1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244
|
// This file is part of VecGeom and is distributed under the
// conditions in the file LICENSE.txt in the top directory.
// For the full list of authors see CONTRIBUTORS.txt and `git log`.
/// This file implements the algorithms for Paralleliped
/// @file volumes/kernel/ParallelepipedImplementation.h
/// @author First version by Johannes de Fine Licht
/// @author Revised by Evgueni Tcherniaev
#ifndef VECGEOM_VOLUMES_KERNEL_PARALLELEPIPEDIMPLEMENTATION_H_
#define VECGEOM_VOLUMES_KERNEL_PARALLELEPIPEDIMPLEMENTATION_H_
#include "VecGeom/base/Vector3D.h"
#include "VecGeom/volumes/ParallelepipedStruct.h"
#include "VecGeom/volumes/kernel/GenericKernels.h"
#include <VecCore/VecCore>
#include <cstdio>
namespace vecgeom {
VECGEOM_DEVICE_FORWARD_DECLARE(struct ParallelepipedImplementation;);
VECGEOM_DEVICE_DECLARE_CONV(struct, ParallelepipedImplementation);
inline namespace VECGEOM_IMPL_NAMESPACE {
class PlacedParallelepiped;
template <typename T>
struct ParallelepipedStruct;
class UnplacedParallelepiped;
struct ParallelepipedImplementation {
using PlacedShape_t = PlacedParallelepiped;
using UnplacedStruct_t = ParallelepipedStruct<Precision>;
using UnplacedVolume_t = UnplacedParallelepiped;
VECCORE_ATT_HOST_DEVICE
static void PrintType()
{
// printf("SpecializedParallelepiped<%i, %i>", transCodeT, rotCodeT);
}
template <typename Stream>
static void PrintType(Stream &s, int transCodeT = translation::kGeneric, int rotCodeT = rotation::kGeneric)
{
s << "SpecializedParallelepiped<" << transCodeT << "," << rotCodeT << ">";
}
template <typename Stream>
static void PrintImplementationType(Stream & /*s*/)
{
// s << "ParallelepipedImplementation<" << transCodeT << "," << rotCodeT << ">";
}
template <typename Stream>
static void PrintUnplacedType(Stream & /*s*/)
{
// s << "UnplacedParallelepiped";
}
template <typename Real_v>
VECGEOM_FORCE_INLINE
VECCORE_ATT_HOST_DEVICE
static void Transform(UnplacedStruct_t const &unplaced, Vector3D<Real_v> &point)
{
point.y() -= unplaced.fTanThetaSinPhi * point.z();
point.x() -= unplaced.fTanThetaCosPhi * point.z() + unplaced.fTanAlpha * point.y();
}
template <typename Real_v>
VECGEOM_FORCE_INLINE
VECCORE_ATT_HOST_DEVICE
static void SafetyVector(UnplacedStruct_t const &unplaced, Vector3D<Real_v> const &localPoint,
Vector3D<Real_v> &safety)
{
safety = localPoint.Abs() - Vector3D<Real_v>(unplaced.fDimensions);
safety.x() *= unplaced.fCtx;
safety.y() *= unplaced.fCty;
}
template <typename Real_v, typename Bool_v>
VECGEOM_FORCE_INLINE
VECCORE_ATT_HOST_DEVICE
static void Contains(UnplacedStruct_t const &unplaced, Vector3D<Real_v> const &point, Bool_v &inside)
{
Vector3D<Real_v> localPoint(point);
Vector3D<Real_v> safetyVector;
Transform<Real_v>(unplaced, localPoint);
SafetyVector<Real_v>(unplaced, localPoint, safetyVector);
inside = safetyVector.Max() < Real_v(0.0);
}
template <typename Real_v, typename Inside_v>
VECGEOM_FORCE_INLINE
VECCORE_ATT_HOST_DEVICE
static void Inside(UnplacedStruct_t const &unplaced, Vector3D<Real_v> const &point, Inside_v &inside)
{
Vector3D<Real_v> localPoint(point);
Vector3D<Real_v> safetyVector;
Transform<Real_v>(unplaced, localPoint);
SafetyVector<Real_v>(unplaced, localPoint, safetyVector);
Real_v safety = safetyVector.Max();
inside = vecCore::Blend(safety < Real_v(0.0), Inside_v(kInside), Inside_v(kOutside));
vecCore__MaskedAssignFunc(inside, vecCore::math::Abs(safety) < Real_v(kHalfTolerance), Inside_v(kSurface));
}
template <typename Real_v>
VECGEOM_FORCE_INLINE
VECCORE_ATT_HOST_DEVICE
static void SafetyToIn(UnplacedStruct_t const &unplaced, Vector3D<Real_v> const &point, Real_v &safety)
{
Vector3D<Real_v> localPoint(point);
Vector3D<Real_v> safetyVector;
Transform<Real_v>(unplaced, localPoint);
SafetyVector<Real_v>(unplaced, localPoint, safetyVector);
safety = safetyVector.Max();
vecCore::MaskedAssign(safety, vecCore::math::Abs(safety) < Real_v(kHalfTolerance), Real_v(0.0));
}
template <typename Real_v>
VECGEOM_FORCE_INLINE
VECCORE_ATT_HOST_DEVICE
static void SafetyToOut(UnplacedStruct_t const &unplaced, Vector3D<Real_v> const &point, Real_v &safety)
{
Vector3D<Real_v> localPoint(point);
Vector3D<Real_v> safetyVector;
Transform<Real_v>(unplaced, localPoint);
SafetyVector<Real_v>(unplaced, localPoint, safetyVector);
safety = -safetyVector.Max();
vecCore::MaskedAssign(safety, vecCore::math::Abs(safety) < Real_v(kHalfTolerance), Real_v(0.0));
}
template <typename Real_v>
VECGEOM_FORCE_INLINE
VECCORE_ATT_HOST_DEVICE
static void DistanceToIn(UnplacedStruct_t const &unplaced, Vector3D<Real_v> const &point,
Vector3D<Real_v> const &direction, Real_v const & /* stepMax */, Real_v &distance)
{
using Bool_v = vecCore::Mask_v<Real_v>;
// Transform point and direction to local (oblique) system of coordinates,
// compute safety vector
Vector3D<Real_v> p(point);
Vector3D<Real_v> v(direction);
Vector3D<Real_v> safetyVector;
Transform<Real_v>(unplaced, p);
Transform<Real_v>(unplaced, v);
SafetyVector<Real_v>(unplaced, p, safetyVector);
// Check if point is leaving shape
Bool_v leaving(false);
leaving |= (safetyVector.x() >= -kHalfTolerance && p.x() * v.x() >= Real_v(0.));
leaving |= (safetyVector.y() >= -kHalfTolerance && p.y() * v.y() >= Real_v(0.));
leaving |= (safetyVector.z() >= -kHalfTolerance && p.z() * v.z() >= Real_v(0.));
// Compute distances
const Vector3D<Real_v> invDir(Real_v(1.) / NonZero(v.x()), Real_v(1.) / NonZero(v.y()),
Real_v(1.) / NonZero(v.z()));
const Vector3D<Real_v> signDir(Sign(invDir.x()), Sign(invDir.y()), Sign(invDir.z()));
const Vector3D<Real_v> temp = signDir * unplaced.fDimensions;
const Real_v distIn = ((-temp - p) * invDir).Max();
const Real_v distOut = ((temp - p) * invDir).Min();
// Set distance to in
distance = Real_v(kInfLength);
vecCore__MaskedAssignFunc(distance, !leaving && distOut > distIn + kHalfTolerance, distIn);
}
template <typename Real_v>
VECGEOM_FORCE_INLINE
VECCORE_ATT_HOST_DEVICE
static void DistanceToOut(UnplacedStruct_t const &unplaced, Vector3D<Real_v> const &point,
Vector3D<Real_v> const &direction, Real_v const & /* stepMax */, Real_v &distance)
{
// Transform point and direction to local (oblique) system of coordinates,
// compute safety vector
Vector3D<Real_v> p(point);
Vector3D<Real_v> v(direction);
Vector3D<Real_v> safetyVector;
Transform<Real_v>(unplaced, p);
Transform<Real_v>(unplaced, v);
SafetyVector<Real_v>(unplaced, p, safetyVector);
// Compute distance to out
const Vector3D<Real_v> dir(NonZero(v.x()), NonZero(v.y()), NonZero(v.z()));
const Vector3D<Real_v> signDir(Sign(dir.x()), Sign(dir.y()), Sign(dir.z()));
distance = ((signDir * unplaced.fDimensions - p) / dir).Min();
// Set distance to out
vecCore__MaskedAssignFunc(distance, safetyVector.Max() > kHalfTolerance, Real_v(-1.0));
}
template <typename Real_v>
VECGEOM_FORCE_INLINE
VECCORE_ATT_HOST_DEVICE
static Vector3D<Real_v> NormalKernel(UnplacedStruct_t const &unplaced, Vector3D<Real_v> const &point,
typename vecCore::Mask_v<Real_v> &valid)
{
// Compute normal at the point on the surface.
// In case the point is not on the surface, set valid = false.
// Must return a valid vector (even if the point is not on the surface).
// On edge or corner, provide an average normal of all facets within the tolerance.
Vector3D<Real_v> normal(0.);
valid = true;
// Transform point to local (oblique) system of coordinates and compute safety vector
Vector3D<Real_v> p(point);
Vector3D<Real_v> safetyVector;
Transform<Real_v>(unplaced, p);
SafetyVector<Real_v>(unplaced, p, safetyVector);
// Set normal
const Vector3D<Real_v> signs(Sign(p.x()), Sign(p.y()), Sign(p.z()));
vecCore__MaskedAssignFunc(normal, Abs(safetyVector.z()) <= kHalfTolerance, Vector3D<Real_v>(0., 0., signs.z()));
vecCore__MaskedAssignFunc(normal, Abs(safetyVector.y()) <= kHalfTolerance,
normal + signs.y() * unplaced.fNormals[1]);
vecCore__MaskedAssignFunc(normal, Abs(safetyVector.x()) <= kHalfTolerance,
normal + signs.x() * unplaced.fNormals[0]);
Real_v mag2 = normal.Mag2();
vecCore__MaskedAssignFunc(normal, mag2 > 1., normal.Unit());
if (vecCore::MaskFull(mag2 > Real_v(0.))) return normal;
// Point is not on the surface - normally, this should never be.
// Return normal of the nearest face.
vecCore__MaskedAssignFunc(valid, mag2 == Real_v(0.), false);
Real_v safety = safetyVector.Max();
normal = signs.x() * unplaced.fNormals[0];
vecCore__MaskedAssignFunc(normal, safetyVector.y() == safety, signs.y() * unplaced.fNormals[1]);
vecCore__MaskedAssignFunc(normal, safetyVector.z() == safety, signs.z() * unplaced.fNormals[2]);
return normal;
}
};
} // namespace VECGEOM_IMPL_NAMESPACE
} // namespace vecgeom
#endif // VECGEOM_VOLUMES_KERNEL_PARALLELEPIPEDIMPLEMENTATION_H_
|