File: ConeImplementation.h

package info (click to toggle)
vecgeom 1.2.1%2Bdfsg-1
  • links: PTS, VCS
  • area: main
  • in suites: bookworm
  • size: 23,928 kB
  • sloc: cpp: 88,717; ansic: 6,894; python: 1,035; sh: 582; sql: 538; makefile: 29
file content (521 lines) | stat: -rw-r--r-- 20,657 bytes parent folder | download | duplicates (2)
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
/*
 * ConeImplementation.h
 *
 *  Created on: May 14, 2014
 *      Author: swenzel
 */

/// History notes:
/// revision + moving to Vectorized Cone Kernels (Raman Sehgal)
/// May-June 2017: revision + moving to new Structure (Raman Sehgal)
/// 20180323 Guilherme Lima  Adapted to new UnplacedVolume factory

#ifndef VECGEOM_VOLUMES_KERNEL_CONEIMPLEMENTATION_H_
#define VECGEOM_VOLUMES_KERNEL_CONEIMPLEMENTATION_H_

#include "VecGeom/base/Vector3D.h"
#include "VecGeom/volumes/kernel/GenericKernels.h"
#include "VecGeom/volumes/kernel/shapetypes/ConeTypes.h"
#include "VecGeom/volumes/ConeStruct.h"
#include <cstdio>
#include "VecGeom/volumes/ConeUtilities.h"

namespace vecgeom {

VECGEOM_DEVICE_DECLARE_CONV_TEMPLATE(struct, ConeImplementation, typename);

inline namespace VECGEOM_IMPL_NAMESPACE {

template <typename T>
class SPlacedCone;
template <typename T>
class SUnplacedCone;

template <typename coneTypeT>
struct ConeImplementation {

  using UnplacedStruct_t = ConeStruct<Precision>;
  using UnplacedVolume_t = SUnplacedCone<coneTypeT>;
  using PlacedShape_t    = SPlacedCone<UnplacedVolume_t>;

  VECCORE_ATT_HOST_DEVICE
  static void PrintType() {}

  template <typename Stream>
  static void PrintType(Stream &s, int transCodeT = translation::kGeneric, int rotCodeT = rotation::kGeneric)
  {
    s << "SpecializedCone<" << transCodeT << "," << rotCodeT << ">";
  }

  template <typename Stream>
  static void PrintImplementationType(Stream & /*s*/)
  {
  }

  template <typename Stream>
  static void PrintUnplacedType(Stream & /*s*/)
  {
  }

  /* A Function that will just check if the point is on the CONICAL (circle) edge
   * assuming that it is on either lowerZ or upperZ
   *
   * Beware : It will not do any checks on Z
   */
  template <typename Real_v, bool ForInnerSurface, bool ForLowerZ>
  VECGEOM_FORCE_INLINE
  VECCORE_ATT_HOST_DEVICE
  static typename vecCore::Mask_v<Real_v> IsOnRing(UnplacedStruct_t const &cone, Vector3D<Real_v> const &point)
  {
    using Bool_v = typename vecCore::Mask_v<Real_v>;

    Real_v rad2 = point.Perp2();
    Bool_v onRing(false);

    if (ForLowerZ) {
      if (ForInnerSurface) {
        onRing = (rad2 <= MakePlusTolerantSquare<true>(cone.fRmin1)) &&
                 (rad2 >= MakeMinusTolerantSquare<true>(cone.fRmin1));
      } else {
	onRing = (rad2 <= MakePlusTolerantSquare<true>(cone.fRmax1)) &&
                 (rad2 >= MakeMinusTolerantSquare<true>(cone.fRmax1));
      }
    } else {
      if (ForInnerSurface) {
        onRing = (rad2 <= MakePlusTolerantSquare<true>(cone.fRmin2)) &&
                 (rad2 >= MakeMinusTolerantSquare<true>(cone.fRmin2));
      } else {
        onRing = (rad2 <= MakePlusTolerantSquare<true>(cone.fRmax2)) &&
                 (rad2 >= MakeMinusTolerantSquare<true>(cone.fRmax2));
      }
    }

    return onRing;
  }

  template <typename Real_v>
  VECGEOM_FORCE_INLINE
  VECCORE_ATT_HOST_DEVICE
  static void Contains(UnplacedStruct_t const &cone, Vector3D<Real_v> const &point,
                       typename vecCore::Mask_v<Real_v> &inside)
  {
    typedef typename vecCore::Mask_v<Real_v> Bool_v;
    Bool_v unused(false);
    Bool_v outside(false);
    ConeHelpers<Real_v, coneTypeT>::template GenericKernelForContainsAndInside<false>(cone, point, unused, outside);
    inside = !outside;
  }

  template <typename Real_v, typename Inside_v>
  VECGEOM_FORCE_INLINE
  VECCORE_ATT_HOST_DEVICE
  static void Inside(UnplacedStruct_t const &cone, Vector3D<Real_v> const &point, Inside_v &inside)
  {
    ConeHelpers<Real_v, coneTypeT>::template Inside<Inside_v>(cone, point, inside);
  }

  template <typename Real_v>
  VECGEOM_FORCE_INLINE
  VECCORE_ATT_HOST_DEVICE
  static void DistanceToIn(UnplacedStruct_t const &cone, Vector3D<Real_v> const &point, Vector3D<Real_v> const &dir,
                           Real_v const & /*stepMax*/, Real_v &distance)
  {
    using namespace ConeUtilities;
    using namespace ConeTypes;
    typedef Real_v Float_t;
    typedef typename vecCore::Mask_v<Real_v> Bool_t;

    Bool_t done(false);
    const Real_v zero(0.);

    //=== First, for points outside and moving away --> return infinity
    distance = kInfLength;

    // outside of Z range and going away?
    Float_t distz          = Abs(point.z()) - cone.fDz; // avoid a division for now
    Bool_t outZAndGoingOut = (distz > kConeTolerance && (point.z() * dir.z()) >= zero) ||
                             (Abs(distz) < kConeTolerance && (point.z() * dir.z()) > zero);
    done |= outZAndGoingOut;
    if (vecCore::MaskFull(done)) return;

    // outside or *on* outer cone and going away?
    Float_t outerRad  = GetRadiusOfConeAtPoint<Real_v, false>(cone, point.z());
    Float_t rsq            = point.Perp2(); // point.x()*point.x() + point.y()*point.y();
    done |= (rsq > MakeMinusTolerantSquare<true>(outerRad, cone.fOuterTolerance))
         && (dir.Dot(GetNormal<Real_v, false>(cone, point)) >= zero);
    if (vecCore::MaskFull(done)) return;

    //=== Next, check all dimensions of the cone: for points inside --> return -1
    vecCore__MaskedAssignFunc(distance, !done, Float_t(-1.0));

    // For points inside z-range, return -1
    Bool_t inside = distz < -kConeTolerance;

    inside &= rsq < MakeMinusTolerantSquare<true>(outerRad, cone.fOuterTolerance);

    if (checkRminTreatment<coneTypeT>(cone)) {
      Float_t innerRad = GetRadiusOfConeAtPoint<Real_v, true>(cone, point.z());
      inside &= rsq > MakePlusTolerantSquare<true>(innerRad, cone.fInnerTolerance);
    }
    if (checkPhiTreatment<coneTypeT>(cone)) { // && !vecCore::MaskEmpty(inside)) {
      Bool_t insector;
      PointInCyclicalSector<Real_v, coneTypeT, false, false>(cone, point.x(), point.y(), insector);
      inside &= insector;
    }
    done |= inside;
    if (vecCore::MaskFull(done)) return;

    //=== Next step: check if z-plane is the right entry point (both r,phi
    // should be valid at z-plane crossing)
    vecCore__MaskedAssignFunc(distance, !done, Float_t(kInfLength));

    distz /= NonZero(Abs(dir.z()));


#ifdef EDGE_POINTS
    Bool_t onZsurf  = (Abs(point.z()) - cone.fDz) < Real_v(kConeTolerance);
    Bool_t onLoZSrf = onZsurf && point.z() < zero;
    Bool_t onHiZSrf = onZsurf && point.z() > zero;
    Bool_t loZcond  = onLoZSrf && (IsOnRing<Real_v, false, true>(cone, point));
    Bool_t hiZcond  = onHiZSrf && (IsOnRing<Real_v, false,false>(cone, point));
    if (checkRminTreatment<coneTypeT>(cone)) {
       loZcond |= onLoZSrf && IsOnRing<Real_v, true, true>(cone, point);
       hiZcond |= onHiZSrf && IsOnRing<Real_v, true,false>(cone, point);
    }
    vecCore::MaskedAssign(distz, loZcond || hiZcond, zero);
#endif


    Float_t hitx = point.x() + distz * dir.x();
    Float_t hity = point.y() + distz * dir.y();

    Float_t r2 = (hitx * hitx) + (hity * hity);

    Precision innerZTol         = cone.fTolIz;
    Bool_t isHittingTopPlane    = (point.z() >= innerZTol) && (r2 <= cone.fSqRmax2 + kTolerance);  // cone.fSqRmax2Tol
    Bool_t isHittingBottomPlane = (point.z() <= -innerZTol) && (r2 <= cone.fSqRmax1 + kTolerance); // cone.fSqRmax1Tol
    Bool_t okz                  = (isHittingTopPlane || isHittingBottomPlane);

    if (checkRminTreatment<coneTypeT>(cone)) {
      isHittingTopPlane &= (r2 >= cone.fSqRmin2 - kTolerance);    // cone.fSqRmin2Tol
      isHittingBottomPlane &= (r2 >= cone.fSqRmin1 - kTolerance); // cone.fSqRmin1Tol
      okz &= ((isHittingTopPlane || isHittingBottomPlane));
    }

    if (checkPhiTreatment<coneTypeT>(cone)) {
      Bool_t insector;
      PointInCyclicalSector<Real_v, coneTypeT, false>(cone, hitx, hity, insector);
      okz &= insector;
    }
    vecCore::MaskedAssign(distance, !done && okz, distz);
    done |= okz;
    if (vecCore::MaskFull(done)) return;

    Float_t dist_rOuter(kInfLength);
    Bool_t ok_outerCone =
        ConeHelpers<Real_v, coneTypeT>::template DetectIntersectionAndCalculateDistanceToConicalSurface<true, false>(
            cone, point, dir, dist_rOuter);
    ok_outerCone &= dist_rOuter < distance;
    vecCore::MaskedAssign(distance, !done && ok_outerCone, dist_rOuter);
    done |= ok_outerCone;
    if (vecCore::MaskFull(done)) return;

    Float_t dist_rInner(kInfLength);
    if (checkRminTreatment<coneTypeT>(cone)) {

      Bool_t ok_innerCone =
          ConeHelpers<Real_v, coneTypeT>::template DetectIntersectionAndCalculateDistanceToConicalSurface<true, true>(
              cone, point, dir, dist_rInner);
      ok_innerCone &= dist_rInner < distance;
      vecCore::MaskedAssign(distance, !done && ok_innerCone, dist_rInner);
    }

    if (checkPhiTreatment<coneTypeT>(cone)) {

      evolution::Wedge const &w = cone.fPhiWedge;

      Float_t dist_phi;
      Bool_t ok_phi;
      PhiPlaneTrajectoryIntersection<Real_v, coneTypeT, SectorType<coneTypeT>::value != kOnePi, true>(
          cone.fAlongPhi1x, cone.fAlongPhi1y, w.GetNormal1().x(), w.GetNormal1().y(), cone, point, dir, dist_phi,
          ok_phi);
      ok_phi &= dist_phi < distance;
      vecCore::MaskedAssign(distance, !done && ok_phi, dist_phi);
      done |= ok_phi;

      if (SectorType<coneTypeT>::value != kOnePi) {

        PhiPlaneTrajectoryIntersection<Real_v, coneTypeT, true, true>(cone.fAlongPhi2x, cone.fAlongPhi2y,
                                                                      w.GetNormal2().x(), w.GetNormal2().y(), cone,
                                                                      point, dir, dist_phi, ok_phi);

        vecCore::MaskedAssign(distance, ok_phi && dist_phi < distance, dist_phi);
      }
    }
  }

  template <typename Real_v>
  VECGEOM_FORCE_INLINE
  VECCORE_ATT_HOST_DEVICE
  static void DistanceToOut(UnplacedStruct_t const &cone, Vector3D<Real_v> const &point,
                            Vector3D<Real_v> const &direction, Real_v const & /*stepMax*/, Real_v &distance)
  {

    distance = kInfLength;
    using namespace ConeUtilities;
    using namespace ConeTypes;

    typedef typename vecCore::Mask_v<Real_v> Bool_t;

    Bool_t done(false);
    const Real_v zero(0.0);

    // Using this logic will improve performance of Scalar code
    Real_v distz         = Abs(point.z()) - cone.fDz;

    //=== Next, check all dimensions of the cone: for points outside --> return -1
    vecCore__MaskedAssignFunc(distance, !done, Real_v(-1.0));

    Bool_t outside = distz > Real_v(kConeTolerance);

    Real_v rsq           = point.Perp2();
    Real_v outerRad = ConeUtilities::GetRadiusOfConeAtPoint<Real_v, false>(cone, point.z());
    outside |=  rsq > MakePlusTolerantSquare<true>(outerRad, cone.fOuterTolerance);
    done |= outside;
    if (vecCore::MaskFull(done)) return;

    if (checkRminTreatment<coneTypeT>(cone) && !vecCore::MaskFull(outside)) {
      Real_v innerRad = ConeUtilities::GetRadiusOfConeAtPoint<Real_v, true>(cone, point.z());
      outside |= rsq < MakeMinusTolerantSquare<true>(innerRad, cone.fInnerTolerance);
      done |= outside;
      if (vecCore::MaskFull(done)) return;
    }
    if (checkPhiTreatment<coneTypeT>(cone) && !vecCore::MaskEmpty(outside)) {
      Bool_t insector;
      ConeUtilities::PointInCyclicalSector<Real_v, coneTypeT, false, false>(cone, point.x(), point.y(), insector);
      outside |= !insector;
    }
    done |= outside;
    if (vecCore::MaskFull(done)) return;


    Bool_t isGoingUp   = direction.z() > zero;
    Bool_t isGoingDown = direction.z() < zero;
    Bool_t isOnZPlaneAndMovingOutside(false);
    isOnZPlaneAndMovingOutside = !outside && ((isGoingUp && point.z() > zero && Abs(distz) < kConeTolerance) ||
                                              (isGoingDown && point.z() < zero && Abs(distz) < kConeTolerance));
    vecCore__MaskedAssignFunc(distance, !done && isOnZPlaneAndMovingOutside, distz);
    done |= isOnZPlaneAndMovingOutside;
    if (vecCore::MaskFull(done)) return;


    //=== Next step: check if z-plane is the right entry point (both r,phi
    // should be valid at z-plane crossing)
    vecCore__MaskedAssignFunc(distance, !done, Real_v(kInfLength));

    Precision fDz  = cone.fDz;
    Real_v dirZInv = Real_v(1.) / NonZero(direction.z());
    vecCore__MaskedAssignFunc(distance, isGoingUp, (fDz - point.z()) * dirZInv);
    vecCore__MaskedAssignFunc(distance, isGoingDown, (-fDz - point.z()) * dirZInv);

    Real_v dist_rOuter(kInfLength);
    Bool_t ok_outerCone =
        ConeHelpers<Real_v, coneTypeT>::template DetectIntersectionAndCalculateDistanceToConicalSurface<false, false>(
            cone, point, direction, dist_rOuter);

    vecCore::MaskedAssign(distance, !done && ok_outerCone && dist_rOuter < distance, dist_rOuter);

    Real_v dist_rInner(kInfLength);
    if (checkRminTreatment<coneTypeT>(cone)) {
      Bool_t ok_innerCone =
          ConeHelpers<Real_v, coneTypeT>::template DetectIntersectionAndCalculateDistanceToConicalSurface<false, true>(
              cone, point, direction, dist_rInner);
      vecCore::MaskedAssign(distance, !done && ok_innerCone && dist_rInner < distance, dist_rInner);
    }

    if (checkPhiTreatment<coneTypeT>(cone)) {

      Bool_t isOnStartPhi      = ConeUtilities::IsOnStartPhi<Real_v>(cone, point);
      Bool_t isOnEndPhi        = ConeUtilities::IsOnEndPhi<Real_v>(cone, point);
      Vector3D<Real_v> normal1 = cone.fPhiWedge.GetNormal1();
      Vector3D<Real_v> normal2 = cone.fPhiWedge.GetNormal2();
      Bool_t cond              = (isOnStartPhi && direction.Dot(-normal1) > zero) ||
                    (isOnEndPhi && direction.Dot(-normal2) > zero);
      vecCore__MaskedAssignFunc(distance, !done && cond, zero);
      done |= cond;
      if (vecCore::MaskFull(done)) return;

      Real_v dist_phi;
      Bool_t ok_phi;
      evolution::Wedge const &w = cone.fPhiWedge;
      PhiPlaneTrajectoryIntersection<Real_v, coneTypeT, SectorType<coneTypeT>::value != kOnePi, false>(
          cone.fAlongPhi1x, cone.fAlongPhi1y, w.GetNormal1().x(), w.GetNormal1().y(), cone, point, direction, dist_phi,
          ok_phi);
      ok_phi &= dist_phi < distance;
      vecCore::MaskedAssign(distance, !done && ok_phi, dist_phi);
      done |= ok_phi;

      if (SectorType<coneTypeT>::value != kOnePi) {
        ConeUtilities::PhiPlaneTrajectoryIntersection<Real_v, coneTypeT, true, false>(
            cone.fAlongPhi2x, cone.fAlongPhi2y, w.GetNormal2().x(), w.GetNormal2().y(), cone, point, direction,
            dist_phi, ok_phi);
        vecCore::MaskedAssign(distance, ok_phi && dist_phi < distance, dist_phi);
      }
    }
    vecCore__MaskedAssignFunc(distance, distance < zero && Abs(distance) < kTolerance, zero);
  }

  template <typename Real_v>
  VECGEOM_FORCE_INLINE
  VECCORE_ATT_HOST_DEVICE
  static void SafetyToIn(UnplacedStruct_t const &cone, Vector3D<Real_v> const &point, Real_v &safety)
  {
    using namespace ConeUtilities;
    using namespace ConeTypes;
    safety = -kInfLength;
    typedef typename vecCore::Mask_v<Real_v> Bool_t;
    typedef Real_v Float_t;

    Bool_t done(false);
    Precision fDz = cone.fDz;
    Float_t distz = Abs(point.z()) - fDz;

    // Next, check all dimensions of the cone, whether points are inside -->
    // return -1
    vecCore__MaskedAssignFunc(safety, !done, Float_t(-1.0));

    // For points inside z-range, return -1
    Bool_t inside = distz < -kConeTolerance;

    // This logic to check if the point is inside is far better than
    // using GenericKernel and will improve performance.
    Float_t outerRad = GetRadiusOfConeAtPoint<Real_v, false>(cone, point.z());
    Float_t rsq      = point.Perp2();
    inside &= rsq < MakeMinusTolerantSquare<true>(outerRad, cone.fOuterTolerance);

    if (checkRminTreatment<coneTypeT>(cone)) {
      Float_t innerRad = GetRadiusOfConeAtPoint<Real_v, true>(cone, point.z());
      inside &= rsq > MakePlusTolerantSquare<true>(innerRad, cone.fInnerTolerance);
    }
    if (checkPhiTreatment<coneTypeT>(cone) && !vecCore::MaskEmpty(inside)) {
      Bool_t insector;
      PointInCyclicalSector<Real_v, coneTypeT, false, false>(cone, point.x(), point.y(), insector);
      inside &= insector;
    }
    done |= inside;
    if (vecCore::MaskFull(done)) return;

    // Once it is checked that the point is inside or not, safety can be set to 0.
    // This will serve the case that the point is on the surface. So no need to check
    // that the point is really on surface.
    vecCore__MaskedAssignFunc(safety, !done, Float_t(0.));

    // Now if the point is neither inside nor on surface, then it should be outside
    // and the safety should be set to some finite value, which is done by below logic

    Float_t safeZ                = Abs(point.z()) - fDz;
    Float_t safeDistOuterSurface = -SafeDistanceToConicalSurface<Real_v, false>(cone, point);

    Float_t safeDistInnerSurface(-kInfLength);
    if (checkRminTreatment<coneTypeT>(cone)) {
      safeDistInnerSurface = -SafeDistanceToConicalSurface<Real_v, true>(cone, point);
    }

    vecCore__MaskedAssignFunc(safety, !done, Max(safeZ, Max(safeDistOuterSurface, safeDistInnerSurface)));

    if (checkPhiTreatment<coneTypeT>(cone)) {
      Float_t safetyPhi = cone.fPhiWedge.SafetyToIn<Real_v>(point);
      vecCore__MaskedAssignFunc(safety, !done, Max(safetyPhi, safety));
    }

    vecCore__MaskedAssignFunc(safety, vecCore::math::Abs(safety) < kTolerance, Float_t(0.));
  }

  template <typename Real_v>
  VECGEOM_FORCE_INLINE
  VECCORE_ATT_HOST_DEVICE
  static void SafetyToOut(UnplacedStruct_t const &cone, Vector3D<Real_v> const &point, Real_v &safety)
  {

    using namespace ConeUtilities;
    using namespace ConeTypes;
    safety = kInfLength;
    typedef typename vecCore::Mask_v<Real_v> Bool_t;
    typedef Real_v Float_t;

    Bool_t done(false);

    Float_t distz = Abs(point.z()) - cone.fDz;
    Float_t rsq   = point.Perp2();

    //=== Next, check all dimensions of the cone --> for points outside z-range, return -1
    vecCore__MaskedAssignFunc(safety, !done, Float_t(-1.0));

    // This logic to check if the point is outside is far better then
    // using GenericKernel and will improve performance.
    Bool_t outside = distz > Real_v(kConeTolerance);

    Float_t outerRad  = GetRadiusOfConeAtPoint<Real_v, false>(cone, point.z());
    outside |= rsq > MakePlusTolerantSquare<true>(outerRad, cone.fOuterTolerance);

    if (checkRminTreatment<coneTypeT>(cone)) {
      Float_t innerRad = GetRadiusOfConeAtPoint<Real_v, true>(cone, point.z());
      outside |= rsq < MakeMinusTolerantSquare<true>(innerRad, cone.fInnerTolerance);
    }

    if (checkPhiTreatment<coneTypeT>(cone) && !vecCore::MaskEmpty(outside)) {

      Bool_t insector;
      ConeUtilities::PointInCyclicalSector<Real_v, coneTypeT, false, false>(cone, point.x(), point.y(), insector);
      outside |= !insector;
    }
    done |= outside;
    if (vecCore::MaskFull(done)) return;

    // Once it is checked that the point is inside or not, safety can be set to 0.
    // This will serve the case that the point is on the surface. So no need to check
    // that the point is really on surface.
    vecCore__MaskedAssignFunc(safety, !done, Float_t(0.));

    // Now if the point is neither outside nor on surface, then it should be inside
    // and the safety should be set to some finite value, which is done by below logic

    Precision fDz = cone.fDz;
    Float_t safeZ = fDz - Abs(point.z());

    Float_t safeDistOuterSurface = SafeDistanceToConicalSurface<Real_v, false>(cone, point);
    Float_t safeDistInnerSurface(kInfLength);
    if (checkRminTreatment<coneTypeT>(cone)) {
      safeDistInnerSurface = SafeDistanceToConicalSurface<Real_v, true>(cone, point);
    }

    vecCore__MaskedAssignFunc(safety, !done, Min(safeZ, Min(safeDistOuterSurface, safeDistInnerSurface)));

    if (checkPhiTreatment<coneTypeT>(cone)) {
      Float_t safetyPhi = cone.fPhiWedge.SafetyToOut<Real_v>(point);
      vecCore__MaskedAssignFunc(safety, !done, Min(safetyPhi, safety));
    }
    vecCore__MaskedAssignFunc(safety, vecCore::math::Abs(safety) < kTolerance, Float_t(0.));
  }

  template <typename Real_v, bool ForInnerSurface>
  VECGEOM_FORCE_INLINE
  VECCORE_ATT_HOST_DEVICE
  static Real_v SafeDistanceToConicalSurface(UnplacedStruct_t const &cone, Vector3D<Real_v> const &point)
  {

    typedef Real_v Float_t;
    Float_t rho = point.Perp();
    if (ForInnerSurface) {
      Float_t pRMin = cone.fTanRMin * point.z() + (cone.fRmin1 + cone.fRmin2) * Float_t(0.5); // cone.fRminAv;
      return (rho - pRMin) * cone.fInvSecRMin;
    } else {
      Float_t pRMax = cone.fTanRMax * point.z() + (cone.fRmax1 + cone.fRmax2) * Float_t(0.5); // cone.fRmaxAv;
      return (pRMax - rho) * cone.fInvSecRMax;
    }
  }
};
} // namespace VECGEOM_IMPL_NAMESPACE
} // namespace vecgeom

#endif