1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 300 301 302 303 304 305 306 307 308 309 310 311 312 313 314 315 316 317 318 319 320 321 322 323 324 325 326 327 328 329 330 331 332 333 334 335 336 337 338 339 340 341 342 343 344 345 346 347 348 349 350 351 352 353 354 355 356 357 358 359 360 361 362 363 364 365 366 367 368 369 370 371 372 373 374 375 376 377 378 379 380 381 382 383 384 385 386 387 388 389 390 391 392 393 394 395 396 397 398 399 400 401 402 403 404 405 406 407 408 409 410 411 412 413 414 415 416 417 418 419 420 421 422 423 424 425 426 427 428 429 430 431 432 433 434 435 436 437 438 439 440 441 442 443 444 445 446 447 448 449 450 451 452 453 454 455 456 457 458 459 460 461 462 463 464 465 466 467 468 469 470 471 472 473 474 475 476 477 478 479 480 481 482 483 484 485 486 487 488 489 490 491 492 493 494 495 496 497 498 499 500 501 502 503 504 505 506 507 508 509 510 511 512 513 514 515 516 517 518 519 520 521 522 523 524 525 526 527 528 529 530 531 532 533 534 535 536 537 538 539 540 541 542 543 544 545 546 547 548 549 550 551 552 553 554 555 556 557 558 559 560 561 562 563 564 565 566 567 568 569 570 571 572 573 574 575 576 577 578 579 580 581 582 583 584 585 586 587 588 589 590 591 592 593 594 595 596 597 598 599 600 601 602 603 604 605 606 607 608 609 610 611 612 613 614 615 616 617 618 619 620 621 622 623 624 625 626 627 628 629 630 631 632 633 634 635 636 637 638 639 640 641 642 643 644 645 646 647 648 649 650 651 652 653 654 655 656 657 658 659 660 661 662 663 664 665 666 667 668 669 670 671 672 673 674 675 676 677 678 679 680 681 682 683 684 685 686 687 688 689 690 691 692 693 694 695 696 697 698 699 700 701 702 703 704 705 706 707 708 709 710 711 712 713 714 715 716 717 718 719 720 721 722 723 724 725 726 727 728 729 730 731 732 733 734 735 736 737 738 739 740 741 742 743 744 745 746 747 748 749 750 751 752 753 754 755 756 757 758 759 760 761 762 763 764 765 766 767 768 769 770 771 772 773 774 775 776 777 778 779 780 781 782 783 784 785 786 787 788 789 790 791 792 793 794 795 796 797 798 799 800 801 802 803 804 805 806 807 808 809 810 811 812 813 814 815 816 817 818 819 820 821 822 823 824 825 826 827 828 829 830 831 832 833 834 835 836 837 838 839 840 841 842 843 844 845 846 847 848 849 850 851 852 853 854 855 856 857 858 859 860 861 862 863 864 865 866 867 868 869 870 871 872 873 874 875 876 877 878 879 880 881 882 883 884 885 886 887 888 889 890 891 892 893 894 895 896 897 898 899 900 901 902 903 904 905 906 907 908 909 910 911 912 913 914 915 916 917 918 919 920 921 922 923 924 925 926 927 928 929 930 931 932 933 934 935 936 937 938 939 940 941 942 943 944 945 946 947 948 949 950 951 952 953 954 955 956 957 958 959 960 961 962 963 964 965 966 967 968 969 970 971 972 973 974 975 976 977 978 979 980 981 982 983 984 985 986 987 988 989 990 991 992 993 994 995 996 997 998 999 1000 1001 1002 1003 1004 1005 1006 1007 1008 1009 1010 1011 1012 1013 1014 1015 1016 1017 1018 1019 1020 1021 1022 1023 1024 1025 1026 1027 1028 1029 1030 1031 1032 1033 1034 1035 1036 1037 1038 1039 1040 1041 1042 1043 1044 1045 1046 1047 1048 1049 1050 1051 1052 1053 1054 1055 1056 1057 1058 1059 1060 1061 1062 1063 1064 1065 1066 1067 1068 1069 1070 1071 1072 1073 1074 1075 1076 1077 1078 1079 1080 1081 1082 1083 1084 1085 1086 1087 1088 1089 1090 1091 1092 1093 1094 1095 1096 1097 1098 1099 1100 1101 1102 1103 1104 1105 1106 1107 1108 1109 1110 1111 1112 1113 1114 1115 1116 1117 1118 1119 1120 1121 1122 1123 1124 1125 1126 1127 1128 1129 1130 1131 1132 1133 1134 1135 1136 1137 1138 1139 1140 1141 1142 1143 1144 1145 1146 1147 1148 1149 1150 1151 1152 1153 1154 1155 1156 1157 1158 1159 1160 1161 1162 1163 1164 1165 1166 1167 1168 1169 1170 1171 1172 1173 1174 1175 1176 1177 1178 1179 1180 1181 1182 1183 1184 1185 1186 1187 1188 1189 1190 1191 1192 1193 1194 1195 1196 1197 1198 1199 1200
|
/// \file PolyhedronImplementation.h
/// \author Johannes de Fine Licht (johannes.definelicht@cern.ch)
#ifndef VECGEOM_VOLUMES_KERNEL_POLYHEDRONIMPLEMENTATION_H_
#define VECGEOM_VOLUMES_KERNEL_POLYHEDRONIMPLEMENTATION_H_
#include <cstdio>
#include "VecGeom/base/Vector3D.h"
#include "VecGeom/volumes/kernel/GenericKernels.h"
#include "VecGeom/volumes/kernel/TubeImplementation.h"
#include "VecGeom/volumes/Quadrilaterals.h"
#include "VecGeom/volumes/PolyhedronStruct.h"
namespace vecgeom {
// VECGEOM_DEVICE_FORWARD_DECLARE(struct PolyhedronImplementation;);
VECGEOM_DEVICE_DECLARE_CONV_TEMPLATE_2v(struct, PolyhedronImplementation, Polyhedron::EInnerRadii,
Polyhedron::EInnerRadii::kGeneric, Polyhedron::EPhiCutout,
Polyhedron::EPhiCutout::kGeneric);
inline namespace VECGEOM_IMPL_NAMESPACE {
class PlacedPolyhedron;
class UnplacedPolyhedron;
template <Polyhedron::EInnerRadii innerRadiiT, Polyhedron::EPhiCutout phiCutoutT>
struct PolyhedronImplementation {
using PlacedShape_t = PlacedPolyhedron;
using UnplacedStruct_t = PolyhedronStruct<Precision>;
using UnplacedVolume_t = UnplacedPolyhedron;
VECCORE_ATT_HOST_DEVICE
static void PrintType() {}
template <typename Stream>
static void PrintType(Stream &s, int transCodeT = translation::kGeneric, int rotCodeT = rotation::kGeneric)
{
s << "SpecializedPolyhedron<" << transCodeT << "," << rotCodeT << ">";
}
template <typename Stream>
static void PrintImplementationType(Stream & /*s*/)
{
}
template <typename Stream>
static void PrintUnplacedType(Stream & /*s*/)
{
}
/// \param pointZ Z-coordinate of a point.
/// \return Index of the Z-segment in which the passed point is located. If
/// point is outside the polyhedron, -1 will be returned for Z smaller
/// than the first Z-plane, or N for Z larger than the last Z-plane,
/// where N is the amount of segments.
template <typename Real_v>
VECGEOM_FORCE_INLINE
VECCORE_ATT_HOST_DEVICE
static int FindZSegment(UnplacedStruct_t const &unplaced, Real_v const &pointZ);
/// \return Index of the phi-segment in which the passed point is located.
/// Assuming the polyhedron has been constructed properly, this should
/// always be a valid index.
template <typename Real_v>
VECGEOM_FORCE_INLINE
VECCORE_ATT_HOST_DEVICE
static int FindPhiSegment(UnplacedStruct_t const &unplaced, Vector3D<Real_v> const &point);
/// \param segmentIndex Index to the Z-segment to which the distance should be
/// computed.
/// \return Distance to the closest quadrilateral intersection by the passed
/// ray. Only intersections from the correct direction are accepted,
/// so value is always positive.
template <typename Real_v>
VECGEOM_FORCE_INLINE
VECCORE_ATT_HOST_DEVICE
static Real_v DistanceToInZSegment(UnplacedStruct_t const &unplaced, int segmentIndex, Vector3D<Real_v> const &point,
Vector3D<Real_v> const &direction);
/// \param segmentIndex Index to the Z-segment to which the distance should be
/// computed.
/// \return Distance to the closest quadrilateral intersection by the passed
/// ray. Only intersections from the correct direction are accepted,
/// so value is always positive.
template <typename Real_v>
VECGEOM_FORCE_INLINE
VECCORE_ATT_HOST_DEVICE
static Real_v DistanceToOutZSegment(UnplacedStruct_t const &unplaced, int segmentIndex, Precision zMin,
Precision zMax, Vector3D<Real_v> const &point, Vector3D<Real_v> const &direction);
/// \param segmentIndex Index to the Z-segment for which the safety should be
/// computed.
/// \param phiIndex Index to the phi-segment for which the safety should be
/// computed.
/// \return Exact squared distance from the passed point to the quadrilateral
/// at the Z-segment and phi indices passed.
VECCORE_ATT_HOST_DEVICE
VECGEOM_FORCE_INLINE
static Precision ScalarSafetyToZSegmentSquared(UnplacedStruct_t const &unplaced, int segmentIndex, int &phiIndex,
Vector3D<Precision> const &point, bool pt_inside, int &iSurf);
/// \param goingRight Whether the point is travelling along the Z-axis (true)
/// or opposite of the Z-axis (false).
/// \param distance Output argument which will be minimized with the found
/// distance.
template <bool pointInsideT>
VECGEOM_FORCE_INLINE
VECCORE_ATT_HOST_DEVICE
static void ScalarDistanceToEndcaps(UnplacedStruct_t const &unplaced, bool goingRight,
Vector3D<Precision> const &point, Vector3D<Precision> const &direction,
Precision &distance);
/// \brief Computes the exact distance to the closest endcap and minimizes it
/// with the output argument.
/// \param distance Output argument which will be minimized with the found
/// distance.
VECCORE_ATT_HOST_DEVICE
VECGEOM_FORCE_INLINE
static void ScalarSafetyToEndcapsSquared(UnplacedStruct_t const &unplaced, Vector3D<Precision> const &point,
Precision &distance, int &iz);
/// \param largePhiCutout Whether the phi cutout angle is larger than pi.
/// \return Whether a point is within the infinite phi wedge formed from
/// origin in the cutout angle between the first and last vector.
template <typename Real_v>
VECGEOM_FORCE_INLINE
VECCORE_ATT_HOST_DEVICE
static vecCore::Mask_v<Real_v> InPhiCutoutWedge(ZSegment const &segment, bool largePhiCutout,
Vector3D<Real_v> const &point);
VECCORE_ATT_HOST_DEVICE
VECGEOM_FORCE_INLINE
static bool ScalarContainsKernel(UnplacedStruct_t const &unplaced, Vector3D<Precision> const &point);
VECCORE_ATT_HOST_DEVICE
VECGEOM_FORCE_INLINE
static Inside_t ScalarInsideKernel(UnplacedStruct_t const &unplaced, Vector3D<Precision> const &point);
VECCORE_ATT_HOST_DEVICE
VECGEOM_FORCE_INLINE
static Inside_t ScalarInsideSegPhi(UnplacedStruct_t const &unplaced, Vector3D<Precision> const &point, int zIndex,
int phiIndex);
VECCORE_ATT_HOST_DEVICE
VECGEOM_FORCE_INLINE
static Inside_t ScalarInsideSegBorder(UnplacedStruct_t const &unplaced, Vector3D<Precision> const &point, int zIndex);
VECCORE_ATT_HOST_DEVICE
VECGEOM_FORCE_INLINE
static Precision ScalarDistanceToInKernel(UnplacedStruct_t const &unplaced, Vector3D<Precision> const &point,
Vector3D<Precision> const &direction, const Precision stepMax);
VECCORE_ATT_HOST_DEVICE
VECGEOM_FORCE_INLINE
static Precision ScalarDistanceToOutKernel(UnplacedStruct_t const &unplaced, Vector3D<Precision> const &point,
Vector3D<Precision> const &direction, const Precision stepMax);
VECCORE_ATT_HOST_DEVICE
VECGEOM_FORCE_INLINE
static Precision ScalarSafetyKernel(UnplacedStruct_t const &unplaced, Vector3D<Precision> const &point,
bool pt_inside);
VECCORE_ATT_HOST_DEVICE
VECGEOM_FORCE_INLINE
static bool ScalarNormalKernel(UnplacedStruct_t const &unplaced, Vector3D<Precision> const &point,
Vector3D<Precision> &normal);
/// Not implemented. Scalar version is called from SpecializedPolyhedron.
template <typename Real_v, typename Bool_v>
VECGEOM_FORCE_INLINE
VECCORE_ATT_HOST_DEVICE
static void UnplacedContains(UnplacedStruct_t const &unplaced, Vector3D<Real_v> const &point, Bool_v &inside);
/// Not implemented. Scalar version is called from SpecializedPolyhedron.
template <typename Real_v, typename Bool_v>
VECGEOM_FORCE_INLINE
VECCORE_ATT_HOST_DEVICE
static void Contains(UnplacedStruct_t const &unplaced, Vector3D<Real_v> const &point, Bool_v &inside);
/// Not implemented. Scalar version is called from Specializedunplaced.
template <typename Real_v, typename Inside_v>
VECGEOM_FORCE_INLINE
VECCORE_ATT_HOST_DEVICE
static void Inside(UnplacedStruct_t const &unplaced, Vector3D<Real_v> const &point, Inside_v &inside);
/// Not implemented. Scalar version is called from SpecializedPolyhedron.
template <typename Real_v>
VECGEOM_FORCE_INLINE
VECCORE_ATT_HOST_DEVICE
static void DistanceToIn(UnplacedStruct_t const &unplaced, Vector3D<Real_v> const &point,
Vector3D<Real_v> const &direction, Real_v const &stepMax, Real_v &distance);
/// Not implemented. Scalar version is called from SpecializedPolyhedron.
template <typename Real_v>
VECGEOM_FORCE_INLINE
VECCORE_ATT_HOST_DEVICE
static void DistanceToOut(UnplacedStruct_t const &unplaced, Vector3D<Real_v> const &point,
Vector3D<Real_v> const &direction, Real_v const &stepMax, Real_v &distance);
/// Not implemented. Scalar version is called from SpecializedPolyhedron.
template <typename Real_v>
VECGEOM_FORCE_INLINE
VECCORE_ATT_HOST_DEVICE
static void SafetyToIn(UnplacedStruct_t const &unplaced, Vector3D<Real_v> const &point, Real_v &safety);
/// Not implemented. Scalar version is called from SpecializedPolyhedron.
template <typename Real_v>
VECGEOM_FORCE_INLINE
VECCORE_ATT_HOST_DEVICE
static void SafetyToOut(UnplacedStruct_t const &unplaced, Vector3D<Real_v> const &point, Real_v &safety);
}; // End struct PolyhedronImplementation
namespace {
/// Polyhedron-specific trait class typedef'ing the tube specialization that
/// should be called as a bounds check in Contains, Inside and DistanceToIn.
// SW (19.6.2015): switching to UniversalTube as Phi section was not
// correctly treated with a hollow tube
// TODO: this could be CORRECTLY put back for optimization
template <Polyhedron::EInnerRadii innerRadiiT>
struct HasInnerRadiiTraits {
/// If polyhedron has inner radii, use a hollow tube
typedef TubeImplementation<TubeTypes::UniversalTube> TubeKernels;
};
template <>
struct HasInnerRadiiTraits<Polyhedron::EInnerRadii::kFalse> {
/// If polyhedron has no inner radii, use a non-hollow tube
typedef TubeImplementation<TubeTypes::UniversalTube> TubeKernels;
};
template <Polyhedron::EInnerRadii innerRadiiT>
VECGEOM_FORCE_INLINE
VECCORE_ATT_HOST_DEVICE
bool TreatInner(bool hasInnerRadius)
{
return hasInnerRadius;
}
template <>
VECGEOM_FORCE_INLINE
VECCORE_ATT_HOST_DEVICE
bool TreatInner<Polyhedron::EInnerRadii::kFalse>(bool /*hasInnerRadius*/)
{
return false;
}
template <Polyhedron::EPhiCutout phiCutoutT>
VECGEOM_FORCE_INLINE
VECCORE_ATT_HOST_DEVICE
bool TreatPhi(bool /*hasPhiCutout*/)
{
return true;
}
template <>
VECGEOM_FORCE_INLINE
VECCORE_ATT_HOST_DEVICE
bool TreatPhi<Polyhedron::EPhiCutout::kFalse>(bool /*hasPhiCutout*/)
{
return false;
}
template <>
VECGEOM_FORCE_INLINE
VECCORE_ATT_HOST_DEVICE
bool TreatPhi<Polyhedron::EPhiCutout::kGeneric>(bool hasPhiCutout)
{
return hasPhiCutout;
}
template <Polyhedron::EPhiCutout phiCutoutT>
VECGEOM_FORCE_INLINE
VECCORE_ATT_HOST_DEVICE
bool LargePhiCutout(bool largePhiCutout)
{
return largePhiCutout;
}
template <>
VECGEOM_FORCE_INLINE
VECCORE_ATT_HOST_DEVICE
bool LargePhiCutout<Polyhedron::EPhiCutout::kTrue>(bool /*largePhiCutout*/)
{
return false;
}
template <>
VECGEOM_FORCE_INLINE
VECCORE_ATT_HOST_DEVICE
bool LargePhiCutout<Polyhedron::EPhiCutout::kLarge>(bool /*largePhiCutout*/)
{
return true;
}
} // End anonymous namespace
namespace {
template <typename Real_v>
VECGEOM_FORCE_INLINE
VECCORE_ATT_HOST_DEVICE
int FindZSegmentKernel(Precision const *begin, Precision const *end, Real_v const &pointZ);
template <>
VECGEOM_FORCE_INLINE
VECCORE_ATT_HOST_DEVICE
int FindZSegmentKernel<Precision>(Precision const *begin, Precision const *end, Precision const &pointZ)
{
// TODO: vectorize this and move the brute-force algorithm to the CUDA
// implementation. Inspiration can be found at:
// http://schani.wordpress.com/2010/04/30/linear-vs-binary-search/
int index = -1;
// Modified algorithm to select the first section the position is close to
// within boundary tolerance. This is important for degenerated Z polyhedra
while (begin < end - 1 && pointZ - kTolerance > *begin) {
++index;
++begin;
}
if (pointZ + kTolerance > *begin) return (index + 1);
return index;
}
} // End anonymous namespace
template <Polyhedron::EInnerRadii innerRadiiT, Polyhedron::EPhiCutout phiCutoutT>
template <typename Real_v>
VECGEOM_FORCE_INLINE
VECCORE_ATT_HOST_DEVICE
int PolyhedronImplementation<innerRadiiT, phiCutoutT>::FindZSegment(UnplacedStruct_t const &unplaced,
Real_v const &pointZ)
{
return FindZSegmentKernel<Real_v>(&unplaced.fZPlanes[0], &unplaced.fZPlanes[0] + unplaced.fZPlanes.size(), pointZ);
}
template <Polyhedron::EInnerRadii innerRadiiT, Polyhedron::EPhiCutout phiCutoutT>
template <typename Real_v>
VECGEOM_FORCE_INLINE
VECCORE_ATT_HOST_DEVICE
int PolyhedronImplementation<innerRadiiT, phiCutoutT>::FindPhiSegment(UnplacedStruct_t const &unplaced,
Vector3D<Real_v> const &point)
{
// Bounds between phi sections are represented as planes through the origin,
// with the normal pointing along the phi direction.
// To find the correct section, the point is projected onto each plane. If the
// point is in front of a plane, but behind the subsequent plane, it must be
// between them.
int index = -1;
SOA3D<Precision> const &phiSections = unplaced.fPhiSections;
Real_v projectionFirst, projectionSecond;
projectionFirst = point[0] * phiSections.x(0) + point[1] * phiSections.y(0) + point[2] * phiSections.z(0);
for (int i = 1, iMax = unplaced.fSideCount + 1; i < iMax; ++i) {
projectionSecond = point[0] * phiSections.x(i) + point[1] * phiSections.y(i) + point[2] * phiSections.z(i);
vecCore__MaskedAssignFunc(index, projectionFirst > -kTolerance && projectionSecond < kTolerance, i - 1);
if (vecCore::MaskFull(index >= 0)) break;
projectionFirst = projectionSecond;
}
return index;
}
template <Polyhedron::EInnerRadii innerRadiiT, Polyhedron::EPhiCutout phiCutoutT>
template <typename Real_v>
VECCORE_ATT_HOST_DEVICE
Real_v PolyhedronImplementation<innerRadiiT, phiCutoutT>::DistanceToInZSegment(UnplacedStruct_t const &unplaced,
int segmentIndex,
Vector3D<Real_v> const &point,
Vector3D<Real_v> const &direction)
{
using Bool_v = vecCore::Mask_v<Real_v>;
Real_v distance;
Bool_v done;
ZSegment const &segment = unplaced.fZSegments[segmentIndex];
// If the outer shell is hit, this will always be the correct result
distance = segment.outer.DistanceToIn<Real_v, false>(point, direction);
done = distance < InfinityLength<Real_v>();
if (vecCore::MaskFull(done)) return distance;
// If the outer shell is not hit and the phi cutout sides are hit, this will
// always be the correct result
if (TreatPhi<phiCutoutT>(unplaced.fHasPhiCutout)) {
vecCore__MaskedAssignFunc(distance, !done, (segment.phi.DistanceToIn<Real_v, false>(point, direction)));
}
done |= distance < InfinityLength<Real_v>();
if (vecCore::MaskFull(done)) return distance;
// Finally treat inner shell
if (TreatInner<innerRadiiT>(segment.hasInnerRadius())) {
vecCore__MaskedAssignFunc(distance, !done, (segment.inner.DistanceToIn<Real_v, true>(point, direction)));
}
return distance;
}
template <Polyhedron::EInnerRadii innerRadiiT, Polyhedron::EPhiCutout phiCutoutT>
template <typename Real_v>
VECCORE_ATT_HOST_DEVICE
Real_v PolyhedronImplementation<innerRadiiT, phiCutoutT>::DistanceToOutZSegment(UnplacedStruct_t const &unplaced,
int segmentIndex, Precision zMin,
Precision zMax,
Vector3D<Real_v> const &point,
Vector3D<Real_v> const &direction)
{
using Bool_v = vecCore::Mask_v<Real_v>;
Bool_v done(false);
Real_v distance = InfinityLength<Real_v>();
ZSegment const &segment = unplaced.fZSegments[segmentIndex];
// Check inner shell first, as it would always be the correct result
if (TreatInner<innerRadiiT>(segment.hasInnerRadius())) {
distance = segment.inner.DistanceToIn<Real_v, false>(point, direction);
done = distance < InfinityLength<Real_v>();
if (vecCore::MaskFull(done)) return distance;
}
// Check phi cutout if necessary. It is also possible to return here if a
// result is found
if (TreatPhi<phiCutoutT>(unplaced.fHasPhiCutout)) {
Real_v distphi = segment.phi.DistanceToIn<Real_v, true>(point, direction);
vecCore::MaskedAssign(distance, !done && distance > -kTolerance, distphi);
done = distance > -kTolerance && distance < InfinityLength<Real_v>();
if (vecCore::MaskFull(done)) return distance;
}
// Finally check outer shell
Real_v distout = segment.outer.DistanceToOut<Real_v>(point, direction, zMin, zMax);
vecCore::MaskedAssign(distance, !done, distout);
return distance;
}
template <Polyhedron::EInnerRadii innerRadiiT, Polyhedron::EPhiCutout phiCutoutT>
VECGEOM_FORCE_INLINE
VECCORE_ATT_HOST_DEVICE
Precision PolyhedronImplementation<innerRadiiT, phiCutoutT>::ScalarSafetyToZSegmentSquared(
UnplacedStruct_t const &unplaced, int segmentIndex, int &phiIndex, Vector3D<Precision> const &point, bool pt_inside,
int &iSurf)
{
ZSegment const &segment = unplaced.fZSegments[segmentIndex];
bool in_cutout = phiIndex < 0;
Precision safetySquared = InfinityLength<Precision>();
if (TreatPhi<phiCutoutT>(unplaced.fHasPhiCutout) && segment.phi.size() == 2) {
// Check if points is in the cutout wedge first.
if (pt_inside || in_cutout) {
// If point is in the cutout or if the call comes from SafetyToOut we need to check both phi planes
iSurf = 0;
safetySquared = segment.phi.ScalarDistanceSquared(0, point);
Precision saf = segment.phi.ScalarDistanceSquared(1, point);
if (saf < safetySquared) {
safetySquared = saf;
iSurf = 1;
}
// If the point is within the phi cutout wedge, we still need to check the
// inner part if there is a large cutout
if (in_cutout) {
if (LargePhiCutout<phiCutoutT>(unplaced.fHasLargePhiCutout) &&
TreatInner<innerRadiiT>(segment.hasInnerRadius())) {
if (segment.inner.size() > 0) {
Precision safetySquaredInner = segment.inner.ScalarDistanceSquared(0, point);
if (safetySquaredInner < safetySquared) {
iSurf = 2;
phiIndex = 0;
safetySquared = safetySquaredInner;
}
if (segment.inner.size() > 1) {
safetySquaredInner = segment.inner.ScalarDistanceSquared(segment.inner.size() - 1, point);
if (safetySquaredInner < safetySquared) {
iSurf = 2;
phiIndex = segment.inner.size() - 1;
safetySquared = safetySquaredInner;
}
}
}
}
return safetySquared;
}
}
}
if (in_cutout && segmentIndex > 0 && segmentIndex < unplaced.fZSegments.size() - 1 &&
unplaced.fZPlanes[segmentIndex] == unplaced.fZPlanes[segmentIndex + 1]) {
// We are checking a segment at same Z. We have to check the inner and outer
// quadrilaterals for first and last phi
Precision safetySquaredOuter = InfinityLength<Precision>();
if (segment.outer.size() > 0) {
safetySquaredOuter = segment.outer.ScalarDistanceSquared(0, point);
if (safetySquaredOuter < safetySquared) {
iSurf = 3;
phiIndex = 0;
safetySquared = safetySquaredOuter;
}
if (segment.outer.size() > 1) {
safetySquaredOuter = segment.outer.ScalarDistanceSquared(segment.outer.size() - 1, point);
if (safetySquaredOuter < safetySquared) {
iSurf = 3;
phiIndex = segment.outer.size() - 1;
safetySquared = safetySquaredOuter;
}
}
}
Precision safetySquaredInner = InfinityLength<Precision>();
if (TreatInner<innerRadiiT>(segment.hasInnerRadius())) {
if (segment.inner.size() > 0) {
safetySquaredInner = segment.inner.ScalarDistanceSquared(0, point);
if (safetySquaredInner < safetySquared) {
iSurf = 2;
phiIndex = 0;
safetySquared = safetySquaredInner;
}
if (segment.inner.size() > 1) {
safetySquaredInner = segment.inner.ScalarDistanceSquared(segment.inner.size() - 1, point);
if (safetySquaredInner < safetySquared) {
iSurf = 2;
phiIndex = segment.inner.size() - 1;
safetySquared = safetySquaredInner;
}
}
}
}
return safetySquared;
}
// Otherwise check the outer shell
// TODO: we need to check segment.outer.size() > 0
Precision safetySquaredOuter = InfinityLength<Precision>();
if (segment.outer.size() > 0) safetySquaredOuter = segment.outer.ScalarDistanceSquared(phiIndex, point);
// And finally the inner
Precision safetySquaredInner = InfinityLength<Precision>();
if (TreatInner<innerRadiiT>(segment.hasInnerRadius())) {
if (segment.inner.size() > 0) safetySquaredInner = segment.inner.ScalarDistanceSquared(phiIndex, point);
}
if (safetySquaredInner < safetySquared) {
iSurf = 2;
safetySquared = safetySquaredInner;
}
if (safetySquaredOuter < safetySquared) {
iSurf = 3;
safetySquared = safetySquaredOuter;
}
return safetySquared;
}
template <Polyhedron::EInnerRadii innerRadiiT, Polyhedron::EPhiCutout phiCutoutT>
template <bool pointInsideT>
VECGEOM_FORCE_INLINE
VECCORE_ATT_HOST_DEVICE
void PolyhedronImplementation<innerRadiiT, phiCutoutT>::ScalarDistanceToEndcaps(UnplacedStruct_t const &unplaced,
bool /*goingRight*/,
Vector3D<Precision> const &point,
Vector3D<Precision> const &direction,
Precision &distance)
{
ZSegment const *segment;
Precision zPlane;
// Determine whether to use first segment/first endcap or last segment/second
// endcap
// NOTE: might make this more elegant
if (pointInsideT) // inside version
{
if (direction[2] < 0) {
segment = &unplaced.fZSegments[0];
zPlane = unplaced.fZPlanes[0];
} else {
segment = &unplaced.fZSegments[unplaced.fZSegments.size() - 1];
zPlane = unplaced.fZPlanes[unplaced.fZSegments.size()];
}
} else // outside version
{
if (direction[2] < 0) {
segment = &unplaced.fZSegments[unplaced.fZSegments.size() - 1];
zPlane = unplaced.fZPlanes[unplaced.fZSegments.size()];
} else {
segment = &unplaced.fZSegments[0];
zPlane = unplaced.fZPlanes[0];
}
}
Precision distanceTest = (zPlane - point[2]) / NonZero(direction[2]);
// If the distance is not better there's no reason to check for validity
if (distanceTest < -kTolerance || distanceTest >= distance) return;
Vector3D<Precision> intersection = point + distanceTest * direction;
// Intersection point must be inside outer shell and outside inner shell
if (!segment->outer.Contains<Precision>(intersection)) return;
if (TreatInner<innerRadiiT>(segment->hasInnerRadius())) {
if (segment->inner.Contains<Precision>(intersection)) return;
}
// Intersection point must not be in phi cutout wedge
if (TreatPhi<phiCutoutT>(unplaced.fHasPhiCutout)) {
if (InPhiCutoutWedge<Precision>(*segment, unplaced.fHasLargePhiCutout, intersection)) {
return;
}
}
distance = distanceTest;
}
template <Polyhedron::EInnerRadii innerRadiiT, Polyhedron::EPhiCutout phiCutoutT>
VECGEOM_FORCE_INLINE
VECCORE_ATT_HOST_DEVICE
void PolyhedronImplementation<innerRadiiT, phiCutoutT>::ScalarSafetyToEndcapsSquared(UnplacedStruct_t const &unplaced,
Vector3D<Precision> const &point,
Precision &distanceSquared,
int &iz)
{
// Compute both distances (simple subtractions) to determine which is closer
Precision firstDistance = unplaced.fZPlanes[0] - point[2];
Precision lastDistance = unplaced.fZPlanes[unplaced.fZSegments.size()] - point[2];
// Only treat the closest endcap
bool isFirst = Abs(firstDistance) < Abs(lastDistance);
iz = 0;
ZSegment const &segment = isFirst ? unplaced.fZSegments[0] : unplaced.fZSegments[unplaced.fZSegments.size() - 1];
Precision distanceTest = isFirst ? firstDistance : lastDistance;
Precision distanceTestSquared = distanceTest * distanceTest;
// No need to investigate further if distance is larger anyway
if (distanceTestSquared >= distanceSquared) return;
// Check if projection is within the endcap bounds
Vector3D<Precision> intersection(point[0], point[1], point[2] + distanceTest);
if (!segment.outer.Contains<Precision>(intersection)) return;
if (TreatInner<innerRadiiT>(segment.hasInnerRadius())) {
if (segment.inner.Contains<Precision>(intersection)) return;
}
if (TreatPhi<phiCutoutT>(unplaced.fHasPhiCutout)) {
if (InPhiCutoutWedge<Precision>(segment, unplaced.fHasLargePhiCutout, intersection)) {
return;
}
}
iz = (isFirst) ? -1 : 1;
distanceSquared = distanceTestSquared;
}
template <Polyhedron::EInnerRadii innerRadiiT, Polyhedron::EPhiCutout phiCutoutT>
template <typename Real_v>
VECGEOM_FORCE_INLINE
VECCORE_ATT_HOST_DEVICE
vecCore::Mask_v<Real_v> PolyhedronImplementation<innerRadiiT, phiCutoutT>::InPhiCutoutWedge(
ZSegment const &segment, bool largePhiCutout, Vector3D<Real_v> const &point)
{
using Bool_v = vecCore::Mask_v<Real_v>;
Bool_v pointSeg0 = point.Dot(segment.phi.GetNormal(0)) + segment.phi.GetDistance(0) >= 0;
Bool_v pointSeg1 = point.Dot(segment.phi.GetNormal(1)) + segment.phi.GetDistance(1) >= 0;
// For a cutout larger than 180 degrees, the point is in the wedge if it is
// in front of at least one plane.
if (LargePhiCutout<phiCutoutT>(largePhiCutout)) {
return pointSeg0 || pointSeg1;
}
// Otherwise it should be in front of both planes
return pointSeg0 && pointSeg1;
}
template <Polyhedron::EInnerRadii innerRadiiT, Polyhedron::EPhiCutout phiCutoutT>
VECCORE_ATT_HOST_DEVICE
bool PolyhedronImplementation<innerRadiiT, phiCutoutT>::ScalarContainsKernel(UnplacedStruct_t const &unplaced,
Vector3D<Precision> const &point)
{
// First check if in bounding tube
{
bool inBounds;
// Correct tube algorithm obtained from trait class
HasInnerRadiiTraits<innerRadiiT>::TubeKernels::template Contains(
unplaced.fBoundingTube, Vector3D<Precision>(point[0], point[1], point[2] - unplaced.fBoundingTubeOffset),
inBounds);
if (!inBounds) return false;
}
// Find correct segment by checking Z-bounds
int zIndex = FindZSegment<Precision>(unplaced, point[2]);
if (!((zIndex >= 0) && (zIndex < unplaced.fZSegments.size()))) return false;
ZSegment const &segment = unplaced.fZSegments[zIndex];
// In case the point lies at the same Z as 2 consecutive planes, the lesser
// index is selected. The Quadrilaterals algorithm for Contains in this case
// does not work.
if (unplaced.fSameZ[zIndex]) {
// Identify phi index
int phiIndex = FindPhiSegment<Precision>(unplaced, point);
if (phiIndex < 0) return false;
// Get the vector perpendicular to the rmax edge of the outer quadrilateral
Vector3D<Precision> const &vout = (segment.outer.size()) ? segment.outer.GetSideVectors()[0].GetNormals()[phiIndex]
: segment.inner.GetSideVectors()[0].GetNormals()[phiIndex];
// Compute the projection of the point vectoron the vout vector. This
// corresponds to a "radius" or the point.
Precision rdotvout = vecCore::math::Abs<Precision>(point.Dot(vout));
// Now compare the point radius with the ranges corresponding to the lower
// and upper segments
bool in1 = (rdotvout >= unplaced.fRMin[zIndex]) && (rdotvout <= unplaced.fRMax[zIndex]);
bool in2 = (rdotvout >= unplaced.fRMin[zIndex + 1]) && (rdotvout <= unplaced.fRMax[zIndex + 1]);
return (in1 | in2);
}
// Check that the point is in the outer shell
if (!segment.outer.Contains<Precision>(point)) return false;
// Check that the point is not in the inner shell
if (TreatInner<innerRadiiT>(segment.hasInnerRadius())) {
if (segment.inner.Contains<Precision>(point)) return false;
}
// In principle, handling of phi should not be needed here since it is
// contained in the bounding tube. However, we need to check again due
// to different handling of tolerances.
if (TreatPhi<phiCutoutT>(unplaced.fHasPhiCutout)) {
if (!segment.phi.Contains<Precision>(point)) return false;
}
return true;
}
// TODO: check this code -- maybe unify with previous function
template <Polyhedron::EInnerRadii innerRadiiT, Polyhedron::EPhiCutout phiCutoutT>
VECCORE_ATT_HOST_DEVICE
Inside_t PolyhedronImplementation<innerRadiiT, phiCutoutT>::ScalarInsideKernel(UnplacedStruct_t const &unplaced,
Vector3D<Precision> const &point)
{
// First check if in bounding tube
{
bool inBounds;
// Correct tube algorithm obtained from trait class
// FIX: the bounding tube was wrong. Since the fast UnplacedContains is
// used for early return, the bounding tube has to be larger than the
// ideal bounding tube to account for the tolerance (offset was wrong)
HasInnerRadiiTraits<innerRadiiT>::TubeKernels::template Contains(
unplaced.fBoundingTube, Vector3D<Precision>(point[0], point[1], point[2] - unplaced.fBoundingTubeOffset),
inBounds);
if (!inBounds) return EInside::kOutside;
}
// Find correct segment by checking Z-bounds
// The FindZSegment was fixed for the degenerated Z case when 2 planes
// have identical Z. In this case, if the point is close within tolerance
// to such section, the returned index has to be the first of the 2, so that
// all navigation functions start by checking the degenerated segment.
int zIndex = FindZSegment<Precision>(unplaced, point[2]);
if (zIndex > (unplaced.fZSegments.size() - 1)) zIndex = unplaced.fZSegments.size() - 1;
if (zIndex < 0) zIndex = 0;
ZSegment const &segment = unplaced.fZSegments[zIndex];
// Point in between 2 planes at same Z
if (unplaced.fSameZ[zIndex]) return ScalarInsideSegBorder(unplaced, point, zIndex);
// Check that the point is in the outer shell
{
Inside_t insideOuter = segment.outer.Inside<Precision, Inside_t>(point);
if (insideOuter != EInside::kInside) return insideOuter;
}
// Check that the point is not in the inner shell
if (TreatInner<innerRadiiT>(segment.hasInnerRadius())) {
Inside_t insideInner = segment.inner.Inside<Precision, Inside_t>(point);
if (insideInner == EInside::kInside) return EInside::kOutside;
if (insideInner == EInside::kSurface) return EInside::kSurface;
}
// Check that the point is not in the phi cutout wedge
if (TreatPhi<phiCutoutT>(unplaced.fHasPhiCutout)) {
// Inside_t insidePhi = unplaced.fPhiWedge.Inside<Precision, Inside_t>(point);
Inside_t insidePhi = segment.phi.Inside<Precision, Inside_t>(point);
if (insidePhi != EInside::kInside) return insidePhi;
}
// FIX: Still need to check if not on one of the Z boundaries.
Precision dz = vecCore::math::Abs(vecCore::math::Abs(point[2] - unplaced.fBoundingTubeOffset) -
0.5 * (unplaced.fZPlanes[unplaced.fZSegments.size()] - unplaced.fZPlanes[0]));
if (dz < kTolerance) return EInside::kSurface;
return EInside::kInside;
}
template <Polyhedron::EInnerRadii innerRadiiT, Polyhedron::EPhiCutout phiCutoutT>
VECCORE_ATT_HOST_DEVICE
Inside_t PolyhedronImplementation<innerRadiiT, phiCutoutT>::ScalarInsideSegBorder(UnplacedStruct_t const &unplaced,
Vector3D<Precision> const &point,
int zIndex)
{
// Check Inside if the point is in between two non-continuous "border-like"
// segments. The zIndex corresponds to the lesser index of the 2 planes having the same Z.
// The Quadrilaterals algorithm for Inside in this case does not work.
ZSegment const &segment = unplaced.fZSegments[zIndex];
// Identify phi index
int phiIndex = FindPhiSegment<Precision>(unplaced, point);
if (phiIndex < 0) return EInside::kOutside;
// Get the vector perpendicular to the rmax edge of the outer quadrilateral
Vector3D<Precision> const &vout = (segment.outer.size()) ? segment.outer.GetSideVectors()[0].GetNormals()[phiIndex]
: segment.inner.GetSideVectors()[0].GetNormals()[phiIndex];
// Compute the projection of the point vectoron the vout vector. This
// corresponds to a "radius" or the point.
Precision rdotvout = vecCore::math::Abs<Precision>(point.Dot(vout));
// Now compare the point radius with the ranges corresponding to the lower
// and upper segments
bool in1 = (rdotvout > unplaced.fRMin[zIndex] - kTolerance) && (rdotvout < unplaced.fRMax[zIndex] + kTolerance);
bool in2 =
(rdotvout > unplaced.fRMin[zIndex + 1] - kTolerance) && (rdotvout < unplaced.fRMax[zIndex + 1] + kTolerance);
if (in1 && in2) {
if ((rdotvout < unplaced.fRMin[zIndex] + kTolerance) || (rdotvout > unplaced.fRMax[zIndex] - kTolerance) ||
(rdotvout < unplaced.fRMin[zIndex + 1] + kTolerance) || (rdotvout > unplaced.fRMax[zIndex + 1] - kTolerance))
return EInside::kSurface;
// Need to check phi surface
if (TreatPhi<phiCutoutT>(unplaced.fHasPhiCutout)) {
Inside_t insidePhi = unplaced.fPhiWedge.Inside<Precision, Inside_t>(point);
return insidePhi;
}
return EInside::kInside;
}
if (!in1 && !in2) return EInside::kOutside;
return EInside::kSurface;
}
template <Polyhedron::EInnerRadii innerRadiiT, Polyhedron::EPhiCutout phiCutoutT>
VECCORE_ATT_HOST_DEVICE
Inside_t PolyhedronImplementation<innerRadiiT, phiCutoutT>::ScalarInsideSegPhi(UnplacedStruct_t const &unplaced,
Vector3D<Precision> const &point,
int zIndex, int phiIndex)
{
// Check inside for a specified z segment and phi edge
if (phiIndex < 0) return EInside::kOutside;
// Z range
Precision dz = vecCore::math::Abs(point[2] - unplaced.fBoundingTubeOffset) -
0.5 * (unplaced.fZPlanes[unplaced.fZSegments.size()] - unplaced.fZPlanes[0]);
// if (vecCore::math::Abs(dz) < kHalfTolerance) return EInside::kSurface;
if (dz > kHalfTolerance) return EInside::kOutside;
if (unplaced.fSameZ[zIndex]) return ScalarInsideSegBorder(unplaced, point, zIndex);
ZSegment const &segment = unplaced.fZSegments[zIndex];
// Check that the point is in the outer shell
{
Inside_t insideOuter = segment.outer.Inside<Precision, Inside_t>(point, phiIndex);
if (insideOuter != EInside::kInside) return insideOuter;
}
// Check that the point is not in the inner shell
if (TreatInner<innerRadiiT>(segment.hasInnerRadius())) {
Inside_t insideInner = segment.inner.Inside<Precision, Inside_t>(point, phiIndex);
if (insideInner == EInside::kInside) return EInside::kOutside;
if (insideInner == EInside::kSurface) return EInside::kSurface;
}
// Check that the point is not in the phi cutout wedge
if (TreatPhi<phiCutoutT>(unplaced.fHasPhiCutout)) {
Inside_t insidePhi = unplaced.fPhiWedge.Inside<Precision, Inside_t>(point);
if (insidePhi != EInside::kInside) return insidePhi;
}
if (vecCore::math::Abs(dz) < kHalfTolerance) return EInside::kSurface;
return EInside::kInside;
}
template <Polyhedron::EInnerRadii innerRadiiT, Polyhedron::EPhiCutout phiCutoutT>
VECCORE_ATT_HOST_DEVICE
Precision PolyhedronImplementation<innerRadiiT, phiCutoutT>::ScalarDistanceToInKernel(
UnplacedStruct_t const &unplaced, Vector3D<Precision> const &point, Vector3D<Precision> const &direction,
const Precision stepMax)
{
// Fast exclude points beyond endcaps moving on same side as endcap normal
if ((point[2] < unplaced.fZPlanes[0] + kTolerance) && direction[2] <= 0) return InfinityLength<Precision>();
if ((point[2] > unplaced.fZPlanes[unplaced.fZSegments.size()] - kTolerance) && direction[2] >= 0)
return InfinityLength<Precision>();
// Perform explicit Inside check to detect wrong side points. This impacts
// DistanceToIn performance by about 5% for all topologies
auto inside = ScalarInsideKernel(unplaced, point);
if (inside == kInside) return -1.;
// Check if the point is within the bounding tube
bool inBounds;
Precision tubeDistance = 0.;
{
Vector3D<Precision> boundsPoint(point[0], point[1], point[2] - unplaced.fBoundingTubeOffset);
HasInnerRadiiTraits<innerRadiiT>::TubeKernels::template Contains(unplaced.fBoundingTube, boundsPoint, inBounds);
// If the point is inside the bounding tube, the result of DistanceToIn is
// unreliable and cannot be used to reject rays.
// TODO: adjust tube DistanceToIn function to correctly return a negative
// value for points inside the tube. This will allow the removal of
// the contains check here.
if (!inBounds) {
// If the point is outside the bounding tube, check if the ray misses
// the bounds
HasInnerRadiiTraits<innerRadiiT>::TubeKernels::template DistanceToIn(unplaced.fBoundingTube, boundsPoint,
direction, stepMax, tubeDistance);
if (tubeDistance == InfinityLength<Precision>()) {
return InfinityLength<Precision>();
}
}
}
int zIndex = FindZSegment<Precision>(unplaced, point[2]);
const int zMax = unplaced.fZSegments.size();
// Don't go out of bounds here, as the first/last segment should be checked
// even if the point is outside of Z-bounds
zIndex = zIndex < 0 ? 0 : (zIndex >= zMax ? zMax - 1 : zIndex);
// Traverse Z-segments left or right depending on sign of direction
bool goingRight = direction[2] >= 0;
Precision distance = InfinityLength<Precision>();
if (goingRight) {
for (int zSegCount = unplaced.fZSegments.size(); zIndex < zSegCount; ++zIndex) {
distance = DistanceToInZSegment<Precision>(unplaced, zIndex, point, direction);
// No segment further away can be at a shorter distance to the point, so
// if a valid distance is found, only endcaps remain to be investigated
if (distance >= 0 && distance < InfinityLength<Precision>()) break;
}
} else {
// Going left
for (; zIndex >= 0; --zIndex) {
distance = DistanceToInZSegment<Precision>(unplaced, zIndex, point, direction);
// No segment further away can be at a shorter distance to the point, so
// if a valid distance is found, only endcaps remain to be investigated
if (distance >= 0 && distance < InfinityLength<Precision>()) break;
}
}
// Minimize with distance to endcaps
ScalarDistanceToEndcaps<false>(unplaced, goingRight, point, direction, distance);
// last sanity check: distance should be larger than estimate from bounding tube
return (distance >= tubeDistance - 1E-6) ? distance : vecgeom::InfinityLength<Precision>();
}
template <Polyhedron::EInnerRadii innerRadiiT, Polyhedron::EPhiCutout phiCutoutT>
VECCORE_ATT_HOST_DEVICE
Precision PolyhedronImplementation<innerRadiiT, phiCutoutT>::ScalarSafetyKernel(UnplacedStruct_t const &unplaced,
Vector3D<Precision> const &point,
bool pt_inside)
{
Precision safety = InfinityLength<Precision>();
Precision dz;
int iSurf, iz;
const int zMax = unplaced.fZSegments.size();
int zIndex = FindZSegment<Precision>(unplaced, point[2]);
zIndex = zIndex < 0 ? 0 : (zIndex >= zMax ? zMax - 1 : zIndex);
int phiIndex = FindPhiSegment<Precision>(unplaced, point);
// Check if point is on the 'pt_inside' side
// Perform explicit Inside check to detect wrong side points. This impacts
// Safety performance by 5-10% for all topologies
Inside_t inside = ScalarInsideSegPhi(unplaced, point, zIndex, phiIndex);
if (inside == EInside::kSurface) return 0.;
bool contains = (inside == EInside::kInside);
if (contains ^ pt_inside) return -1.;
// Right
for (int z = zIndex; z < zMax;) {
safety = Min(safety, ScalarSafetyToZSegmentSquared(unplaced, z, phiIndex, point, pt_inside, iSurf));
++z;
dz = unplaced.fZPlanes[z] - point[2];
// Fixed bug: dz was compared directly to safety to stop the search, while safety is a squared
if (dz * dz > safety) break;
}
// Left
for (int z = zIndex - 1; z >= 0; --z) {
safety = Min(safety, ScalarSafetyToZSegmentSquared(unplaced, z, phiIndex, point, pt_inside, iSurf));
dz = point[2] - unplaced.fZPlanes[z];
if (dz * dz > safety) break;
}
// Endcap
ScalarSafetyToEndcapsSquared(unplaced, point, safety, iz);
safety = vecCore::math::Sqrt(safety);
return safety;
}
template <Polyhedron::EInnerRadii innerRadiiT, Polyhedron::EPhiCutout phiCutoutT>
VECCORE_ATT_HOST_DEVICE
bool PolyhedronImplementation<innerRadiiT, phiCutoutT>::ScalarNormalKernel(UnplacedStruct_t const &unplaced,
Vector3D<Precision> const &point,
Vector3D<Precision> &normal)
{
Precision safety = InfinityLength<Precision>();
const int zMax = unplaced.fZSegments.size();
int zIndex = FindZSegment<Precision>(unplaced, point[2]);
if (zIndex < 0) {
normal = Vector3D<Precision>(0, 0, -1);
return true;
}
if (zIndex >= zMax) {
normal = Vector3D<Precision>(0, 0, 1);
return true;
}
int iSeg = zIndex;
Precision dz;
int iSurf = -1;
int iz = 0;
int phiIndex = FindPhiSegment<Precision>(unplaced, point);
// Right
for (int z = zIndex; z < zMax;) {
int iSurfCrt = -1;
Precision safetySeg = ScalarSafetyToZSegmentSquared(unplaced, z, phiIndex, point, true, iSurfCrt);
if (safetySeg < safety) {
safety = safetySeg;
iSeg = z;
iSurf = iSurfCrt;
}
++z;
dz = unplaced.fZPlanes[z] - point[2];
if (dz * dz > safety) break;
}
// Left
for (int z = zIndex - 1; z >= 0; --z) {
int iSurfCrt = -1;
Precision safetySeg = ScalarSafetyToZSegmentSquared(unplaced, z, phiIndex, point, true, iSurfCrt);
if (safetySeg < safety) {
safety = safetySeg;
iSeg = z;
iSurf = iSurfCrt;
}
dz = point[2] - unplaced.fZPlanes[z];
if (dz * dz > safety) break;
}
// Endcap
ScalarSafetyToEndcapsSquared(unplaced, point, safety, iz);
if (iz != 0) {
normal = Vector3D<Precision>(0, 0, iz);
return true;
}
// Retrieve the segment the point is closest to.
ZSegment const &segment = unplaced.fZSegments[iSeg];
if (iSurf >= 0 && iSurf < 2) {
normal = segment.phi.GetNormal(iSurf);
} else {
if (iSurf == 2)
normal = -1. * segment.inner.GetNormal(phiIndex);
else
normal = segment.outer.GetNormal(phiIndex);
}
return true;
}
template <Polyhedron::EInnerRadii innerRadiiT, Polyhedron::EPhiCutout phiCutoutT>
VECCORE_ATT_HOST_DEVICE
Precision PolyhedronImplementation<innerRadiiT, phiCutoutT>::ScalarDistanceToOutKernel(
UnplacedStruct_t const &unplaced, Vector3D<Precision> const &point, Vector3D<Precision> const &direction,
const Precision /*stepMax*/)
{
// Fast exclusion if out of Z range
const int zMax = unplaced.fZSegments.size();
if ((point[2] < unplaced.fZPlanes[0] - kTolerance) || (point[2] > unplaced.fZPlanes[zMax] + kTolerance)) return -1.;
// Perform explicit Inside check to detect wrong side points. This impacts
// DistanceToOut performance by about 20% for all topologies
auto inside = ScalarInsideKernel(unplaced, point);
if (inside == kOutside) return -1.;
int zIndex = FindZSegment<Precision>(unplaced, point[2]);
// Don't go out of bounds
zIndex = zIndex < 0 ? 0 : (zIndex >= zMax ? zMax - 1 : zIndex);
// Traverse Z-segments left or right depending on sign of direction
bool goingRight = direction[2] >= 0;
Precision distance = InfinityLength<Precision>();
if (goingRight) {
for (; zIndex < zMax; ++zIndex) {
distance = DistanceToOutZSegment<Precision>(unplaced, zIndex, unplaced.fZPlanes[zIndex],
unplaced.fZPlanes[zIndex + 1], point, direction);
if (distance >= 0 && distance < InfinityLength<Precision>()) break;
if (unplaced.fZPlanes[zIndex] - point[2] > distance) break;
}
} else {
// Going left
for (; zIndex >= 0; --zIndex) {
distance = DistanceToOutZSegment<Precision>(unplaced, zIndex, unplaced.fZPlanes[zIndex],
unplaced.fZPlanes[zIndex + 1], point, direction);
if (distance >= 0 && distance < InfinityLength<Precision>()) break;
if (point[2] - unplaced.fZPlanes[zIndex] > distance) break;
}
}
// Endcaps
ScalarDistanceToEndcaps<true>(unplaced, goingRight, point, direction, distance);
// disabling stepMax until convention revised and clear
// there is a problem when distance = infinity due to some error condition but stepMax finite
// return distance < stepMax ? distance : stepMax;
// If not hitting anything, we must be on an edge since point is not outside
if (distance >= InfinityLength<Precision>()) distance = 0.;
return distance;
}
template <Polyhedron::EInnerRadii innerRadiiT, Polyhedron::EPhiCutout phiCutoutT>
template <typename Real_v, typename Bool_v>
VECCORE_ATT_HOST_DEVICE
void PolyhedronImplementation<innerRadiiT, phiCutoutT>::UnplacedContains(UnplacedStruct_t const &unplaced,
Vector3D<Real_v> const &point, Bool_v &inside)
{
inside = ScalarContainsKernel(unplaced, point);
}
template <Polyhedron::EInnerRadii innerRadiiT, Polyhedron::EPhiCutout phiCutoutT>
template <typename Real_v, typename Bool_v>
VECGEOM_FORCE_INLINE
VECCORE_ATT_HOST_DEVICE
void PolyhedronImplementation<innerRadiiT, phiCutoutT>::Contains(UnplacedStruct_t const &unplaced,
Vector3D<Real_v> const &point, Bool_v &inside)
{
// we should assert if Backend != scalar
inside = ScalarContainsKernel(unplaced, point);
}
template <Polyhedron::EInnerRadii innerRadiiT, Polyhedron::EPhiCutout phiCutoutT>
template <typename Real_v, typename Inside_t>
VECCORE_ATT_HOST_DEVICE
void PolyhedronImplementation<innerRadiiT, phiCutoutT>::Inside(UnplacedStruct_t const &unplaced,
Vector3D<Real_v> const &point, Inside_t &inside)
{
// we should assert if Backend != scalar
inside = ScalarInsideKernel(unplaced, point);
}
template <Polyhedron::EInnerRadii innerRadiiT, Polyhedron::EPhiCutout phiCutoutT>
template <typename Real_v>
VECCORE_ATT_HOST_DEVICE
void PolyhedronImplementation<innerRadiiT, phiCutoutT>::DistanceToIn(UnplacedStruct_t const &unplaced,
Vector3D<Real_v> const &point,
Vector3D<Real_v> const &direction,
Real_v const &stepMax, Real_v &distance)
{
distance = ScalarDistanceToInKernel(unplaced, point, direction, stepMax);
}
template <Polyhedron::EInnerRadii innerRadiiT, Polyhedron::EPhiCutout phiCutoutT>
template <typename Real_v>
VECCORE_ATT_HOST_DEVICE
void PolyhedronImplementation<innerRadiiT, phiCutoutT>::DistanceToOut(UnplacedStruct_t const &unplaced,
Vector3D<Real_v> const &point,
Vector3D<Real_v> const &direction,
Real_v const &stepMax, Real_v &distance)
{
distance = ScalarDistanceToOutKernel(unplaced, point, direction, stepMax);
}
template <Polyhedron::EInnerRadii innerRadiiT, Polyhedron::EPhiCutout phiCutoutT>
template <typename Real_v>
VECCORE_ATT_HOST_DEVICE
void PolyhedronImplementation<innerRadiiT, phiCutoutT>::SafetyToIn(UnplacedStruct_t const &unplaced,
Vector3D<Real_v> const &point, Real_v &safety)
{
safety = ScalarSafetyKernel(unplaced, point, false);
}
template <Polyhedron::EInnerRadii innerRadiiT, Polyhedron::EPhiCutout phiCutoutT>
template <typename Real_v>
VECGEOM_FORCE_INLINE
VECCORE_ATT_HOST_DEVICE
void PolyhedronImplementation<innerRadiiT, phiCutoutT>::SafetyToOut(UnplacedStruct_t const &unplaced,
Vector3D<Real_v> const &point, Real_v &safety)
{
safety = ScalarSafetyKernel(unplaced, point, true);
}
} // namespace VECGEOM_IMPL_NAMESPACE
} // namespace vecgeom
#endif // VECGEOM_VOLUMES_KERNEL_POLYHEDRONIMPLEMENTATION_H_
|