1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236
|
//===-- kernel/ExtrudedImplementation.h ----------------------------------*- C++ -*-===//
//===--------------------------------------------------------------------------===//
/// @file ExtrudedImplementation.h
/// @author mihaela.gheata@cern.ch
#ifndef VECGEOM_VOLUMES_KERNEL_EXTRUDEDIMPLEMENTATION_H_
#define VECGEOM_VOLUMES_KERNEL_EXTRUDEDIMPLEMENTATION_H_
#include <cstdio>
#include <VecCore/VecCore>
#include "VecGeom/base/Config.h"
#include "VecGeom/volumes/kernel/GenericKernels.h"
#include "VecGeom/base/Vector3D.h"
#include "TessellatedImplementation.h"
#include "SExtruImplementation.h"
namespace vecgeom {
VECGEOM_DEVICE_FORWARD_DECLARE(struct ExtrudedImplementation;);
VECGEOM_DEVICE_DECLARE_CONV(struct, ExtrudedImplementation);
inline namespace VECGEOM_IMPL_NAMESPACE {
class PlacedExtruded;
class ExtrudedStruct;
class UnplacedExtruded;
struct ExtrudedImplementation {
using PlacedShape_t = PlacedExtruded;
using UnplacedStruct_t = ExtrudedStruct;
using UnplacedVolume_t = UnplacedExtruded;
VECCORE_ATT_HOST_DEVICE
static void PrintType()
{
// printf("SpecializedBox<%i, %i>", transCodeT, rotCodeT);
}
template <typename Stream>
static void PrintType(Stream &st, int transCodeT = translation::kGeneric, int rotCodeT = rotation::kGeneric)
{
st << "SpecializedExtruded<" << transCodeT << "," << rotCodeT << ">";
}
template <typename Stream>
static void PrintImplementationType(Stream &st)
{
(void)st;
}
template <typename Stream>
static void PrintUnplacedType(Stream &st)
{
(void)st;
}
template <typename Real_v, typename Bool_v>
VECGEOM_FORCE_INLINE
VECCORE_ATT_HOST_DEVICE
static void Contains(UnplacedStruct_t const &extruded, Vector3D<Real_v> const &point, Bool_v &inside)
{
inside = false;
if (extruded.fIsSxtru) {
SExtruImplementation::Contains<Real_v, Bool_v>(extruded.fSxtruHelper, point, inside);
return;
}
#ifndef VECGEOM_ENABLE_CUDA
if (extruded.fUseTslSections) {
// Find the Z section
int zIndex = extruded.FindZSegment(point[2]);
if ((zIndex < 0) || (zIndex >= (int)extruded.GetNSegments())) return;
inside = extruded.fTslSections[zIndex]->Contains(point);
return;
}
#endif
TessellatedImplementation::Contains<Real_v, Bool_v>(extruded.fTslHelper, point, inside);
}
template <typename Real_v, typename Inside_v>
VECGEOM_FORCE_INLINE
VECCORE_ATT_HOST_DEVICE
static void Inside(UnplacedStruct_t const &extruded, Vector3D<Real_v> const &point, Inside_v &inside)
{
inside = EInside::kOutside;
if (extruded.fIsSxtru) {
SExtruImplementation::Inside<Real_v, Inside_v>(extruded.fSxtruHelper, point, inside);
return;
}
#ifndef VECGEOM_ENABLE_CUDA
if (extruded.fUseTslSections) {
const int nseg = (int)extruded.GetNSegments();
int zIndex = extruded.FindZSegment(point[2]);
if ((zIndex < 0) || (zIndex > nseg)) return;
inside = extruded.fTslSections[Min(zIndex, nseg - 1)]->Inside(point);
if (inside == EInside::kOutside) return;
if (inside == EInside::kInside) {
// Need to check if point on Z section
if (((zIndex == 0) || (zIndex == nseg)) &&
vecCore::math::Abs(point[2] - extruded.fZPlanes[zIndex]) < kTolerance) {
inside = EInside::kSurface;
}
} else {
inside = EInside::kSurface;
}
return;
}
#endif
TessellatedImplementation::Inside<Real_v, Inside_v>(extruded.fTslHelper, point, inside);
}
template <typename Real_v>
VECGEOM_FORCE_INLINE
VECCORE_ATT_HOST_DEVICE
static void DistanceToIn(UnplacedStruct_t const &extruded, Vector3D<Real_v> const &point,
Vector3D<Real_v> const &direction, Real_v const &stepMax, Real_v &distance)
{
// Note that Real_v is always double here
#ifdef EFFICIENT_TSL_DISTANCETOIN
if (extruded.fUseTslSections) {
// Check if the bounding box is hit
const Vector3D<Real_v> invdir(Real_v(1.0) / NonZero(direction.x()), Real_v(1.0) / NonZero(direction.y()),
Real_v(1.0) / NonZero(direction.z()));
Vector3D<int> sign;
sign[0] = invdir.x() < 0;
sign[1] = invdir.y() < 0;
sign[2] = invdir.z() < 0;
distance = BoxImplementation::IntersectCachedKernel2<Real_v, Real_v>(&extruded.fTslHelper.fMinExtent, point,
invdir, sign.x(), sign.y(), sign.z(),
-kTolerance, InfinityLength<Real_v>());
if (distance >= stepMax) return;
// Perform explicit Inside check to detect wrong side points. This impacts
// DistanceToIn performance by about 5% for all topologies
// auto inside = ScalarInsideKernel(unplaced, point);
// if (inside == kInside) return -1.;
int zIndex = extruded.FindZSegment(point[2]);
const int zMax = extruded.GetNSegments();
// Don't go out of bounds here, as the first/last segment should be checked
// even if the point is outside of Z-bounds
bool fromOutZ =
(point[2] < extruded.fZPlanes[0] + kTolerance) || (point[2] > extruded.fZPlanes[zMax] - kTolerance);
zIndex = zIndex < 0 ? 0 : (zIndex >= zMax ? zMax - 1 : zIndex);
// Traverse Z-segments left or right depending on sign of direction
bool goingRight = direction[2] >= 0;
distance = InfinityLength<Real_v>();
if (goingRight) {
for (int zSegCount = zMax; zIndex < zSegCount; ++zIndex) {
bool skipZ = fromOutZ && (zSegCount == 0);
if (skipZ)
distance = extruded.fTslSections[zIndex]->DistanceToIn<true>(point, direction, invdir.z(), stepMax);
else
distance = extruded.fTslSections[zIndex]->DistanceToIn<false>(point, direction, invdir.z(), stepMax);
// No segment further away can be at a shorter distance to the point, so
// if a valid distance is found, only endcaps remain to be investigated
if (distance >= -kTolerance && distance < InfinityLength<Precision>()) break;
}
} else {
// Going left
for (; zIndex >= 0; --zIndex) {
bool skipZ = fromOutZ && (zIndex == zMax);
if (skipZ)
distance = extruded.fTslSections[zIndex]->DistanceToIn<true>(point, direction, invdir.z(), stepMax);
else
distance = extruded.fTslSections[zIndex]->DistanceToIn<false>(point, direction, invdir.z(), stepMax);
// No segment further away can be at a shorter distance to the point, so
// if a valid distance is found, only endcaps remain to be investigated
if (distance >= -kTolerance && distance < InfinityLength<Precision>()) break;
}
}
}
#endif
if (extruded.fIsSxtru)
SExtruImplementation::DistanceToIn<Real_v>(extruded.fSxtruHelper, point, direction, stepMax, distance);
else
TessellatedImplementation::DistanceToIn<Real_v>(extruded.fTslHelper, point, direction, stepMax, distance);
}
template <typename Real_v>
VECGEOM_FORCE_INLINE
VECCORE_ATT_HOST_DEVICE
static void DistanceToOut(UnplacedStruct_t const &extruded, Vector3D<Real_v> const &point,
Vector3D<Real_v> const &direction, Real_v const &stepMax, Real_v &distance)
{
if (extruded.fIsSxtru)
SExtruImplementation::DistanceToOut<Real_v>(extruded.fSxtruHelper, point, direction, stepMax, distance);
else
TessellatedImplementation::DistanceToOut<Real_v>(extruded.fTslHelper, point, direction, stepMax, distance);
}
template <typename Real_v>
VECGEOM_FORCE_INLINE
VECCORE_ATT_HOST_DEVICE
static void SafetyToIn(UnplacedStruct_t const &extruded, Vector3D<Real_v> const &point, Real_v &safety)
{
if (extruded.fIsSxtru)
SExtruImplementation::SafetyToIn<Real_v>(extruded.fSxtruHelper, point, safety);
else
TessellatedImplementation::SafetyToIn<Real_v>(extruded.fTslHelper, point, safety);
}
template <typename Real_v>
VECGEOM_FORCE_INLINE
VECCORE_ATT_HOST_DEVICE
static void SafetyToOut(UnplacedStruct_t const &extruded, Vector3D<Real_v> const &point, Real_v &safety)
{
if (extruded.fIsSxtru)
SExtruImplementation::SafetyToOut<Real_v>(extruded.fSxtruHelper, point, safety);
else
TessellatedImplementation::SafetyToOut<Real_v>(extruded.fTslHelper, point, safety);
}
template <typename Real_v>
VECGEOM_FORCE_INLINE
VECCORE_ATT_HOST_DEVICE
static Vector3D<Real_v> NormalKernel(UnplacedStruct_t const &extruded, Vector3D<Real_v> const &point,
typename vecCore::Mask_v<Real_v> &valid)
{
// Computes the normal on a surface and returns it as a unit vector
if (extruded.fIsSxtru) return SExtruImplementation::NormalKernel<Real_v>(extruded.fSxtruHelper, point, valid);
return TessellatedImplementation::NormalKernel<Real_v>(extruded.fTslHelper, point, valid);
}
}; // end ExtrudedImplementation
} // namespace VECGEOM_IMPL_NAMESPACE
} // namespace vecgeom
#endif // VECGEOM_VOLUMES_KERNEL_EXTRUDEDIMPLEMENTATION_H_
|