1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 300 301 302 303 304 305 306 307 308 309 310 311 312 313 314 315 316 317 318 319
|
//===-- kernel/TessellatedImplementation.h ----------------------------------*- C++ -*-===//
//===--------------------------------------------------------------------------===//
/// @file TessellatedImplementation.h
/// @author mihaela.gheata@cern.ch
#ifndef VECGEOM_VOLUMES_KERNEL_TESSELLATEDIMPLEMENTATION_H_
#define VECGEOM_VOLUMES_KERNEL_TESSELLATEDIMPLEMENTATION_H_
#include "VecGeom/base/Config.h"
#include "VecGeom/base/Vector3D.h"
#include "VecGeom/volumes/TessellatedStruct.h"
#include "VecGeom/volumes/kernel/GenericKernels.h"
#include <VecCore/VecCore>
#include <cstdio>
namespace vecgeom {
VECGEOM_DEVICE_FORWARD_DECLARE(struct TessellatedImplementation;);
VECGEOM_DEVICE_DECLARE_CONV(struct, TessellatedImplementation);
inline namespace VECGEOM_IMPL_NAMESPACE {
class PlacedTessellated;
template <size_t NVERT, typename T>
class TessellatedStruct;
class UnplacedTessellated;
struct TessellatedImplementation {
using PlacedShape_t = PlacedTessellated;
using UnplacedStruct_t = TessellatedStruct<3, Precision>;
using UnplacedVolume_t = UnplacedTessellated;
VECCORE_ATT_HOST_DEVICE
static void PrintType()
{
// printf("SpecializedBox<%i, %i>", transCodeT, rotCodeT);
}
template <typename Stream>
static void PrintType(Stream &st, int transCodeT = translation::kGeneric, int rotCodeT = rotation::kGeneric)
{
st << "SpecializedTessellated<" << transCodeT << "," << rotCodeT << ">";
}
template <typename Stream>
static void PrintImplementationType(Stream &st)
{
(void)st;
}
template <typename Stream>
static void PrintUnplacedType(Stream &st)
{
(void)st;
}
template <typename Real_v, typename Bool_v>
VECGEOM_FORCE_INLINE
VECCORE_ATT_HOST_DEVICE
static void Contains(UnplacedStruct_t const &tessellated, Vector3D<Real_v> const &point, Bool_v &inside)
{
inside = Bool_v(false);
int isurfOut, isurfIn;
Real_v distOut, distIn;
DistanceToSolid<Real_v, false>(tessellated, point, tessellated.fTestDir, InfinityLength<Real_v>(), distOut,
isurfOut, distIn, isurfIn);
if (isurfOut >= 0) inside = Bool_v(true);
/*
DistanceToSolid<Real_v, true>(tessellated, point, tessellated.fTestDir, stepMax, distIn, isurf);
// If distance to out is finite and less than distance to in, the point is inside
if (distOut < distIn) inside = Bool_v(true);
*/
}
template <typename Real_v, typename Inside_v>
VECGEOM_FORCE_INLINE
VECCORE_ATT_HOST_DEVICE
static void Inside(UnplacedStruct_t const &tessellated, Vector3D<Real_v> const &point, Inside_v &inside)
{
inside = Inside_v(kOutside);
int isurfOut, isurfIn;
Real_v distOut, distIn;
DistanceToSolid<Real_v, false>(tessellated, point, tessellated.fTestDir, InfinityLength<Real_v>(), distOut,
isurfOut, distIn, isurfIn);
// If no surface is hit then the point is outside
if (isurfOut < 0) return;
if (distOut < 0 || distOut * tessellated.fTestDir.Dot(tessellated.fFacets[isurfOut]->fNormal) < kTolerance) {
inside = Inside_v(kSurface);
return;
}
// DistanceToSolid<Real_v, true>(tessellated, point, tessellated.fTestDir, stepMax, distIn, isurf);
// If distance to out is finite and less than distance to in, the point is inside
if (isurfIn < 0 || distOut < distIn) {
inside = Inside_v(kInside);
return;
}
if (distIn < 0 || distIn * tessellated.fTestDir.Dot(tessellated.fFacets[isurfIn]->fNormal) > -kTolerance)
inside = Inside_v(kSurface);
}
template <typename Real_v>
VECGEOM_FORCE_INLINE
VECCORE_ATT_HOST_DEVICE
static void DistanceToIn(UnplacedStruct_t const &tessellated, Vector3D<Real_v> const &point,
Vector3D<Real_v> const &direction, Real_v const &stepMax, Real_v &distance)
{
int isurf, isurfOut;
Real_v distOut;
DistanceToSolid<Real_v, true>(tessellated, point, direction, stepMax, distance, isurf, distOut, isurfOut);
}
template <typename Real_v>
VECGEOM_FORCE_INLINE
VECCORE_ATT_HOST_DEVICE
static void DistanceToOut(UnplacedStruct_t const &tessellated, Vector3D<Real_v> const &point,
Vector3D<Real_v> const &direction, Real_v const &stepMax, Real_v &distance)
{
int isurf, isurfIn;
Real_v distIn;
DistanceToSolid<Real_v, false>(tessellated, point, direction, stepMax, distance, isurf, distIn, isurfIn);
}
template <typename Real_v>
VECGEOM_FORCE_INLINE
VECCORE_ATT_HOST_DEVICE
static void SafetyToIn(UnplacedStruct_t const &tessellated, Vector3D<Real_v> const &point, Real_v &safety)
{
using Bool_v = vecCore::Mask_v<Real_v>;
Bool_v inside;
TessellatedImplementation::Contains<Real_v, Bool_v>(tessellated, point, inside);
if (inside) {
safety = -1.;
return;
}
int isurf;
Real_v safetysq = SafetySq<Real_v, true>(tessellated, point, isurf);
safety = vecCore::math::Sqrt(safetysq);
}
template <typename Real_v>
VECGEOM_FORCE_INLINE
VECCORE_ATT_HOST_DEVICE
static void SafetyToOut(UnplacedStruct_t const &tessellated, Vector3D<Real_v> const &point, Real_v &safety)
{
using Bool_v = vecCore::Mask_v<Real_v>;
Bool_v inside;
TessellatedImplementation::Contains<Real_v, Bool_v>(tessellated, point, inside);
if (!inside) {
safety = -1.;
return;
}
int isurf;
Real_v safetysq = SafetySq<Real_v, false>(tessellated, point, isurf);
safety = vecCore::math::Sqrt(safetysq);
}
template <typename Real_v>
VECGEOM_FORCE_INLINE
VECCORE_ATT_HOST_DEVICE
static Vector3D<Real_v> NormalKernel(UnplacedStruct_t const &tessellated, Vector3D<Real_v> const &point,
typename vecCore::Mask_v<Real_v> &valid)
{
// Computes the normal on a surface and returns it as a unit vector
valid = true;
int isurf;
// We may need to check the value of safety to declare the validity of the normal
SafetySq<Real_v, false>(tessellated, point, isurf);
return tessellated.fFacets[isurf]->fNormal;
}
template <typename Real_v, bool ToIn>
VECCORE_ATT_HOST_DEVICE
static void DistanceToSolid(UnplacedStruct_t const &tessellated, Vector3D<Real_v> const &point,
Vector3D<Real_v> const &direction, Real_v const &stepMax, Real_v &distance, int &isurf,
Real_v &distother, int &isurfother)
{
// Common method providing DistanceToIn/Out functionality
// Real_v here is scalar, we need to pass vector point/direction
#ifndef VECGEOM_ENABLE_CUDA
using Float_v = vecgeom::VectorBackend::Real_v;
#else
using Float_v = vecgeom::ScalarBackend::Real_v;
#endif
isurf = -1;
isurfother = -1;
if (ToIn) {
// Check if the bounding box is hit
const Vector3D<Real_v> invdir(Real_v(1.0) / NonZero(direction.x()), Real_v(1.0) / NonZero(direction.y()),
Real_v(1.0) / NonZero(direction.z()));
Vector3D<int> sign;
sign[0] = invdir.x() < 0;
sign[1] = invdir.y() < 0;
sign[2] = invdir.z() < 0;
distance = BoxImplementation::IntersectCachedKernel2<Real_v, Real_v>(
&tessellated.fMinExtent, point, invdir, sign.x(), sign.y(), sign.z(), -kTolerance, InfinityLength<Real_v>());
if (distance >= stepMax) return;
}
// Define the user hook calling DistanceToIn for the cluster with the same
// index as the bounding box
Vector3D<Float_v> pointv(point);
Vector3D<Float_v> dirv(direction);
distance = InfinityLength<Real_v>();
distother = InfinityLength<Real_v>();
Real_v distanceToIn = InfinityLength<Real_v>();
Real_v distanceToOut = InfinityLength<Real_v>();
int isurfToIn = -1;
int isurfToOut = -1;
auto userhook = [&](HybridManager2::BoxIdDistancePair_t hitbox) {
// Stop searching if the distance to the current box is bigger than the
// requested limit or than the current distance
if (hitbox.second > vecCore::math::Min(stepMax, distance)) return true;
// Compute distance to the cluster (in both ToIn or ToOut assumptions)
Real_v clusterToIn, clusterToOut;
int icrtToIn, icrtToOut;
tessellated.fClusters[hitbox.first]->DistanceToCluster(pointv, dirv, clusterToIn, clusterToOut, icrtToIn,
icrtToOut);
// Update distanceToIn/Out
if (icrtToIn >= 0 && clusterToIn < distanceToIn) {
distanceToIn = clusterToIn;
isurfToIn = icrtToIn;
if (ToIn) {
isurf = isurfToIn;
distance = distanceToIn;
} else {
isurfother = isurfToIn;
distother = distanceToIn;
}
}
if (icrtToOut >= 0 && clusterToOut < distanceToOut) {
distanceToOut = clusterToOut;
isurfToOut = icrtToOut;
if (!ToIn) {
isurf = isurfToOut;
distance = distanceToOut;
} else {
isurfother = isurfToOut;
distother = distanceToOut;
}
}
return false;
};
#ifdef USEEMBREE
EmbreeNavigator<> *boxNav = (EmbreeNavigator<> *)EmbreeNavigator<>::Instance();
// intersect ray with the BVH structure and use hook
boxNav->BVHSortedIntersectionsLooper(*tessellated.fNavHelper2, point, direction, 1E20, userhook);
#else
HybridNavigator<> *boxNav = (HybridNavigator<> *)HybridNavigator<>::Instance();
boxNav->BVHSortedIntersectionsLooper(*tessellated.fNavHelper2, point, direction, stepMax, userhook);
#endif
// Treat special cases
if (ToIn) {
if (isurfToIn < 0) {
if (isurfToOut >= 0 && distanceToOut * direction.Dot(tessellated.fFacets[isurfToOut]->fNormal) > kTolerance)
distance = -1.; // point inside or on boundary
// else not hitting, distance already inf
} else {
if (isurfToOut >= 0 && distanceToOut > kTolerance && distanceToOut < distanceToIn)
distance = -1.; // point inside exiting first then re-entering
// else valid entry point, distance already set
}
} else {
if (isurfToOut < 0)
distance = -1.; // point outside
else {
if (isurfToIn >= 0 && distanceToIn < distanceToOut &&
distanceToIn * direction.Dot(tessellated.fFacets[isurfToIn]->fNormal) < -kTolerance) {
distance = -1.; // point outside (first entering then exiting)
isurf = -1;
}
}
}
}
template <typename Real_v, bool ToIn>
VECCORE_ATT_HOST_DEVICE
static Real_v SafetySq(UnplacedStruct_t const &tessellated, Vector3D<Real_v> const &point, int &isurf)
{
#ifndef VECGEOM_ENABLE_CUDA
using Float_v = vecgeom::VectorBackend::Real_v;
#else
using Float_v = vecgeom::ScalarBackend::Real_v;
#endif
Real_v safetysq = InfinityLength<Real_v>();
isurf = -1;
Vector3D<Float_v> pointv(point);
auto userhook = [&](HybridManager2::BoxIdDistancePair_t hitbox) {
// Stop searching if the safety to the current cluster is bigger than the
// current safety
if (hitbox.second > safetysq) return true;
// Compute distance to the cluster
int isurfcrt;
Real_v safetycrt = tessellated.fClusters[hitbox.first]->template SafetySq<ToIn>(pointv, isurfcrt);
if (safetycrt < safetysq) {
safetysq = safetycrt;
isurf = isurfcrt;
}
return false;
};
HybridSafetyEstimator *safEstimator = (HybridSafetyEstimator *)HybridSafetyEstimator::Instance();
// Use the BVH structure and connect hook
safEstimator->BVHSortedSafetyLooper(*tessellated.fNavHelper, point, userhook, safetysq);
return safetysq;
}
}; // end TessellatedImplementation
} // namespace VECGEOM_IMPL_NAMESPACE
} // namespace vecgeom
#endif // VECGEOM_VOLUMES_KERNEL_TESSELLATEDIMPLEMENTATION_H_
|