmin " << tmin << " tmax " << tmax << "\n";
return true;
}
// an algorithm to test for intersection ( could be faster than DistanceToIn )
// actually this also calculated the distance at the same time ( in tmin )
template <int signx, int signy, int signz>
VECGEOM_FORCE_INLINE
VECCORE_ATT_HOST_DEVICE
//__attribute__((noinline))
static Precision IntersectCached(Vector3D<Precision> const *corners, Vector3D<Precision> const &point,
Vector3D<Precision> const &inverseray, Precision t0, Precision t1)
{
// intersection algorithm 1 ( Amy Williams )
// NOTE THE FASTEST VERSION IS STILL THE ORIGINAL IMPLEMENTATION
Precision tmin, tmax, tymin, tymax, tzmin, tzmax;
// TODO: we should promote this to handle multiple boxes
// observation: we always compute sign and 1-sign; so we could do the assignment
// to tmin and tmax in a masked assignment thereafter
tmin = (corners[signx].x() - point.x()) * inverseray.x();
tmax = (corners[1 - signx].x() - point.x()) * inverseray.x();
tymin = (corners[signy].y() - point.y()) * inverseray.y();
tymax = (corners[1 - signy].y() - point.y()) * inverseray.y();
if ((tmin > tymax) || (tymin > tmax)) return InfinityLength<Precision>();
if (tymin > tmin) tmin = tymin;
if (tymax < tmax) tmax = tymax;
tzmin = (corners[signz].z() - point.z()) * inverseray.z();
tzmax = (corners[1 - signz].z() - point.z()) * inverseray.z();
if ((tmin > tzmax) || (tzmin > tmax)) return InfinityLength<Precision>(); // false
if ((tzmin > tmin)) tmin = tzmin;
if (tzmax < tmax) tmax = tzmax;
if (!((tmin < t1) && (tmax > t0))) return InfinityLength<Precision>();
return tmin;
}
// an algorithm to test for intersection ( could be faster than DistanceToIn )
// actually this also calculated the distance at the same time ( in tmin )
template <typename Real_v, int signx, int signy, int signz>
VECGEOM_FORCE_INLINE
VECCORE_ATT_HOST_DEVICE
static Real_v IntersectCachedKernel(Vector3D<Real_v> const *corners, Vector3D<Precision> const &point,
Vector3D<Precision> const &inverseray, Precision t0, Precision t1)
{
using Bool_v = vecCore::Mask_v<Real_v>;
Real_v tmin = (corners[signx].x() - point.x()) * inverseray.x();
Real_v tmax = (corners[1 - signx].x() - point.x()) * inverseray.x();
Real_v tymin = (corners[signy].y() - point.y()) * inverseray.y();
Real_v tymax = (corners[1 - signy].y() - point.y()) * inverseray.y();
// do we need this condition ?
Bool_v done = (tmin > tymax) || (tymin > tmax);
if (vecCore::MaskFull(done)) return InfinityLength<Real_v>();
// if((tmin > tymax) || (tymin > tmax))
// return vecgeom::kInfLength;
// Not sure if this has to be maskedassignments
tmin = Max(tmin, tymin);
tmax = Min(tmax, tymax);
Real_v tzmin = (corners[signz].z() - point.z()) * inverseray.z();
Real_v tzmax = (corners[1 - signz].z() - point.z()) * inverseray.z();
done |= (tmin > tzmax) || (tzmin > tmax);
// if((tmin > tzmax) || (tzmin > tmax))
// return vecgeom::kInfLength; // false
if (vecCore::MaskFull(done)) return InfinityLength<Real_v>();
// not sure if this has to be maskedassignments
tmin = Max(tmin, tzmin);
tmax = Min(tmax, tzmax);
done |= !((tmin < t1) && (tmax > t0));
// if( ! ((tmin < t1) && (tmax > t0)) )
// return vecgeom::kInfLength;
vecCore__MaskedAssignFunc(tmin, done, InfinityLength<Real_v>());
return tmin;
}
// an algorithm to test for intersection ( could be faster than DistanceToIn )
// actually this also calculated the distance at the same time ( in tmin )
template <typename Real_v, typename basep>
VECGEOM_FORCE_INLINE
VECCORE_ATT_HOST_DEVICE
static Real_v IntersectCachedKernel2(Vector3D<Real_v> const *corners, Vector3D<basep> const &point,
Vector3D<basep> const &inverseray, int signx, int signy, int signz, basep t0,
basep t1)
{
using Bool_v = vecCore::Mask_v<Real_v>;
Real_v tmin = (corners[signx].x() - Real_v(point.x())) * inverseray.x();
Real_v tymax = (corners[1 - signy].y() - Real_v(point.y())) * inverseray.y();
Bool_v done = tmin > tymax;
if (vecCore::MaskFull(done)) return InfinityLength<Real_v>();
Real_v tmax = (corners[1 - signx].x() - Real_v(point.x())) * inverseray.x();
Real_v tymin = (corners[signy].y() - Real_v(point.y())) * inverseray.y();
// do we need this condition ?
done |= (tymin > tmax);
if (vecCore::MaskFull(done)) return InfinityLength<Real_v>();
// if((tmin > tymax) || (tymin > tmax))
// return vecgeom::kInfLength;
// Not sure if this has to be maskedassignments
tmin = Max(tmin, tymin);
tmax = Min(tmax, tymax);
Real_v tzmin = (corners[signz].z() - point.z()) * inverseray.z();
Real_v tzmax = (corners[1 - signz].z() - point.z()) * inverseray.z();
done |= (Real_v(tmin) > Real_v(tzmax)) || (Real_v(tzmin) > Real_v(tmax));
// if((tmin > tzmax) || (tzmin > tmax))
// return vecgeom::kInfLength; // false
if (vecCore::MaskFull(done)) return InfinityLength<Real_v>();
// not sure if this has to be maskedassignments
tmin = Max(tmin, tzmin);
tmax = Min(tmax, tzmax);
done |= !((tmin <= Real_v(t1 + kTolerance)) && (tmax > Real_v(t0 - kTolerance)));
// if( ! ((tmin < t1) && (tmax > t0)) )
// return vecgeom::kInfLength;
vecCore__MaskedAssignFunc(tmin, done, InfinityLength<Real_v>());
return tmin;
}
// an algorithm to test for intersection against many boxes but just one ray;
// in this case, the inverse ray is cached outside and directly given here as input
// we could then further specialize this function to the direction of the ray
// because also the sign[] variables and hence the branches are predefined
// one could do: template <class Backend, int sign0, int sign1, int sign2>
template <typename Real_v>
VECGEOM_FORCE_INLINE
VECCORE_ATT_HOST_DEVICE
static Precision IntersectMultiple(Vector3D<Real_v> const lowercorners, Vector3D<Real_v> const uppercorners,
Vector3D<Precision> const &point, Vector3D<Precision> const &inverseray,
Precision t0, Precision t1)
{
// intersection algorithm 1 ( Amy Williams )
typedef Real_v Float_t;
Float_t tmin, tmax, tymin, tymax, tzmin, tzmax;
// IF THERE IS A STEPMAX; COULD ALSO CHECK SAFETIES
// TODO: we should promote this to handle multiple boxes
// we might need to have an Index type
// int sign[3];
Float_t sign[3]; // this also exists
sign[0] = inverseray.x() < 0;
sign[1] = inverseray.y() < 0;
// observation: we always compute sign and 1-sign; so we could do the assignment
// to tmin and tmax in a masked assignment thereafter
// tmin = (corners[(int)sign[0]].x() -point.x())*inverserayx;
// tmax = (corners[(int)(1-sign[0])].x() -point.x())*inverserayx;
// tymin = (corners[(int)(sign[1])].y() -point.y())*inverserayy;
// tymax = (corners[(int)(1-sign[1])].y() -point.y())*inverserayy;
Precision x0 = (lowercorners.x() - point.x()) * inverseray.x();
Precision x1 = (uppercorners.x() - point.x()) * inverseray.x();
Precision y0 = (lowercorners.y() - point.y()) * inverseray.y();
Precision y1 = (uppercorners.y() - point.y()) * inverseray.y();
// could we do this using multiplications?
// tmin = !sign[0] ? x0 : x1;
// tmax = sign[0] ? x0 : x1;
// tymin = !sign[1] ? y0 : y1;
// tymax = sign[1] ? y0 : y1;
// could completely get rid of this ? because the sign is determined by the outside ray
tmin = (1 - sign[0]) * x0 + sign[0] * x1;
tmax = sign[0] * x0 + (1 - sign[0]) * x1;
tymin = (1 - sign[1]) * y0 + sign[1] * y1;
tymax = sign[1] * y0 + (1 - sign[1]) * y1;
// tmax = (corners[(int)(1-sign[0])].x() -point.x())*inverserayx;
// tymin = (corners[(int)(sign[1])].y() -point.y())*inverserayy;
// tymax = (corners[(int)(1-sign[1])].y() -point.y())*inverserayy;
if ((tmin > tymax) || (tymin > tmax)) return InfinityLength<Precision>();
// Precision inverserayz = 1./ray.z();
sign[2] = inverseray.z() < 0;
if (tymin > tmin) tmin = tymin;
if (tymax < tmax) tmax = tymax;
//
// tzmin = (lowercorners[(int) sign[2]].z() -point.z())*inverseray.z();
// tzmax = (uppercorners[(int)(1-sign[2])].z() -point.z())*inverseray.z();
if ((tmin > tzmax) || (tzmin > tmax)) return InfinityLength<Precision>(); // false
if ((tzmin > tmin)) tmin = tzmin;
if (tzmax < tmax) tmax = tzmax;
if (!((tmin < t1) && (tmax > t0))) return InfinityLength<Precision>();
// std::cerr << "tmin " << tmin << " tmax " << tmax << "\n";
// return true;
return tmin;
}
}; // End struct BoxImplementation
struct ABBoxImplementation {
// a contains kernel to be used with aligned bounding boxes
// scalar and vector modes (aka backend) for boxes but only single points
// should be useful to test one point against many bounding boxes
// TODO: check if this can be unified with the normal generic box kernel
template <typename Real_v, typename Bool_v = typename vecCore::Mask_v<Real_v>>
VECGEOM_FORCE_INLINE
VECCORE_ATT_HOST_DEVICE
static void ABBoxContainsKernel(Vector3D<Real_v> const &lowercorner, Vector3D<Real_v> const &uppercorner,
Vector3D<Precision> const &point, Bool_v &inside)
{
inside = lowercorner.x() < Real_v(point.x());
inside &= uppercorner.x() > Real_v(point.x());
if (vecCore::MaskEmpty(inside)) return;
inside &= lowercorner.y() < Real_v(point.y());
inside &= uppercorner.y() > Real_v(point.y());
if (vecCore::MaskEmpty(inside)) return;
inside &= lowercorner.z() < Real_v(point.z());
inside &= uppercorner.z() > Real_v(point.z());
}
// playing with a kernel that can do multi-box - single particle; multi-box -- multi-particle, single-box --
// multi-particle
template <typename T1, typename T2, typename Bool_v>
VECGEOM_FORCE_INLINE
VECCORE_ATT_HOST_DEVICE
static void ABBoxContainsKernelGeneric(Vector3D<T1> const &lowercorner, Vector3D<T1> const &uppercorner,
Vector3D<T2> const &point, Bool_v &inside)
{
inside = lowercorner.x() < T1(point.x());
inside &= uppercorner.x() > T1(point.x());
if (vecCore::MaskEmpty(inside)) return;
inside &= lowercorner.y() < T1(point.y());
inside &= uppercorner.y() > T1(point.y());
if (vecCore::MaskEmpty(inside)) return;
inside &= lowercorner.z() < T1(point.z());
inside &= uppercorner.z() > T1(point.z());
}
// safety square for Bounding boxes
// generic kernel treating one track and one or multiple boxes
// in case a point is inside a box a squared value
// is returned but given an overall negative sign
template <typename Real_v, typename Real_s = typename vecCore::TypeTraits<Real_v>::ScalarType>
VECGEOM_FORCE_INLINE
VECCORE_ATT_HOST_DEVICE
static Real_v ABBoxSafetySqr(Vector3D<Real_v> const &lowercorner, Vector3D<Real_v> const &uppercorner,
Vector3D<Real_s> const &point)
{
using Vector3D_v = Vector3D<Real_v>;
using Bool_v = vecCore::Mask_v<Real_v>;
const Vector3D_v kHalf(Real_v(static_cast<Real_s>(0.5)));
const Vector3D_v origin((uppercorner + lowercorner) * kHalf);
const Vector3D_v delta((uppercorner - lowercorner) * kHalf);
// promote scalar point to vector point
const Vector3D_v promotedpoint(Real_v(point.x()), Real_v(point.y()), Real_v(point.z()));
// it would be nicer to have a standalone Abs function taking Vector3D as input
const Vector3D_v safety = ((promotedpoint - origin).Abs()) - delta;
const Bool_v outsidex = safety.x() > Real_s(0.);
const Bool_v outsidey = safety.y() > Real_s(0.);
const Bool_v outsidez = safety.z() > Real_s(0.);
Real_v runningsafetysqr(0.); // safety squared from outside
Real_v runningmax(-InfinityLength<Real_v>()); // relevant for safety when we are inside
// loop over dimensions manually unrolled
// treat x dim
{
// this will be much simplified with operator notation
Real_v tmp(0.);
vecCore__MaskedAssignFunc(tmp, outsidex, safety.x() * safety.x());
runningsafetysqr += tmp;
runningmax = Max(runningmax, safety.x());
}
// treat y dim
{
Real_v tmp(0.);
vecCore__MaskedAssignFunc(tmp, outsidey, safety.y() * safety.y());
runningsafetysqr += tmp;
runningmax = Max(runningmax, safety.y());
}
// treat z dim
{
Real_v tmp(0.);
vecCore__MaskedAssignFunc(tmp, outsidez, safety.z() * safety.z());
runningsafetysqr += tmp;
runningmax = Max(runningmax, safety.z());
}
Bool_v inside = !(outsidex || outsidey || outsidez);
if (!vecCore::MaskEmpty(inside)) vecCore__MaskedAssignFunc(runningsafetysqr, inside, -runningmax * runningmax);
return runningsafetysqr;
}
// safety square for Bounding boxes, returning the squared range for any point in the box
// generic kernel treating one track and one or multiple boxes
// in case a point is inside a box a squared value
// is returned but given an overall negative sign
template <typename Real_v, typename Real_s = typename vecCore::TypeTraits<Real_v>::ScalarType>
VECGEOM_FORCE_INLINE
VECCORE_ATT_HOST_DEVICE
static Real_v ABBoxSafetyRangeSqr(Vector3D<Real_v> const &lowercorner, Vector3D<Real_v> const &uppercorner,
Vector3D<Real_s> const &point, Real_v &safetymaxsqr)
{
using Vector3D_v = Vector3D<Real_v>;
using Bool_v = vecCore::Mask_v<Real_v>;
const Vector3D_v kHalf(Real_v(static_cast<Real_s>(0.5)));
const Vector3D_v origin((uppercorner + lowercorner) * kHalf);
const Vector3D_v delta((uppercorner - lowercorner) * kHalf);
// promote scalar point to vector point
const Vector3D_v promotedpoint(Real_v(point.x()), Real_v(point.y()), Real_v(point.z()));
// it would be nicer to have a standalone Abs function taking Vector3D as input
const Vector3D_v safety = ((promotedpoint - origin).Abs()) - delta;
const Vector3D_v safetyp = ((promotedpoint - origin).Abs()) + delta;
const Bool_v outsidex = safety.x() > Real_s(0.);
const Bool_v outsidey = safety.y() > Real_s(0.);
const Bool_v outsidez = safety.z() > Real_s(0.);
Real_v runningsafetysqr(0.); // safety squared from outside
safetymaxsqr = safetyp.Mag2(); // safetymax squared from outside
Real_v runningmax(-InfinityLength<Real_v>()); // relevant for safety when we are inside
// loop over dimensions manually unrolled
// treat x dim
{
// this will be much simplified with operator notation
Real_v tmp(0.);
vecCore__MaskedAssignFunc(tmp, outsidex, safety.x() * safety.x());
runningsafetysqr += tmp;
runningmax = Max(runningmax, safety.x());
// vecCore__MaskedAssignFunc(tmp, outsidex, safetyp.x() * safetyp.x());
// safetymaxsqr += tmp;
}
// treat y dim
{
Real_v tmp(0.);
vecCore__MaskedAssignFunc(tmp, outsidey, safety.y() * safety.y());
runningsafetysqr += tmp;
runningmax = Max(runningmax, safety.y());
// vecCore__MaskedAssignFunc(tmp, outsidey, safetyp.y() * safetyp.y());
// safetymaxsqr += tmp;
}
// treat z dim
{
Real_v tmp(0.);
vecCore__MaskedAssignFunc(tmp, outsidez, safety.z() * safety.z());
runningsafetysqr += tmp;
runningmax = Max(runningmax, safety.z());
// vecCore__MaskedAssignFunc(tmp, outsidez, safetyp.z() * safetyp.z());
// safetymaxsqr += tmp;
}
Bool_v inside = !(outsidex || outsidey || outsidez);
if (!vecCore::MaskEmpty(inside)) vecCore__MaskedAssignFunc(runningsafetysqr, inside, -runningmax * runningmax);
return runningsafetysqr;
}
}; // end aligned bounding box struct
} // namespace VECGEOM_IMPL_NAMESPACE
} // namespace vecgeom
#endif // VECGEOM_VOLUMES_KERNEL_BOXIMPLEMENTATION_H_
|