1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 300 301 302 303 304 305 306 307 308 309 310 311 312 313 314 315 316 317 318 319 320 321 322 323 324 325 326 327 328 329 330 331 332 333 334 335 336 337 338 339 340 341 342 343 344 345 346 347 348 349 350 351 352 353 354 355 356 357 358 359 360 361 362 363 364 365 366 367 368 369 370 371 372 373 374 375 376 377 378 379 380 381 382 383 384 385 386 387 388 389 390 391 392 393 394 395 396 397 398 399 400 401 402 403 404 405 406 407 408 409 410 411 412 413 414 415 416 417 418 419 420 421 422 423 424 425 426 427 428 429 430 431 432 433 434 435 436 437 438 439 440 441 442 443 444 445 446 447 448 449 450 451 452 453 454 455 456 457 458 459 460 461 462 463 464 465 466 467 468 469 470 471 472 473 474 475 476 477 478 479 480 481 482 483 484 485 486 487 488 489 490 491 492
|
// This file is part of VecGeom and is distributed under the
// conditions in the file LICENSE.txt in the top directory.
// For the full list of authors see CONTRIBUTORS.txt and `git log`.
/// This file implements the algorithms for Paraboloid shape
/// @file volumes/kernel/ParaboloidImplementation.h
/// @author Marilena Bandieramonte
///
/// A paraboloid is the solid bounded by the following surfaces:
/// - 2 planes parallel with XY cutting the Z axis at z = -dz and z = +dz
/// - the surface of revolution of a parabola described by: z = a * (x^2 + y^2) + b
///
/// The parameters a and b are automatically computed from:
/// - rlo - radius of the circle of intersection between the
/// parabolic surface and the plane z = -dz
/// - rhi - the radius of the circle of intersection between the
/// parabolic surface and the plane z = +dz
/// - dz = a * rhi^2 + b and -dz = a * rlo^2 + b, where rhi > rlo, both >= 0
/// - a = 2 * dz * dd and b = -dz * (rlo^2 + rhi^2) * dd, where dd = 1 / (rhi^2 - rlo^2)
#ifndef VECGEOM_VOLUMES_KERNEL_PARABOLOIDIMPLEMENTATION_H_
#define VECGEOM_VOLUMES_KERNEL_PARABOLOIDIMPLEMENTATION_H_
#include "VecGeom/base/Vector3D.h"
#include "VecGeom/volumes/ParaboloidStruct.h"
#include "VecGeom/volumes/kernel/GenericKernels.h"
#include <VecCore/VecCore>
#include <cstdio>
namespace vecgeom {
VECGEOM_DEVICE_FORWARD_DECLARE(struct ParaboloidImplementation;);
VECGEOM_DEVICE_DECLARE_CONV(struct, ParaboloidImplementation);
inline namespace VECGEOM_IMPL_NAMESPACE {
class PlacedParaboloid;
template <typename T>
struct ParaboloidStruct;
class UnplacedParaboloid;
struct ParaboloidImplementation {
using PlacedShape_t = PlacedParaboloid;
using UnplacedStruct_t = ParaboloidStruct<Precision>;
using UnplacedVolume_t = UnplacedParaboloid;
VECCORE_ATT_HOST_DEVICE
static void PrintType()
{
// printf("SpecializedParaboloid<%i, %i>", transCodeT, rotCodeT);
}
template <typename Stream>
static void PrintType(Stream &st, int transCodeT = translation::kGeneric, int rotCodeT = rotation::kGeneric)
{
st << "SpecializedParaboloid<" << transCodeT << "," << rotCodeT << ">";
}
template <typename Stream>
static void PrintImplementationType(Stream &st)
{
(void)st;
// st << "ParaboloidImplementation<" << transCodeT << "," << rotCodeT << ">";
}
template <typename Stream>
static void PrintUnplacedType(Stream &st)
{
(void)st;
// TODO: this is wrong
// st << "UnplacedParaboloid";
}
template <typename Real_v, typename Bool_v>
VECGEOM_FORCE_INLINE
VECCORE_ATT_HOST_DEVICE
static void Contains(UnplacedStruct_t const ¶boloid, Vector3D<Real_v> const &point, Bool_v &inside)
{
Bool_v unused, outside;
GenericKernelForContainsAndInside<Real_v, Bool_v, false>(paraboloid, point, unused, outside);
inside = !outside;
}
// BIG QUESTION: DO WE WANT TO GIVE ALL 3 TEMPLATE PARAMETERS
// -- OR -- DO WE WANT TO DEDUCE Bool_v, Index_t from Real_v???
template <typename Real_v, typename Inside_t>
VECGEOM_FORCE_INLINE
VECCORE_ATT_HOST_DEVICE
static void Inside(UnplacedStruct_t const ¶boloid, Vector3D<Real_v> const &point, Inside_t &inside)
{
using Bool_v = vecCore::Mask_v<Real_v>;
using InsideBool_v = vecCore::Mask_v<Inside_t>;
Bool_v completelyinside, completelyoutside;
GenericKernelForContainsAndInside<Real_v, Bool_v, true>(paraboloid, point, completelyinside, completelyoutside);
inside = EInside::kSurface;
vecCore::MaskedAssign(inside, (InsideBool_v)completelyoutside, Inside_t(EInside::kOutside));
vecCore::MaskedAssign(inside, (InsideBool_v)completelyinside, Inside_t(EInside::kInside));
}
template <typename Real_v, typename Bool_v, bool ForInside>
VECGEOM_FORCE_INLINE
VECCORE_ATT_HOST_DEVICE
static void GenericKernelForContainsAndInside(UnplacedStruct_t const ¶boloid, Vector3D<Real_v> const &point,
Bool_v &completelyinside, Bool_v &completelyoutside)
{
// using Bool_v = vecCore::Mask_v<Real_v>;
completelyinside = Bool_v(false);
completelyoutside = Bool_v(false);
Real_v rho2 = point.Perp2();
Real_v paraRho2 = paraboloid.fK1 * point.z() + paraboloid.fK2;
Real_v diff = rho2 - paraRho2;
Real_v absZ = Abs(point.z());
completelyoutside = (absZ > Real_v(paraboloid.fDz + kTolerance)) || (diff > kTolerance);
if (vecCore::MaskFull(completelyoutside)) return;
if (ForInside) completelyinside = (absZ < Real_v(paraboloid.fDz - kTolerance)) && (diff < -kTolerance);
}
template <typename Real_v, bool ForTopZPlane>
VECCORE_ATT_HOST_DEVICE
static vecCore::Mask_v<Real_v> IsOnZPlane(UnplacedStruct_t const ¶boloid, Vector3D<Real_v> const &point)
{
Real_v rho2 = point.Perp2();
if (ForTopZPlane) {
return Abs(point.z() - paraboloid.fDz) < kTolerance && rho2 < (paraboloid.fRhi2 + kHalfTolerance);
} else {
return Abs(point.z() + paraboloid.fDz) < kTolerance && rho2 < (paraboloid.fRlo2 + kHalfTolerance);
}
}
template <typename Real_v>
VECCORE_ATT_HOST_DEVICE
static vecCore::Mask_v<Real_v> IsOnParabolicSurface(UnplacedStruct_t const ¶boloid, Vector3D<Real_v> const &point)
{
using Bool_v = vecCore::Mask_v<Real_v>;
Real_v value = paraboloid.fA * point.Perp2() + paraboloid.fB - point.z();
Bool_v onParabolicSurface = value > -kTolerance && value < kTolerance;
return onParabolicSurface;
}
template <typename Real_v>
VECGEOM_FORCE_INLINE
VECCORE_ATT_HOST_DEVICE
static void DistanceToIn(UnplacedStruct_t const ¶boloid, Vector3D<Real_v> const &point,
Vector3D<Real_v> const &direction, Real_v const & /* stepMax */, Real_v &distance)
{
using Bool_v = vecCore::Mask_v<Real_v>;
Bool_v done(false);
distance = InfinityLength<Real_v>();
Real_v offset(0.);
Vector3D<Real_v> p(point);
// Move point closer, if required
Precision Rsph = 1.5 * vecCore::math::Max(paraboloid.fDx, paraboloid.fDz);
Real_v Rfar2(1024. * Rsph * Rsph); // 1024 = 32 * 32
vecCore__MaskedAssignFunc(offset, ((p.Mag2() > Rfar2) && (direction.Dot(p) < Real_v(0.))),
p.Mag() - Real_v(2.) * Rsph);
p += offset * direction;
Real_v absZ = Abs(p.z());
Real_v rho2 = p.Perp2(); // p.x()*p.x()+p.y()*p.y();
Bool_v checkZ = p.z() * direction.z() >= Real_v(0.);
// check if the point is distancing in Z
Bool_v isDistancingInZ = (absZ > paraboloid.fDz && checkZ);
done |= isDistancingInZ;
if (vecCore::MaskFull(done)) return;
Real_v paraRho2 = paraboloid.fK1 * p.z() + paraboloid.fK2;
Real_v diff = rho2 - paraRho2;
vecCore__MaskedAssignFunc(distance, !done, Real_v(-1.));
Bool_v insideZ = absZ < Real_v(paraboloid.fDz - kTolerance);
Bool_v insideParabolicSurfaceOuterTolerance = (diff < -kTolerance);
done |= !done && (insideZ && insideParabolicSurfaceOuterTolerance);
if (vecCore::MaskFull(done)) return;
Bool_v isOnZPlaneAndMovingInside = (IsOnZPlane<Real_v, true>(paraboloid, point) && direction.z() < Real_v(0.)) ||
(IsOnZPlane<Real_v, false>(paraboloid, point) && direction.z() > Real_v(0.));
vecCore__MaskedAssignFunc(distance, !done && isOnZPlaneAndMovingInside, Real_v(0.));
done |= isOnZPlaneAndMovingInside;
if (vecCore::MaskFull(done)) return;
Vector3D<Real_v> normal(p.x(), p.y(), Real_v(-paraboloid.fK1 * Real_v(0.5)));
Bool_v isOnParabolicSurfaceAndMovingInside =
diff > -kTolerance && diff < kTolerance && direction.Dot(normal) < Real_v(0.);
vecCore__MaskedAssignFunc(distance, !done && isOnParabolicSurfaceAndMovingInside, Real_v(0.));
done |= isOnParabolicSurfaceAndMovingInside;
if (vecCore::MaskFull(done)) return;
vecCore__MaskedAssignFunc(distance, !done, InfinityLength<Real_v>());
/* Intersection tests with Z planes are not required if the point is within Z Range
* In this case it will either intsect with parabolic surface or not intersect at all.
*/
if (!vecCore::MaskFull(absZ < paraboloid.fDz)) {
Real_v distZ(InfinityLength<Real_v>()); // = (absZ - paraboloid.fDz) / absDirZ;
Bool_v bottomPlane = p.z() < -paraboloid.fDz && direction.z() > 0; //(true);
Bool_v topPlane = p.z() > paraboloid.fDz && direction.z() < 0;
vecCore__MaskedAssignFunc(distZ, topPlane, (paraboloid.fDz - p.z()) / NonZero(direction.z()));
vecCore__MaskedAssignFunc(distZ, bottomPlane, (-paraboloid.fDz - p.z()) / NonZero(direction.z()));
Real_v xHit = p.x() + distZ * direction.x();
Real_v yHit = p.y() + distZ * direction.y();
Real_v rhoHit2 = xHit * xHit + yHit * yHit;
vecCore::MaskedAssign(distance, !done && topPlane && rhoHit2 <= paraboloid.fRhi2, distZ + offset);
done |= topPlane && rhoHit2 < paraboloid.fRhi2;
if (vecCore::MaskFull(done)) return;
vecCore::MaskedAssign(distance, !done && bottomPlane && rhoHit2 <= paraboloid.fRlo2, distZ + offset);
done |= (bottomPlane && rhoHit2 <= paraboloid.fRlo2); // || (topPlane && rhoHit2 <= paraboloid.fRhi2);
if (vecCore::MaskFull(done)) return;
}
/* Intersection tests with Parabolic surface are not required if the point is above
* top Z plane Radius of point is less the Rhi. In this case depending upon the
* direction it will either intersect with top Z plane or not intersect at all
*/
if (!vecCore::MaskFull(p.z() > paraboloid.fDz && rho2 < paraboloid.fRhi2)) {
// Quadratic Solver for Parabolic surface
Real_v dirRho2 = direction.Perp2();
Real_v pDotV2D = p.x() * direction.x() + p.y() * direction.y();
Real_v a = paraboloid.fA * dirRho2;
Real_v b = Real_v(0.5) * direction.z() - paraboloid.fA * pDotV2D;
Real_v c = (paraboloid.fB + paraboloid.fA * p.Perp2() - p.z());
Real_v d2 = b * b - a * c;
done |= d2 < Real_v(0.);
if (vecCore::MaskFull(done)) return;
Real_v distParab = InfinityLength<Real_v>();
vecCore__MaskedAssignFunc(distParab, !done && (b <= Real_v(0.)), (b - Sqrt(d2)) / NonZero(a));
vecCore__MaskedAssignFunc(distParab, !done && (b > Real_v(0.)), (c / NonZero(b + Sqrt(d2))));
Real_v zHit = p.z() + distParab * direction.z();
vecCore::MaskedAssign(distance, Abs(zHit) <= paraboloid.fDz && distParab > Real_v(0.), distParab + offset);
}
}
template <typename Real_v>
VECGEOM_FORCE_INLINE
VECCORE_ATT_HOST_DEVICE
static void DistanceToOut(UnplacedStruct_t const ¶boloid, Vector3D<Real_v> const &point,
Vector3D<Real_v> const &direction, Real_v const & /* stepMax */, Real_v &distance)
{
using Bool_v = vecCore::Mask_v<Real_v>;
// setting distance to -1. for wrong side points
distance = -1.;
Bool_v done(false);
// Outside Z range
Bool_v outsideZ = Abs(point.z()) > paraboloid.fDz + kTolerance;
done |= outsideZ;
if (vecCore::MaskFull(done)) return;
// Outside Parabolic surface
Real_v rho2 = point.Perp2();
Real_v paraRho2 = paraboloid.fK1 * point.z() + paraboloid.fK2;
Real_v value = rho2 - paraRho2;
Bool_v outsideParabolicSurfaceOuterTolerance = (value > kHalfTolerance);
done |= outsideParabolicSurfaceOuterTolerance;
if (vecCore::MaskFull(done)) return;
// On Z Plane and moving outside;
Bool_v isOnZPlaneAndMovingOutside = (IsOnZPlane<Real_v, true>(paraboloid, point) && direction.z() > Real_v(0.)) ||
(IsOnZPlane<Real_v, false>(paraboloid, point) && direction.z() < Real_v(0.));
vecCore__MaskedAssignFunc(distance, !done && isOnZPlaneAndMovingOutside, Real_v(0.));
done |= isOnZPlaneAndMovingOutside;
if (vecCore::MaskFull(done)) return;
// On Parabolic Surface and moving outside
Vector3D<Real_v> normal(point.x(), point.y(), Real_v(-paraboloid.fK1 * Real_v(0.5)));
Bool_v isOnParabolicSurfaceAndMovingInside =
value > -kTolerance && value < kTolerance && direction.Dot(normal) > Real_v(0.);
vecCore__MaskedAssignFunc(distance, !done && isOnParabolicSurfaceAndMovingInside, Real_v(0.));
done |= isOnParabolicSurfaceAndMovingInside;
if (vecCore::MaskFull(done)) return;
vecCore__MaskedAssignFunc(distance, !done, InfinityLength<Real_v>());
Real_v distZ = InfinityLength<Real_v>();
Real_v dirZinv = Real_v(1.) / NonZero(direction.z());
Bool_v dir_mask = direction.z() < 0;
vecCore__MaskedAssignFunc(distZ, dir_mask, -(paraboloid.fDz + point.z()) * dirZinv);
vecCore__MaskedAssignFunc(distZ, !dir_mask, (paraboloid.fDz - point.z()) * dirZinv);
Real_v dirRho2 = direction.Perp2();
Real_v pDotV2D = point.x() * direction.x() + point.y() * direction.y();
Real_v a = Real_v(paraboloid.fA * dirRho2);
Real_v b = Real_v(0.5) * direction.z() - Real_v(paraboloid.fA) * pDotV2D;
Real_v c = paraboloid.fB + paraboloid.fA * point.Perp2() - point.z();
Real_v d2 = b * b - a * c;
Real_v distParab = InfinityLength<Real_v>();
vecCore__MaskedAssignFunc(distParab, d2 >= Real_v(0.) && (b > Real_v(0.)),
(b + Sqrt(d2)) * (Real_v(1.) / NonZero(a)));
vecCore__MaskedAssignFunc(distParab, d2 >= Real_v(0.) && (b <= Real_v(0.)), (c / NonZero(b - Sqrt(d2))));
distance = Min(distParab, distZ);
}
template <typename Real_v>
VECGEOM_FORCE_INLINE
VECCORE_ATT_HOST_DEVICE
static void SafetyToIn(UnplacedStruct_t const ¶boloid, Vector3D<Real_v> const &point, Real_v &safety)
{
using Bool_v = vecCore::Mask_v<Real_v>;
Real_v absZ = Abs(point.z());
Real_v safeZ = absZ - paraboloid.fDz;
safety = -1.;
Bool_v done(false);
Bool_v insideZ = absZ < paraboloid.fDz - kTolerance;
Real_v rho2 = point.Perp2();
Real_v value = paraboloid.fA * rho2 + paraboloid.fB - point.z();
Bool_v insideParabolicSurfaceOuterTolerance = (value < -kHalfTolerance);
done |= (insideZ && insideParabolicSurfaceOuterTolerance);
if (vecCore::MaskFull(done)) return;
Bool_v onZPlane =
Abs(Abs(point.z()) - paraboloid.fDz) < kTolerance &&
(rho2 < Real_v(paraboloid.fRhi2 + kHalfTolerance) || rho2 < Real_v(paraboloid.fRlo2 + kHalfTolerance));
vecCore__MaskedAssignFunc(safety, onZPlane, Real_v(0.));
done |= onZPlane;
if (vecCore::MaskFull(done)) return;
Bool_v onParabolicSurface = value > -kTolerance && value < kTolerance;
vecCore__MaskedAssignFunc(safety, !done && onParabolicSurface, Real_v(0.));
done |= onParabolicSurface;
if (vecCore::MaskFull(done)) return;
vecCore__MaskedAssignFunc(safety, !done, InfinityLength<Real_v>());
Real_v r0sq = (point.z() - paraboloid.fB) * paraboloid.fInvA;
safety = safeZ;
Bool_v underParaboloid = (r0sq < 0);
done |= underParaboloid;
if (vecCore::MaskFull(done)) return;
Real_v safeR = InfinityLength<Real_v>();
Real_v ro2 = point.x() * point.x() + point.y() * point.y();
Real_v dr = Sqrt(ro2) - Sqrt(r0sq);
Bool_v drCloseToZero = (dr < Real_v(1.E-8));
done |= drCloseToZero;
if (vecCore::MaskFull(done)) return;
// then go for the tangent
Real_v talf = Real_v(-2.) * paraboloid.fA * Sqrt(r0sq);
Real_v salf = talf / Sqrt(Real_v(1.) + talf * talf);
safeR = Abs(dr * salf);
Real_v max_safety = Max(safeR, safeZ);
vecCore::MaskedAssign(safety, !done, max_safety);
}
template <typename Real_v>
VECGEOM_FORCE_INLINE
VECCORE_ATT_HOST_DEVICE
static void SafetyToOut(UnplacedStruct_t const ¶boloid, Vector3D<Real_v> const &point, Real_v &safety)
{
using Bool_v = vecCore::Mask_v<Real_v>;
Real_v absZ = Abs(point.z());
Real_v safZ = (paraboloid.fDz - absZ);
safety = -1.;
Bool_v done(false);
Bool_v outsideZ = absZ > Real_v(paraboloid.fDz + kTolerance);
done |= outsideZ;
if (vecCore::MaskFull(done)) return;
Real_v rho2 = point.Perp2();
Real_v value = paraboloid.fA * rho2 + paraboloid.fB - point.z();
Bool_v outsideParabolicSurfaceOuterTolerance = (value > kHalfTolerance);
done |= outsideParabolicSurfaceOuterTolerance;
if (vecCore::MaskFull(done)) return;
Bool_v onZPlane =
Abs(Abs(point.z()) - paraboloid.fDz) < kTolerance &&
(rho2 < Real_v(paraboloid.fRhi2 + kHalfTolerance) || rho2 < Real_v(paraboloid.fRlo2 + kHalfTolerance));
vecCore__MaskedAssignFunc(safety, onZPlane, Real_v(0.));
done |= onZPlane;
if (vecCore::MaskFull(done)) return;
Bool_v onSurface = value > -kTolerance && value < kTolerance;
vecCore__MaskedAssignFunc(safety, !done && onSurface, Real_v(0.));
done |= onSurface;
if (vecCore::MaskFull(done)) return;
Real_v r0sq = (point.z() - paraboloid.fB) * paraboloid.fInvA;
safety = 0.;
Bool_v closeToParaboloid = (r0sq < 0);
done |= closeToParaboloid;
if (vecCore::MaskFull(done)) return;
Real_v safR = InfinityLength<Real_v>();
Real_v ro2 = point.x() * point.x() + point.y() * point.y();
Real_v z0 = paraboloid.fA * ro2 + paraboloid.fB;
Real_v dr = Sqrt(ro2) - Sqrt(r0sq); // avoid square root of a negative number
Bool_v drCloseToZero = (dr > Real_v(-1.E-8));
done |= drCloseToZero;
if (vecCore::MaskFull(done)) return;
Real_v dz = Abs(point.z() - z0);
safR = -dr * dz / Sqrt(dr * dr + dz * dz);
Real_v min_safety = Min(safR, safZ);
vecCore::MaskedAssign(safety, !done, min_safety);
}
template <typename Real_v>
VECGEOM_FORCE_INLINE
VECCORE_ATT_HOST_DEVICE
static Vector3D<Real_v> NormalKernel(UnplacedStruct_t const ¶boloid, Vector3D<Real_v> const &point,
typename vecCore::Mask_v<Real_v> &valid)
{
using Bool_v = vecCore::Mask_v<Real_v>;
// used to store the normal that needs to be returned
Vector3D<Real_v> normal(0., 0., 0.);
Real_v nsurf(0.); // used to store the number of surfaces on which the point lie.
// in case of paraboloid it can maximum go upto 2
// The interface is in fact only scalar, so do the correct treatment for points on the axis of symmetry
Vector3D<Real_v> normParabolic(0., 0., vecCore::math::Sign(-paraboloid.fA));
Real_v r = point.Perp();
if (r > kTolerance) {
Real_v talf = -2 * paraboloid.fA * r;
Real_v calf = 1. / Sqrt(1. + talf * talf);
Real_v salf = talf * calf;
Vector3D<Real_v> normParabolic((salf * point.x() / NonZero(point.Perp())),
(salf * point.y() / NonZero(point.Perp())), calf);
normParabolic.Normalize();
}
// Logic for Valid Normal i.e. when point is on the surface
Bool_v isOnZPlane = IsOnZPlane<Real_v, true>(paraboloid, point) || IsOnZPlane<Real_v, false>(paraboloid, point);
Bool_v isOnParabolicSurface = IsOnParabolicSurface<Real_v>(paraboloid, point);
vecCore__MaskedAssignFunc(nsurf, isOnZPlane, nsurf + 1);
vecCore__MaskedAssignFunc(normal[2], (IsOnZPlane<Real_v, true>(paraboloid, point)), Real_v(1.));
vecCore__MaskedAssignFunc(normal[2], (IsOnZPlane<Real_v, false>(paraboloid, point)), Real_v(-1.));
vecCore__MaskedAssignFunc(nsurf, isOnParabolicSurface, nsurf + 1);
vecCore__MaskedAssignFunc(normal[0], isOnParabolicSurface, normal[0] - normParabolic[0]);
vecCore__MaskedAssignFunc(normal[1], isOnParabolicSurface, normal[1] - normParabolic[1]);
vecCore__MaskedAssignFunc(normal[2], isOnParabolicSurface, normal[2] - normParabolic[2]);
valid = Bool_v(true);
valid &= (nsurf > 0);
if (vecCore::MaskFull(valid)) return normal.Normalized();
// This block is used to calculate the Approximate normal
Vector3D<Real_v> norm(0., 0., 0.); // used to store approximate normal
vecCore__MaskedAssignFunc(norm[2], point.z() > Real_v(0.), Real_v(1.));
vecCore__MaskedAssignFunc(norm[2], point.z() < Real_v(0.), Real_v(-1.));
Real_v safz = paraboloid.fDz - Abs(point.z());
Real_v safr = Abs(r - Sqrt((point.z() - paraboloid.fB) * paraboloid.fInvA));
vecCore__MaskedAssignFunc(norm[0], safz >= Real_v(0.) && safr < safz, normParabolic.x());
vecCore__MaskedAssignFunc(norm[1], safz >= Real_v(0.) && safr < safz, normParabolic.y());
vecCore__MaskedAssignFunc(norm[2], safz >= Real_v(0.) && safr < safz, normParabolic.z());
// If Valid is not set, that means the point is NOT on the surface,
// So in that case we have to rely on Approximate normal
vecCore__MaskedAssignFunc(normal[0], !valid, norm.x());
vecCore__MaskedAssignFunc(normal[1], !valid, norm.y());
vecCore__MaskedAssignFunc(normal[2], !valid, norm.z());
return normal.Normalized();
}
};
} // namespace VECGEOM_IMPL_NAMESPACE
} // namespace vecgeom
#endif // VECGEOM_VOLUMES_KERNEL_ORBIMPLEMENTATION_H_
|