1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 300 301 302 303 304 305 306 307 308 309 310 311 312 313 314 315 316 317 318 319 320 321 322 323 324 325 326 327 328 329 330 331 332 333 334 335 336 337 338 339 340 341 342 343 344 345 346 347 348 349 350 351 352 353 354 355 356 357 358 359 360 361 362 363 364 365 366 367 368 369 370 371 372 373 374 375 376 377 378 379 380 381 382 383 384 385 386 387 388 389
|
// This file is part of VecGeom and is distributed under the
// conditions in the file LICENSE.txt in the top directory.
// For the full list of authors see CONTRIBUTORS.txt and `git log`.
/// This file implements the algorithms for EllipticalCone
/// @file volumes/kernel/EllipticalConeImplementation.h
/// @author Raman Sehgal, Evgueni Tcherniaev
#ifndef VECGEOM_VOLUMES_KERNEL_ELLIPTICALCONEIMPLEMENTATION_H_
#define VECGEOM_VOLUMES_KERNEL_ELLIPTICALCONEIMPLEMENTATION_H_
#include "VecGeom/base/Vector3D.h"
#include "VecGeom/volumes/EllipticalConeStruct.h"
#include "VecGeom/volumes/kernel/GenericKernels.h"
#include <VecCore/VecCore>
#include <cstdio>
#include <iomanip>
namespace vecgeom {
VECGEOM_DEVICE_FORWARD_DECLARE(struct EllipticalConeImplementation;);
VECGEOM_DEVICE_DECLARE_CONV(struct, EllipticalConeImplementation);
inline namespace VECGEOM_IMPL_NAMESPACE {
class PlacedEllipticalCone;
template <typename T>
struct EllipticalConeStruct;
class UnplacedEllipticalCone;
struct EllipticalConeImplementation {
using PlacedShape_t = PlacedEllipticalCone;
using UnplacedStruct_t = EllipticalConeStruct<Precision>;
using UnplacedVolume_t = UnplacedEllipticalCone;
VECCORE_ATT_HOST_DEVICE
static void PrintType()
{
// printf("SpecializedEllipticalCone<%i, %i>", transCodeT, rotCodeT);
}
template <typename Stream>
static void PrintType(Stream &st, int transCodeT = translation::kGeneric, int rotCodeT = rotation::kGeneric)
{
st << "SpecializedEllipticalCone<" << transCodeT << "," << rotCodeT << ">";
}
template <typename Stream>
static void PrintImplementationType(Stream &st)
{
(void)st;
// st << "EllipticalConeImplementation<" << transCodeT << "," << rotCodeT << ">";
}
template <typename Stream>
static void PrintUnplacedType(Stream &st)
{
(void)st;
// TODO: this is wrong
// st << "UnplacedEllipticalCone";
}
template <typename Real_v, typename Bool_v>
VECGEOM_FORCE_INLINE
VECCORE_ATT_HOST_DEVICE
static void Contains(UnplacedStruct_t const &ellipticalcone, Vector3D<Real_v> const &point, Bool_v &inside)
{
Bool_v unused, outside;
GenericKernelForContainsAndInside<Real_v, Bool_v, false>(ellipticalcone, point, unused, outside);
inside = !outside;
}
// BIG QUESTION: DO WE WANT TO GIVE ALL 3 TEMPLATE PARAMETERS
// -- OR -- DO WE WANT TO DEDUCE Bool_v, Index_t from Real_v???
template <typename Real_v, typename Inside_t>
VECGEOM_FORCE_INLINE
VECCORE_ATT_HOST_DEVICE
static void Inside(UnplacedStruct_t const &ellipticalcone, Vector3D<Real_v> const &point, Inside_t &inside)
{
using Bool_v = vecCore::Mask_v<Real_v>;
using InsideBool_v = vecCore::Mask_v<Inside_t>;
Bool_v completelyinside, completelyoutside;
GenericKernelForContainsAndInside<Real_v, Bool_v, true>(ellipticalcone, point, completelyinside, completelyoutside);
inside = EInside::kSurface;
vecCore::MaskedAssign(inside, (InsideBool_v)completelyoutside, Inside_t(EInside::kOutside));
vecCore::MaskedAssign(inside, (InsideBool_v)completelyinside, Inside_t(EInside::kInside));
}
template <typename Real_v, typename Bool_v, bool ForInside>
VECGEOM_FORCE_INLINE
VECCORE_ATT_HOST_DEVICE
static void GenericKernelForContainsAndInside(UnplacedStruct_t const &ellipticalcone, Vector3D<Real_v> const &point,
Bool_v &completelyinside, Bool_v &completelyoutside)
{
/* TODO : Logic to check where the point is inside or not.
**
** if ForInside is false then it will only check if the point is outside,
** and is used by Contains function
**
** if ForInside is true then it will check whether the point is inside or outside,
** and if neither inside nor outside then it is on the surface.
** and is used by Inside function
*/
Real_v px = point.x() * ellipticalcone.invDx;
Real_v py = point.y() * ellipticalcone.invDy;
Real_v pz = point.z();
Real_v hp = vecCore::math::Sqrt(px * px + py * py) + pz;
Real_v ds = (hp - ellipticalcone.fDz) * ellipticalcone.cosAxisMin;
Real_v dz = vecCore::math::Abs(pz) - ellipticalcone.fZCut;
Real_v safety = vecCore::math::Max(ds, dz);
completelyoutside = safety > kHalfTolerance;
if (ForInside) completelyinside = safety <= -kHalfTolerance;
return;
}
template <typename Real_v>
VECGEOM_FORCE_INLINE
VECCORE_ATT_HOST_DEVICE
static void DistanceToIn(UnplacedStruct_t const &ellipticalcone, Vector3D<Real_v> const &point,
Vector3D<Real_v> const &direction, Real_v const & /*stepMax*/, Real_v &distance)
{
/* TODO : Logic to calculate Distance from outside point to the EllipticalCone surface */
using Bool_v = vecCore::Mask_v<Real_v>;
Real_v kTwoEpsilon = 2. * kEpsilon;
distance = Real_v(kInfLength);
Real_v offset(0.);
Vector3D<Real_v> p(point);
// Move point closer, if required
Real_v Rfar2(1024. * ellipticalcone.fRsph * ellipticalcone.fRsph); // 1024 = 32 * 32
vecCore__MaskedAssignFunc(offset, ((p.Mag2() > Rfar2) && (direction.Dot(p) < Real_v(0.))),
p.Mag() - Real_v(2.) * ellipticalcone.fRsph);
p += offset * direction;
// Special cases to keep in mind:
// 0) Point is on the surface and leaving the solid
// 1) Trajectory is parallel to the surface (A = 0, single root at t = -C/2B)
// 2) No intersection (D < 0) or touch (D < eps) with lateral surface
// 3) Exception: when the trajectory traverses the apex (D < eps) and A < 0
// then always there is an intersection with the solid
// Set working variables, transform elliptican cone to cone
Real_v px = p.x() * ellipticalcone.invDx;
Real_v py = p.y() * ellipticalcone.invDy;
Real_v pz = p.z();
Real_v pz0 = p.z() - ellipticalcone.fDz; // pz if apex would be in origin
Real_v vx = direction.x() * ellipticalcone.invDx;
Real_v vy = direction.y() * ellipticalcone.invDy;
Real_v vz = direction.z();
// Compute coefficients of the quadratic equation: A t^2 + 2B t + C = 0
Real_v Ar = vx * vx + vy * vy;
Real_v Br = px * vx + py * vy;
Real_v Cr = px * px + py * py;
// 1) Check if A = 0
// If so, slightly modify vz to avoid degeneration of the quadratic equation
// The magnitude of vz will be modified in a way that preserves correct behavior when 0) point is leaving the solid
Real_v vzvz = vz * vz;
Bool_v tinyA = vecCore::math::Abs(Ar - vzvz) < kTwoEpsilon * vzvz;
vecCore__MaskedAssignFunc(vz, tinyA, vz + vecCore::math::Abs(vz) * kTwoEpsilon);
Real_v Az = vz * vz;
Real_v Bz = pz0 * vz;
Real_v Cz = pz0 * pz0;
Real_v A = Ar - Az;
Real_v B = Br - Bz;
Real_v B0 = Br - pz0 * direction.z(); // B calculated with original v.z()
Real_v C = Cr - Cz;
Real_v D = B * B - A * C;
// 0) Check if point is leaving the solid
Real_v sfz = vecCore::math::Abs(pz) - ellipticalcone.fZCut;
Real_v nz = vecCore::math::Sqrt(Cr);
Real_v sfr = (nz + pz0) * ellipticalcone.cosAxisMin;
vecCore::MaskedAssign(nz, (vecCore::math::Abs(p.x()) + vecCore::math::Abs(p.y()) < Real_v(0.1) * kHalfTolerance),
Real_v(1.)); // point is on z-axis
Real_v pzA = pz0 + ellipticalcone.dApex; // slightly shifted apex position for "flying away" check
Bool_v done =
(sfz >= -kHalfTolerance && pz * vz >= Real_v(0.)) || (sfr >= -kHalfTolerance && Br + nz * vz >= Real_v(0.)) ||
(pz0 * ellipticalcone.cosAxisMin > -kHalfTolerance && (Cr - pzA * pzA) <= Real_v(0.) && A >= Real_v(0.));
// 2) Check if scratching (D < eps & A > 0) or no intersection (D < 0)
// 3) if (D < eps & A < 0) then trajectory traverses the apex area - continue calculation
vecCore__MaskedAssignFunc(D, (sfr <= Real_v(0.) && D < Real_v(0.)), Real_v(0.));
done |= (D < Real_v(0.)) || ((D < kTwoEpsilon * B * B) && (A >= Real_v(0.)));
// Find intersection with Z planes
Real_v invz = Real_v(-1.) / NonZero(vz);
Real_v dz = vecCore::math::CopySign(Real_v(ellipticalcone.fZCut), invz);
Real_v tzin = (pz - dz) * invz;
Real_v tzout = (pz + dz) * invz;
// Find roots of the quadratic equation
Real_v tmp(0.), t1(0.), t2(0.);
vecCore__MaskedAssignFunc(tmp, !done, -B - vecCore::math::CopySign(vecCore::math::Sqrt(D), B));
vecCore__MaskedAssignFunc(t1, !done, tmp / A);
vecCore__MaskedAssignFunc(t2, !done && tmp != 0, C / tmp);
vecCore__MaskedAssignFunc(t2, !done && tinyA && B != Real_v(0.), -C / (Real_v(2.) * B0)); // A ~ 0, t = -C / 2B
Real_v tmin = vecCore::math::Min(t1, t2);
Real_v tmax = vecCore::math::Max(t1, t2);
// Set default - intersection with lower nappe (A > 0)
Real_v trin = tmin;
Real_v trout = tmax;
// Check if intersection with upper nappe only, return infinity
done |= (A >= Real_v(0.) && pz0 + vz * tmin >= Real_v(0.));
// Check if intersection with both nappes (A < 0)
vecCore__MaskedAssignFunc(trin, (!done && A < Real_v(0.)), Real_v(-kInfLength));
vecCore__MaskedAssignFunc(trout, (!done && A < Real_v(0.)), Real_v(kInfLength));
vecCore__MaskedAssignFunc(trin, (!done && A < Real_v(0.) && vz < Real_v(0.)), tmax);
vecCore__MaskedAssignFunc(trout, (!done && A < Real_v(0.) && vz > Real_v(0.)), tmin);
// Set distance
// No special check for inside points, distance for inside points will be negative
Real_v tin = vecCore::math::Max(tzin, trin);
Real_v tout = vecCore::math::Min(tzout, trout);
vecCore__MaskedAssignFunc(distance, !done && (tout - tin) >= kHalfTolerance, tin + offset);
}
template <typename Real_v>
VECGEOM_FORCE_INLINE
VECCORE_ATT_HOST_DEVICE
static void DistanceToOut(UnplacedStruct_t const &ellipticalcone, Vector3D<Real_v> const &point,
Vector3D<Real_v> const &direction, Real_v const & /* stepMax */, Real_v &distance)
{
/* TODO : Logic to calculate Distance from inside point to the EllipticalCone surface */
using Bool_v = vecCore::Mask_v<Real_v>;
Real_v kTwoEpsilon = 2. * kEpsilon;
distance = Real_v(0.);
// Special cases to keep in mind:
// 0) Point is on the surface and leaving the solid
// 1) Trajectory is parallel to the surface (A = 0, single root at t = -C/2B)
// 2) No intersection (D < 0) or touch (D < eps) with lateral surface
// 3) Exception: when the trajectory traverses the apex (D < eps) and A < 0
// then always there is an intersection with the solid
// Set working variables, transform elliptican cone to cone
Real_v px = point.x() * ellipticalcone.invDx;
Real_v py = point.y() * ellipticalcone.invDy;
Real_v pz = point.z();
Real_v pz0 = pz - ellipticalcone.fDz; // pz if apex would be in origin
Real_v hp = vecCore::math::Sqrt(px * px + py * py) + pz;
Real_v sfr = (hp - ellipticalcone.fDz) * ellipticalcone.cosAxisMin;
Real_v sfz = vecCore::math::Abs(pz) - ellipticalcone.fZCut;
// Check if point is outside
Bool_v outside = vecCore::math::Max(sfr, sfz) > kHalfTolerance;
vecCore__MaskedAssignFunc(distance, outside, Real_v(-1.));
Bool_v done = outside;
// Compute coefficients of the quadratic equation: A t^2 + 2B t + C = 0
Real_v vx = direction.x() * ellipticalcone.invDx;
Real_v vy = direction.y() * ellipticalcone.invDy;
Real_v vz = direction.z();
Real_v Ar = vx * vx + vy * vy;
Real_v Br = px * vx + py * vy;
Real_v Cr = px * px + py * py;
// 1) Check if A = 0
// If so, slightly modify vz to avoid degeneration of the quadratic equation
// The magnitude of vz will be modified in a way that point is leaving the solid
Bool_v tinyA = vecCore::math::Abs(Ar - vz * vz) < kTwoEpsilon * vz * vz;
vecCore__MaskedAssignFunc(vz, tinyA, vz + vecCore::math::Abs(vz) * kTwoEpsilon);
Real_v Az = vz * vz;
Real_v Bz = pz0 * vz;
Real_v Cz = pz0 * pz0;
Real_v A = Ar - Az;
Real_v B = Br - Bz;
Real_v B0 = Br - pz0 * direction.z(); // B calculated with original v.z()
Real_v C = Cr - Cz;
Real_v D = B * B - A * C;
vecCore__MaskedAssignFunc(D, (sfr <= Real_v(0.) && D < Real_v(0.)), Real_v(0.));
// 2) Check if scratching (D < eps & A > 0) or no intersection (D < 0)
// 3) if (D < eps & A < 0) then trajectory traverses the apex area - continue calculation
done |= (D < Real_v(0.)) || (D < kTwoEpsilon * B * B && A >= Real_v(0.));
// Find intersection with Z planes
Real_v tzout = kMaximum;
vecCore__MaskedAssignFunc(tzout, vz != Real_v(0.),
(vecCore::math::CopySign(Real_v(ellipticalcone.fZCut), vz) - pz) / direction.z());
// Find roots of the quadratic equation
Real_v tmp(0.), t1(0.), t2(0.);
vecCore__MaskedAssignFunc(tmp, !done, -B - vecCore::math::CopySign(vecCore::math::Sqrt(D), B));
vecCore__MaskedAssignFunc(t1, !done, tmp / A);
vecCore__MaskedAssignFunc(t2, !done && tmp != Real_v(0.), C / tmp);
vecCore__MaskedAssignFunc(t2, !done && tinyA && B0 != Real_v(0.), -C / (Real_v(2.) * B0)); // A ~ 0, t = -C / 2B
Real_v tmin = vecCore::math::Min(t1, t2);
Real_v tmax = vecCore::math::Max(t1, t2);
// Set default - intersection with lower nappe (A > 0)
Real_v trout = tmax;
// Check if intersection with upper nappe only or flying away, return 0
done |= ((A >= Real_v(0.) && pz0 + vz * tmax >= Real_v(0.)) || (pz0 >= Real_v(0.) && vz >= Real_v(0.)));
// Check if intersection with both nappes (A < 0)
vecCore__MaskedAssignFunc(trout, (!done && A < Real_v(0.)), Real_v(kInfLength));
vecCore__MaskedAssignFunc(trout, (!done && A < Real_v(0.) && vz > Real_v(0.)), tmin);
// Set distance
// No special check for inside points, distance for inside points will be negative
vecCore__MaskedAssignFunc(distance, !done, vecCore::math::Min(tzout, trout));
}
template <typename Real_v>
VECGEOM_FORCE_INLINE
VECCORE_ATT_HOST_DEVICE
static void SafetyToIn(UnplacedStruct_t const &ellipticalcone, Vector3D<Real_v> const &point, Real_v &safety)
{
/* TODO : Logic to calculate Safety from outside point to the EllipticalCone surface */
Real_v px = point.x() * ellipticalcone.invDx;
Real_v py = point.y() * ellipticalcone.invDy;
Real_v pz = point.z();
Real_v hp = vecCore::math::Sqrt(px * px + py * py) + pz;
Real_v ds = (hp - ellipticalcone.fDz) * ellipticalcone.cosAxisMin;
Real_v dz = vecCore::math::Abs(pz) - ellipticalcone.fZCut;
safety = vecCore::math::Max(ds, dz);
vecCore::MaskedAssign(safety, vecCore::math::Abs(safety) <= kHalfTolerance, Real_v(0.));
}
template <typename Real_v>
VECGEOM_FORCE_INLINE
VECCORE_ATT_HOST_DEVICE
static void SafetyToOut(UnplacedStruct_t const &ellipticalcone, Vector3D<Real_v> const &point, Real_v &safety)
{
/* TODO : Logic to calculate Safety from inside point to the EllipticalCone surface */
Real_v px = point.x() * ellipticalcone.invDx;
Real_v py = point.y() * ellipticalcone.invDy;
Real_v pz = point.z();
Real_v hp = vecCore::math::Sqrt(px * px + py * py) + pz;
Real_v ds = (ellipticalcone.fDz - hp) * ellipticalcone.cosAxisMin;
Real_v dz = ellipticalcone.fZCut - vecCore::math::Abs(pz);
safety = vecCore::math::Min(ds, dz);
vecCore::MaskedAssign(safety, vecCore::math::Abs(safety) <= kHalfTolerance, Real_v(0.));
}
template <typename Real_v>
VECGEOM_FORCE_INLINE
VECCORE_ATT_HOST_DEVICE
static Vector3D<Real_v> NormalKernel(UnplacedStruct_t const &ellipticalcone, Vector3D<Real_v> const &point,
typename vecCore::Mask_v<Real_v> &valid)
{
// Computes the normal on a surface and returns it as a unit vector
// In case if the point is further than kHalfTolerance from the surface, set valid=false
// Must return a valid vector (even if the point is not on the surface)
//
// On an edge provide an average normal of the corresponding base and lateral surface
Vector3D<Real_v> normal(0., 0., 0.);
valid = true;
// Check z planes
Real_v px = point.x();
Real_v py = point.y();
Real_v pz = point.z();
Real_v dz = vecCore::math::Abs(pz) - ellipticalcone.fZCut;
vecCore__MaskedAssignFunc(normal[2], vecCore::math::Abs(dz) <= kHalfTolerance, vecCore::math::Sign(pz));
// Check lateral surface
Real_v nx = px * ellipticalcone.invDx * ellipticalcone.invDx;
Real_v ny = py * ellipticalcone.invDy * ellipticalcone.invDy;
Real_v nz = vecCore::math::Sqrt(px * nx + py * ny);
vecCore__MaskedAssignFunc(nz, (nx * nx + ny * ny) == Real_v(0.), Real_v(1.)); // z-axis
Vector3D<Real_v> nside(nx, ny, nz);
Real_v ds = (nz + pz - ellipticalcone.fDz) * ellipticalcone.cosAxisMin;
vecCore__MaskedAssignFunc(normal, vecCore::math::Abs(ds) <= kHalfTolerance, (normal + nside.Unit()).Unit());
// Check if done
vecCore::Mask_v<Real_v> done = normal.Mag2() > Real_v(0.);
if (vecCore::MaskFull(done)) return normal;
// Point is not on the surface - normally, this should never be
// Return normal to the nearest surface
vecCore__MaskedAssignFunc(valid, !done, false);
vecCore__MaskedAssignFunc(normal[2], !done, vecCore::math::Sign(pz));
vecCore__MaskedAssignFunc(normal, !done && ds > dz, nside.Unit());
return normal;
}
};
} // namespace VECGEOM_IMPL_NAMESPACE
} // namespace vecgeom
#endif // VECGEOM_VOLUMES_KERNEL_ELLIPTICALCONEIMPLEMENTATION_H_
|