1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 300 301 302 303 304 305 306 307 308 309 310 311 312 313 314 315 316 317 318 319 320 321 322 323 324 325 326 327 328 329 330 331 332 333 334 335 336 337 338 339 340 341 342 343 344 345 346 347 348 349 350 351 352 353 354 355 356 357 358 359 360 361 362 363 364 365 366 367 368 369 370 371 372 373 374 375 376 377 378 379 380 381 382 383 384 385 386 387 388 389 390 391 392 393 394 395 396 397 398 399 400 401 402 403 404 405 406 407 408 409 410 411 412 413 414 415 416 417 418 419 420 421 422 423 424 425 426 427 428 429 430 431 432 433 434 435 436 437 438 439 440 441 442 443 444 445 446 447 448 449 450 451 452 453 454 455 456 457 458 459 460 461 462 463 464 465 466 467 468 469 470 471 472 473 474 475 476 477 478 479 480 481 482 483 484 485 486 487 488 489 490 491 492 493 494 495 496 497 498 499 500 501 502 503 504 505 506 507 508 509 510 511 512 513 514 515 516 517 518 519 520 521 522 523 524 525 526 527 528 529 530 531 532 533 534 535 536 537 538 539 540 541 542 543 544 545 546 547 548 549 550 551 552 553 554 555 556 557 558 559 560 561 562 563 564 565 566 567 568 569 570 571 572 573 574 575 576 577 578 579 580 581 582 583 584 585 586 587 588 589 590 591 592 593 594 595 596 597 598 599 600 601 602 603 604 605 606 607 608 609 610 611 612 613 614 615 616 617 618 619 620 621 622 623 624 625 626 627 628 629 630 631 632 633 634 635 636 637 638 639 640 641 642 643 644 645 646 647 648 649 650 651 652 653 654 655 656 657 658 659 660 661 662 663 664 665 666 667 668 669 670 671 672 673 674 675 676 677 678 679 680 681 682 683 684 685 686 687 688 689 690 691 692 693 694 695 696 697 698 699 700 701 702 703 704 705 706 707 708
|
/// @file TorusImplementation2.h
#ifndef VECGEOM_VOLUMES_KERNEL_TORUSIMPLEMENTATION2_H_
#define VECGEOM_VOLUMES_KERNEL_TORUSIMPLEMENTATION2_H_
#include "VecGeom/base/Global.h"
#include "VecGeom/base/Transformation3D.h"
#include "VecGeom/volumes/kernel/GenericKernels.h"
#include "VecGeom/volumes/kernel/TubeImplementation.h"
#include "VecGeom/volumes/TorusStruct2.h"
#include <cstdio>
#include <VecCore/VecCore>
namespace vecgeom {
VECGEOM_DEVICE_FORWARD_DECLARE(struct TorusImplementation2;);
VECGEOM_DEVICE_DECLARE_CONV(struct, TorusImplementation2);
inline namespace VECGEOM_IMPL_NAMESPACE {
//_____________________________________________________________________________
template <typename T>
VECCORE_ATT_HOST_DEVICE
unsigned int SolveCubic(T a, T b, T c, T *x)
{
// Find real solutions of the cubic equation : x^3 + a*x^2 + b*x + c = 0
// Input: a,b,c
// Output: x[3] real solutions
// Returns number of real solutions (1 or 3)
const T ott = 1. / 3.;
const T sq3 = Sqrt(3.);
const T inv6sq3 = 1. / (6. * sq3);
unsigned int ireal = 1;
T p = b - a * a * ott;
T q = c - a * b * ott + 2. * a * a * a * ott * ott * ott;
T delta = 4 * p * p * p + 27. * q * q;
T t, u;
if (delta >= 0) {
delta = Sqrt(delta);
t = (-3 * q * sq3 + delta) * inv6sq3;
u = (3 * q * sq3 + delta) * inv6sq3;
x[0] = CopySign(T(1.), t) * Cbrt(Abs(t)) - CopySign(T(1.), u) * Cbrt(Abs(u)) - a * ott;
} else {
delta = Sqrt(-delta);
t = -0.5 * q;
u = delta * inv6sq3;
x[0] = 2. * Pow(t * t + u * u, T(0.5) * ott) * cos(ott * ATan2(u, t));
x[0] -= a * ott;
}
t = x[0] * x[0] + a * x[0] + b;
u = a + x[0];
delta = u * u - T(4.) * t;
if (delta >= 0) {
ireal = 3;
delta = Sqrt(delta);
x[1] = T(0.5) * (-u - delta);
x[2] = T(0.5) * (-u + delta);
}
return ireal;
}
template <typename T, unsigned int i, unsigned int j>
VECGEOM_FORCE_INLINE
VECCORE_ATT_HOST_DEVICE
void CmpAndSwap(T *array)
{
if (vecCore::MaskFull(array[i] > array[j])) {
T c = array[j];
array[j] = array[i];
array[i] = c;
}
}
// a special function to sort a 4 element array
// sorting is done inplace and in increasing order
// implementation comes from a sorting network
template <typename T>
VECGEOM_FORCE_INLINE
VECCORE_ATT_HOST_DEVICE
void Sort4(T *array)
{
CmpAndSwap<T, 0, 2>(array);
CmpAndSwap<T, 1, 3>(array);
CmpAndSwap<T, 0, 1>(array);
CmpAndSwap<T, 2, 3>(array);
CmpAndSwap<T, 1, 2>(array);
}
// solve quartic taken from ROOT/TGeo and adapted
//_____________________________________________________________________________
template <typename T>
VECCORE_ATT_HOST_DEVICE
int SolveQuartic(T a, T b, T c, T d, T *x)
{
// Find real solutions of the quartic equation : x^4 + a*x^3 + b*x^2 + c*x + d = 0
// Input: a,b,c,d
// Output: x[4] - real solutions
// Returns number of real solutions (0 to 3)
T e = b - 3. * a * a / 8.;
T f = c + a * a * a / 8. - 0.5 * a * b;
T g = d - 3. * a * a * a * a / 256. + a * a * b / 16. - a * c / 4.;
T xx[4] = {vecgeom::kInfLength, vecgeom::kInfLength, vecgeom::kInfLength, vecgeom::kInfLength};
T delta;
T h = 0.;
unsigned int ireal = 0;
// special case when f is zero
if (Abs(f) < 1E-6) {
delta = e * e - 4. * g;
if (delta < 0.) return 0;
delta = Sqrt(delta);
h = 0.5 * (-e - delta);
if (h >= 0) {
h = Sqrt(h);
x[ireal++] = -h - 0.25 * a;
x[ireal++] = h - 0.25 * a;
}
h = 0.5 * (-e + delta);
if (h >= 0) {
h = Sqrt(h);
x[ireal++] = -h - 0.25 * a;
x[ireal++] = h - 0.25 * a;
}
Sort4(x);
return ireal;
}
if (Abs(g) < 1E-6) {
x[ireal++] = -0.25 * a;
// this actually wants to solve a second order equation
// we should specialize if it happens often
unsigned int ncubicroots = SolveCubic<T>(0, e, f, xx);
// this loop is not nice
for (unsigned int i = 0; i < ncubicroots; i++)
x[ireal++] = xx[i] - 0.25 * a;
Sort4(x); // could be Sort3
return ireal;
}
ireal = SolveCubic<T>(2. * e, e * e - 4. * g, -f * f, xx);
if (ireal == 1) {
if (xx[0] <= 0) return 0;
h = Sqrt(xx[0]);
} else {
// 3 real solutions of the cubic
for (unsigned int i = 0; i < 3; i++) {
h = xx[i];
if (h >= 0) break;
}
if (h <= 0) return 0;
h = Sqrt(h);
}
T j = 0.5 * (e + h * h - f / h);
ireal = 0;
delta = h * h - 4. * j;
if (delta >= 0) {
delta = Sqrt(delta);
x[ireal++] = 0.5 * (-h - delta) - 0.25 * a;
x[ireal++] = 0.5 * (-h + delta) - 0.25 * a;
}
delta = h * h - 4. * g / j;
if (delta >= 0) {
delta = Sqrt(delta);
x[ireal++] = 0.5 * (h - delta) - 0.25 * a;
x[ireal++] = 0.5 * (h + delta) - 0.25 * a;
}
Sort4(x);
return ireal;
}
class PlacedTorus2;
template <typename T>
struct TorusStruct2;
class UnplacedTorus2;
class SIMDUnplacedTorus2;
struct TorusImplementation2 {
using PlacedShape_t = PlacedTorus2;
using UnplacedStruct_t = TorusStruct2<Precision>;
using UnplacedVolume_t = UnplacedTorus2;
template <class Real_v>
VECCORE_ATT_HOST_DEVICE
static Real_v DistSqrToTorusR(UnplacedStruct_t const &torus, Vector3D<Real_v> const &point,
Vector3D<Real_v> const &dir, Real_v dist)
{
Vector3D<Real_v> p = point + dir * dist;
Real_v rxy = p.Perp();
return (rxy - torus.rtor()) * (rxy - torus.rtor()) + p.z() * p.z();
}
template <typename Real_v>
VECGEOM_FORCE_INLINE
VECCORE_ATT_HOST_DEVICE
static void DistanceToOut(UnplacedStruct_t const &torus, Vector3D<Real_v> const &point, Vector3D<Real_v> const &dir,
Real_v const & /*stepMax*/, Real_v &distance)
{
using Inside_v = vecCore::Index_v<Real_v>;
using Bool_v = vecCore::Mask_v<Real_v>;
bool hasphi = (torus.dphi() < kTwoPi);
bool hasrmin = (torus.rmin() > 0);
//=== First, for points outside --> return infinity
Bool_v done = Bool_v(false);
distance = kInfLength;
// very simple calculations -- only if can save some time
Real_v distz = Abs(point.z()) - torus.rmax();
done |= distz > kHalfTolerance;
// outside of bounding tube?
Real_v rsq = point.x() * point.x() + point.y() * point.y();
// Real_v rdotv = point.x()*dir.x() + point.y()*dir.y();
Precision outerExclRadius = torus.rtor() + torus.rmax() + kHalfTolerance;
done |= rsq > outerExclRadius * outerExclRadius;
Precision innerExclRadius = torus.rtor() - torus.rmax() - kHalfTolerance;
done |= rsq < innerExclRadius * innerExclRadius;
vecCore__MaskedAssignFunc(distance, done, Real_v(-1.));
if (vecCore::EarlyReturnAllowed() && vecCore::MaskFull(done))
return;
//=== Use InsideKernel() for a quick check, and if outside --> return -1
// Bool_t inside=false, outside=false;
// GenericKernelForContainsAndInside<Backend,true,true>(torus, point, inside, outside);
// MaskedAssign( inside, -1.0, &distance );
// done |= inside;
Inside_v locus;
TorusImplementation2::InsideKernel<Real_v, Inside_v>(torus, point, locus);
vecCore__MaskedAssignFunc(distance, locus == EInside::kOutside, Real_v(-1.));
done |= locus == EInside::kOutside;
if (vecCore::EarlyReturnAllowed() && vecCore::MaskFull(done))
return;
Real_v dout = ToBoundary<Real_v, false>(torus, point, dir, torus.rmax(), true);
// ToBoundary<Backend, false, true>(torus, point, dir, torus.rmax());
Real_v din(kInfLength);
if (hasrmin) {
din = ToBoundary<Real_v, true>(torus, point, dir, torus.rmin(), true);
// ToBoundary<Backend, true, true>(torus, point, dir, torus.rmin());
}
distance = Min(dout, din);
// std::cout << "dout, din: " << dout << ", " << din << '\n';
// std::cout << "distance = Min(dout, din): " << distance << '\n';
if (hasphi) {
Real_v distPhi1;
Real_v distPhi2;
// torus.GetWedge().DistanceToOut<Backend>(point, dir, distPhi1, distPhi2);
torus.GetWedge().DistanceToOut<Real_v>(point, dir, distPhi1, distPhi2);
Bool_v smallerphi = distPhi1 < distance;
if (!vecCore::MaskEmpty(smallerphi)) {
Vector3D<Real_v> intersectionPoint = point + dir * distPhi1;
Bool_v insideDisk;
// UnplacedContainsDisk<Backend>(torus, intersectionPoint, insideDisk);
UnplacedContainsDisk<Real_v, Bool_v>(torus, intersectionPoint, insideDisk);
if (!vecCore::MaskEmpty(insideDisk)) // Inside Disk
{
Real_v diri = intersectionPoint.x() * torus.GetWedge().GetAlong1().x() +
intersectionPoint.y() * torus.GetWedge().GetAlong1().y();
Bool_v rightside = (diri >= 0);
vecCore__MaskedAssignFunc(distance, rightside && smallerphi && insideDisk, distPhi1);
}
}
smallerphi = distPhi2 < distance;
if (!vecCore::MaskEmpty(smallerphi)) {
Vector3D<Real_v> intersectionPoint = point + dir * distPhi2;
Bool_v insideDisk;
// UnplacedContainsDisk<Backend>(torus, intersectionPoint, insideDisk);
UnplacedContainsDisk<Real_v, Bool_v>(torus, intersectionPoint, insideDisk);
if (!vecCore::MaskEmpty(insideDisk)) // Inside Disk
{
Real_v diri2 = intersectionPoint.x() * torus.GetWedge().GetAlong2().x() +
intersectionPoint.y() * torus.GetWedge().GetAlong2().y();
Bool_v rightside = (diri2 >= Real_v(0));
vecCore__MaskedAssignFunc(distance, rightside && (distPhi2 < distance) && smallerphi && insideDisk, distPhi2);
}
}
}
vecCore__MaskedAssignFunc(distance, done || distance >= kInfLength, Real_v(-1.));
}
template <typename Real_v, typename Bool_v, bool notForDisk>
VECGEOM_FORCE_INLINE
VECCORE_ATT_HOST_DEVICE
static void ContainsKernel(UnplacedStruct_t const &torus, Vector3D<Real_v> const &point, Bool_v &inside)
{
Bool_v unused;
Bool_v outside;
TorusImplementation2::GenericKernelForContainsAndInside<Real_v, false, notForDisk>(torus, point, unused, outside);
inside = !outside;
}
template <typename Real_v, typename Bool_v>
VECGEOM_FORCE_INLINE
VECCORE_ATT_HOST_DEVICE
static void UnplacedContainsDisk(UnplacedStruct_t const &torus, Vector3D<Real_v> const &point, Bool_v &inside)
{
ContainsKernel<Real_v, Bool_v, false>(torus, point, inside);
}
template <typename Real_v, typename Inside_t>
VECGEOM_FORCE_INLINE
VECCORE_ATT_HOST_DEVICE
static void InsideKernel(UnplacedStruct_t const &torus, Vector3D<Real_v> const &point, Inside_t &inside)
{
using Bool_v = vecCore::Mask_v<Real_v>;
//
Bool_v completelyinside, completelyoutside;
TorusImplementation2::GenericKernelForContainsAndInside<Real_v, true, true>(torus, point, completelyinside,
completelyoutside);
inside = Inside_t(EInside::kSurface);
vecCore::MaskedAssign(inside, completelyoutside, Inside_t(EInside::kOutside));
vecCore::MaskedAssign(inside, completelyinside, Inside_t(EInside::kInside));
}
template <typename Real_v, bool ForInside, bool notForDisk>
VECGEOM_FORCE_INLINE
VECCORE_ATT_HOST_DEVICE
static void GenericKernelForContainsAndInside(UnplacedStruct_t const &torus, Vector3D<Real_v> const &point,
typename vecCore::Mask_v<Real_v> &completelyinside,
typename vecCore::Mask_v<Real_v> &completelyoutside)
{
// using vecgeom::GenericKernels;
// here we are explicitely unrolling the loop since a for statement will likely be a penality
// check if second call to Abs is compiled away
// and it can anyway not be vectorized
/* rmax */
using Bool_v = vecCore::Mask_v<Real_v>;
VECGEOM_CONST Precision tol = 100. * vecgeom::kTolerance;
Real_v rxy = Sqrt(point[0] * point[0] + point[1] * point[1]);
Real_v radsq = (rxy - torus.rtor()) * (rxy - torus.rtor()) + point[2] * point[2];
if (ForInside) {
completelyoutside = radsq > (tol * torus.rmax() + torus.rmax2()); // rmax
completelyinside = radsq < (-tol * torus.rmax() + torus.rmax2());
} else {
completelyoutside = radsq > torus.rmax2();
}
if (vecCore::EarlyReturnAllowed()) {
if (vecCore::MaskFull(completelyoutside)) {
return;
}
}
/* rmin */
if (ForInside) {
completelyoutside |= radsq < (-tol * torus.rmin() + torus.rmin2()); // rmin
completelyinside &= radsq > (tol * torus.rmin() + torus.rmin2());
} else {
completelyoutside |= radsq < torus.rmin2();
}
// NOT YET NEEDED WHEN NOT PHI TREATMENT
if (vecCore::EarlyReturnAllowed()) {
if (vecCore::MaskFull(completelyoutside)) {
return;
}
}
/* phi */
if ((torus.dphi() < kTwoPi) && (notForDisk)) {
Bool_v completelyoutsidephi;
Bool_v completelyinsidephi;
torus.GetWedge().GenericKernelForContainsAndInside<Real_v, ForInside>(point, completelyinsidephi,
completelyoutsidephi);
completelyoutside |= completelyoutsidephi;
if (ForInside) completelyinside &= completelyinsidephi;
}
}
template <typename Real_v, bool ForRmin>
VECGEOM_FORCE_INLINE
VECCORE_ATT_HOST_DEVICE
static Real_v ToBoundary(UnplacedStruct_t const &torus, Vector3D<Real_v> const &pt, Vector3D<Real_v> const &dir,
Real_v radius, bool out)
{
// to be taken from ROOT
// Returns distance to the surface or the torus from a point, along
// a direction. Point is close enough to the boundary so that the distance
// to the torus is decreasing while moving along the given direction.
// Compute coeficients of the quartic
Real_v s = vecgeom::kInfLength;
VECGEOM_CONST Real_v tol = 100. * vecgeom::kTolerance;
Real_v r0sq = pt[0] * pt[0] + pt[1] * pt[1] + pt[2] * pt[2];
Real_v rdotn = pt[0] * dir[0] + pt[1] * dir[1] + pt[2] * dir[2];
Real_v rsumsq = torus.rtor2() + radius * radius;
Real_v a = 4. * rdotn;
Real_v b = 2. * (r0sq + 2. * rdotn * rdotn - rsumsq + 2. * torus.rtor2() * dir[2] * dir[2]);
Real_v c = 4. * (r0sq * rdotn - rsumsq * rdotn + 2. * torus.rtor2() * pt[2] * dir[2]);
Real_v d = r0sq * r0sq - 2. * r0sq * rsumsq + 4. * torus.rtor2() * pt[2] * pt[2] +
(torus.rtor2() - radius * radius) * (torus.rtor2() - radius * radius);
Real_v x[4] = {vecgeom::kInfLength, vecgeom::kInfLength, vecgeom::kInfLength, vecgeom::kInfLength};
int nsol = 0;
// special condition
if (vecCore::MaskFull(Abs(dir[2]) < 1E-3 && Abs(pt[2]) < 0.1 * radius)) {
Real_v r0 = torus.rtor() - Sqrt((radius - pt[2]) * (radius + pt[2]));
Real_v invdirxy2 = 1. / (1 - dir.z() * dir.z());
Real_v b0 = (pt[0] * dir[0] + pt[1] * dir[1]) * invdirxy2;
Real_v c0 = (pt[0] * pt[0] + (pt[1] - r0) * (pt[1] + r0)) * invdirxy2;
Real_v delta = b0 * b0 - c0;
if (vecCore::MaskFull(delta > 0)) {
x[nsol] = -b0 - Sqrt(delta);
if (vecCore::MaskFull(x[nsol] > -tol)) nsol++;
x[nsol] = -b0 + Sqrt(delta);
if (vecCore::MaskFull(x[nsol] > -tol)) nsol++;
}
r0 = torus.rtor() + Sqrt((radius - pt[2]) * (radius + pt[2]));
c0 = (pt[0] * pt[0] + (pt[1] - r0) * (pt[1] + r0)) * invdirxy2;
delta = b0 * b0 - c0;
if (vecCore::MaskFull(delta > 0)) {
x[nsol] = -b0 - Sqrt(delta);
if (vecCore::MaskFull(x[nsol] > -tol)) nsol++;
x[nsol] = -b0 + Sqrt(delta);
if (vecCore::MaskFull(x[nsol] > -tol)) nsol++;
}
if (nsol) {
Sort4(x);
}
} else { // generic case
nsol = SolveQuartic(a, b, c, d, x);
}
if (!nsol) {
return vecgeom::kInfLength;
}
// look for first positive solution
Real_v ndotd;
bool inner = vecCore::MaskFull(Abs(radius - torus.rmin()) < vecgeom::kTolerance);
for (int i = 0; i < nsol; i++) {
if (vecCore::MaskFull(x[i] < -10)) continue;
Vector3D<Real_v> r0 = pt + x[i] * dir;
Vector3D<Real_v> norm = r0;
r0.z() = 0.;
r0.Normalize();
r0 *= torus.rtor();
norm -= r0;
// norm = pt
// for (unsigned int ipt = 0; ipt < 3; ipt++)
// norm[ipt] = pt[ipt] + x[i] * dir[ipt] - r0[ipt];
// ndotd = norm[0] * dir[0] + norm[1] * dir[1] + norm[2] * dir[2];
ndotd = norm.Dot(dir);
if (inner ^ out) {
if (vecCore::MaskFull(ndotd < 0)) continue; // discard this solution
} else {
if (vecCore::MaskFull(ndotd > 0)) continue; // discard this solution
}
// The crossing point should be in the phi wedge
if (torus.dphi() < vecgeom::kTwoPi) {
if (!vecCore::MaskFull(torus.GetWedge().ContainsWithBoundary<Real_v>(r0))) continue;
}
s = x[i];
// refine solution with Newton iterations
Real_v eps = vecgeom::kInfLength;
Real_v delta = s * s * s * s + a * s * s * s + b * s * s + c * s + d;
Real_v eps0 = -delta / (4. * s * s * s + 3. * a * s * s + 2. * b * s + c);
int ntry = 0;
while (vecCore::MaskFull(Abs(eps) > vecgeom::kTolerance)) {
if (vecCore::MaskFull(Abs(eps0) > 100)) break;
s += eps0;
if (vecCore::MaskFull(Abs(s + eps0) < vecgeom::kTolerance)) break;
delta = s * s * s * s + a * s * s * s + b * s * s + c * s + d;
eps = -delta / (4. * s * s * s + 3. * a * s * s + 2. * b * s + c);
if (vecCore::MaskFull(Abs(eps) >= Abs(eps0))) break;
ntry++;
// Avoid infinite recursion
if (ntry > 100) break;
eps0 = eps;
}
// discard this solution
if (vecCore::MaskFull(s < -tol)) continue;
return Max(Real_v(0.), s);
}
return vecgeom::kInfLength;
}
template <typename Real_v>
VECGEOM_FORCE_INLINE
VECCORE_ATT_HOST_DEVICE
static void SafetyToOut(UnplacedStruct_t const &torus, Vector3D<Real_v> const &point, Real_v &safety)
{
Real_v rxy = Sqrt(point[0] * point[0] + point[1] * point[1]);
Real_v rad = Sqrt((rxy - torus.rtor()) * (rxy - torus.rtor()) + point[2] * point[2]);
safety = torus.rmax() - rad;
if (torus.rmin()) {
safety = Min(rad - torus.rmin(), torus.rmax() - rad);
}
// TODO: extend implementation for phi sector case
bool hasphi = (torus.dphi() < kTwoPi);
if (hasphi) {
Real_v safetyPhi = torus.GetWedge().SafetyToOut<Real_v>(point);
safety = Min(safetyPhi, safety);
}
}
template <typename Real_v>
VECGEOM_FORCE_INLINE
VECCORE_ATT_HOST_DEVICE
static void Contains(UnplacedStruct_t const &torus, Vector3D<Real_v> const &point,
typename vecCore::Mask_v<Real_v> &contains)
{
using Bool_v = vecCore::Mask_v<Real_v>;
Bool_v unused, outside;
TorusImplementation2::GenericKernelForContainsAndInside<Real_v, true, false>(torus, point, unused, outside);
contains = !outside;
}
template <typename Real_v, typename Inside_t>
VECGEOM_FORCE_INLINE
VECCORE_ATT_HOST_DEVICE
static void Inside(UnplacedStruct_t const &torus, Vector3D<Real_v> const &point, Inside_t &inside)
{
TorusImplementation2::InsideKernel<Real_v, Inside_t>(torus, point, inside);
}
template <typename Real_v>
VECGEOM_FORCE_INLINE
VECCORE_ATT_HOST_DEVICE
static void DistanceToIn(UnplacedStruct_t const &torus, Vector3D<Real_v> const &point,
Vector3D<Real_v> const &direction, Real_v const &stepMax, Real_v &distance)
{
// typedef typename Backend::precision_v Float_t;
// typedef typename Backend::bool_v Bool_t;
// Vector3D<Float_t> localPoint = transformation.Transform<transCodeT, rotCodeT>(point);
// Vector3D<Float_t> localDirection = transformation.TransformDirection<rotCodeT>(direction);
Vector3D<Real_v> localPoint = point;
Vector3D<Real_v> localDirection = direction;
using Bool_v = vecCore::Mask_v<Real_v>;
using Inside_v = vecCore::Index_v<Real_v>;
////////First naive implementation
distance = kInfLength;
// Check Bounding Cylinder first
Bool_v inBounds;
Bool_v done = Bool_v(false);
Inside_v inside = Inside_v(EInside::kOutside);
Real_v tubeDistance = kInfLength;
#ifndef VECGEOM_NO_SPECIALIZATION
// call the tube functionality -- first of all we check whether we are inside
// bounding volume
TubeImplementation<TubeTypes::HollowTube>::Contains(torus.GetBoundingTube().GetStruct(), localPoint, inBounds);
// only need to do this check if all particles (in vector) are outside ( otherwise useless )
TubeImplementation<TubeTypes::HollowTube>::DistanceToIn(torus.GetBoundingTube().GetStruct(), localPoint,
localDirection, stepMax, tubeDistance);
#else
// call the tube functionality -- first of all we check whether we are inside
// bounding volume
TubeImplementation<TubeTypes::UniversalTube>::Contains(torus.GetBoundingTube().GetStruct(), localPoint, inBounds);
// only need to do this check if all particles (in vector) are outside ( otherwise useless )
// vecCore::Mask_v<Real_v> notInBounds { !inBounds };
if (!inBounds) {
TubeImplementation<TubeTypes::UniversalTube>::DistanceToIn(torus.GetBoundingTube().GetStruct(), localPoint,
localDirection, stepMax, tubeDistance);
} else {
tubeDistance = 0.;
}
#endif // VECGEOM_NO_SPECIALIZATION
if (inBounds) {
// Check points on the wrong side (inside torus)
TorusImplementation2::InsideKernel<Real_v, Inside_v>(torus, point, inside);
if (vecCore::MaskFull(inside == Inside_v(EInside::kInside))) {
done = Bool_v(true);
distance = Real_v(-1.);
}
} else {
done = Bool_v(vecCore::MaskFull(tubeDistance == kInfLength));
}
if (vecCore::EarlyReturnAllowed()) {
if (vecCore::MaskFull(done)) {
return;
}
}
// Propagate the point to the bounding tube, as this will reduce the
// coefficients of the quartic and improve precision of the solutions
localPoint += tubeDistance * localDirection;
Bool_v hasphi = Bool_v(torus.dphi() < vecgeom::kTwoPi);
if (vecCore::MaskFull(hasphi)) {
Real_v d1, d2;
auto wedge = torus.GetWedge();
// checking distance to phi wedges
// NOTE: if the tube told me its hitting surface, this would be unnessecary
wedge.DistanceToIn<Real_v>(localPoint, localDirection, d1, d2);
// check phi intersections if bounding tube intersection is due to phi in which case we are done
if (vecCore::MaskFull(d1 != kInfLength)) {
Real_v daxis = DistSqrToTorusR(torus, localPoint, localDirection, d1);
if (vecCore::MaskFull(daxis >= torus.rmin2() && daxis < torus.rmax2())) {
distance = d1;
// check if tube intersections is due to phi in which case we are done
if (vecCore::MaskFull(Abs(distance) < kTolerance)) {
distance += tubeDistance;
return;
}
}
}
if (vecCore::MaskFull(d2 != kInfLength)) {
Real_v daxis = DistSqrToTorusR(torus, localPoint, localDirection, d2);
if (vecCore::MaskFull(daxis >= torus.rmin2() && daxis < torus.rmax2())) {
distance = Min(d2, distance);
// check if tube intersections is due to phi in which case we are done
if (vecCore::MaskFull(Abs(distance) < kTolerance)) {
distance += tubeDistance;
return;
}
}
}
distance = kInfLength;
}
Real_v dd = ToBoundary<Real_v, false>(torus, localPoint, localDirection, torus.rmax(), false);
// in case of a phi opening we also need to check the Rmin surface
if (torus.rmin() > 0.) {
Real_v ddrmin = ToBoundary<Real_v, true>(torus, localPoint, localDirection, torus.rmin(), false);
dd = Min(dd, ddrmin);
}
distance = Min(distance, dd);
distance += tubeDistance;
// This has to be added because distance can become > kInfLength due to
// missing early returns in CUDA. This makes comparisons to kInfLength fail.
if (vecCore::MaskFull(Abs(distance) > kInfLength)) distance = kInfLength;
return;
}
template <typename Real_v>
VECGEOM_FORCE_INLINE
VECCORE_ATT_HOST_DEVICE
static void SafetyToIn(UnplacedStruct_t const &torus, Vector3D<Real_v> const &point, Real_v &safety)
{
// typedef typename Backend::precision_v Float_t;
Vector3D<Real_v> localPoint = point; // transformation.Transform<transCodeT, rotCodeT>(point);
// implementation taken from TGeoTorus
Real_v rxy = Sqrt(localPoint[0] * localPoint[0] + localPoint[1] * localPoint[1]);
Real_v rad = Sqrt((rxy - torus.rtor()) * (rxy - torus.rtor()) + localPoint[2] * localPoint[2]);
safety = rad - torus.rmax();
if (torus.rmin()) {
safety = Max(torus.rmin() - rad, rad - torus.rmax());
}
bool hasphi = (torus.dphi() < kTwoPi);
if (hasphi && vecCore::MaskFull(rxy != 0.)) {
Real_v safetyPhi = torus.GetWedge().SafetyToIn<Real_v>(localPoint);
safety = Max(safetyPhi, safety);
}
}
VECCORE_ATT_HOST_DEVICE
static void PrintType() { printf("SpecializedTorus2"); }
template <typename Stream>
static void PrintType(Stream &s, int transCodeT = translation::kGeneric, int rotCodeT = rotation::kGeneric)
{
s << "SpecializedTorus2<" << transCodeT << "," << rotCodeT << ">";
}
template <typename Stream>
static void PrintImplementationType(Stream &s)
{
s << "TorusImplemenation2";
}
template <typename Stream>
static void PrintUnplacedType(Stream &s)
{
s << "UnplacedTorus2";
}
}; // end struct
} // namespace VECGEOM_IMPL_NAMESPACE
} // namespace vecgeom
#endif // VECGEOM_VOLUMES_KERNEL_TORUSIMPLEMENTATION2_H_
|