File: TrapezoidImplementation.h

package info (click to toggle)
vecgeom 1.2.1%2Bdfsg-1
  • links: PTS, VCS
  • area: main
  • in suites: bookworm
  • size: 23,928 kB
  • sloc: cpp: 88,717; ansic: 6,894; python: 1,035; sh: 582; sql: 538; makefile: 29
file content (466 lines) | stat: -rw-r--r-- 18,914 bytes parent folder | download | duplicates (2)
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
//===-- kernel/TrapezoidImplementation.h ----------------------------*- C++ -*-===//
//===--------------------------------------------------------------------------===//
///
/// \file   kernel/TrapezoidImplementation.h
/// \author Guilherme Lima (lima@fnal.gov)
/// \brief This file implements the algorithms for the trapezoid
///
/// Implementation details: initially based on USolids algorithms and vectorized types.
///
//===--------------------------------------------------------------------------===//
///
/// 140520  G. Lima   Created from USolids' UTrap algorithms
/// 160722  G. Lima   Revision + moving to new backend structure

#ifndef VECGEOM_VOLUMES_KERNEL_TRAPEZOIDIMPLEMENTATION_H_
#define VECGEOM_VOLUMES_KERNEL_TRAPEZOIDIMPLEMENTATION_H_

#include "VecGeom/base/Vector3D.h"
#include "VecGeom/volumes/TrapezoidStruct.h"
#include "VecGeom/volumes/kernel/GenericKernels.h"
#include <VecCore/VecCore>

#include <cstdio>

namespace vecgeom {

VECGEOM_DEVICE_FORWARD_DECLARE(struct TrapezoidImplementation;);
VECGEOM_DEVICE_DECLARE_CONV(struct, TrapezoidImplementation);

inline namespace VECGEOM_IMPL_NAMESPACE {

class PlacedTrapezoid;
class UnplacedTrapezoid;

struct TrapezoidImplementation {

  using PlacedShape_t    = PlacedTrapezoid;
  using UnplacedStruct_t = TrapezoidStruct<Precision>;
  using UnplacedVolume_t = UnplacedTrapezoid;
#ifdef VECGEOM_PLANESHELL_DISABLE
  using TrapSidePlane = TrapezoidStruct<Precision>::TrapSidePlane;
#endif

  VECCORE_ATT_HOST_DEVICE
  static void PrintType()
  {
    // printf("SpecializedTrapezoid<%i, %i>", transCodeT, rotCodeT);
  }

  template <typename Stream>
  static void PrintType(Stream &st, int transCodeT = translation::kGeneric, int rotCodeT = rotation::kGeneric)
  {
    st << "SpecializedTrapezoid<" << transCodeT << "," << rotCodeT << ">";
  }

  template <typename Stream>
  static void PrintImplementationType(Stream &st)
  {
    (void)st;
    // st << "TrapezoidImplementation<" << transCodeT << "," << rotCodeT << ">";
  }

  template <typename Stream>
  static void PrintUnplacedType(Stream &st)
  {
    (void)st;
    // TODO: this is wrong
    st << "UnplacedTrapezoid";
  }

#ifdef VECGEOM_PLANESHELL_DISABLE
  template <typename Real_v>
  VECGEOM_FORCE_INLINE
  VECCORE_ATT_HOST_DEVICE
  static void EvaluateTrack(UnplacedStruct_t const &unplaced, Vector3D<Real_v> const &point,
                            Vector3D<Real_v> const &dir, Real_v *pdist, Real_v *proj, Real_v *vdist)
  {
    TrapSidePlane const *fPlanes = unplaced.GetPlanes();
    // loop over side planes - find pdist,proj for each side plane
    // auto-vectorizable part of loop
    for (unsigned int i = 0; i < 4; ++i) {
      // Note: normal vector is pointing outside the volume (convention), therefore
      // pdist>0 if point is outside  and  pdist<0 means inside
      pdist[i] = fPlanes[i].fA * point.x() + fPlanes[i].fB * point.y() + fPlanes[i].fC * point.z() + fPlanes[i].fD;

      // proj is projection of dir over the normal vector of side plane, hence
      // proj > 0 if pointing ~same direction as normal and proj<0 if ~opposite to normal
      proj[i] = fPlanes[i].fA * dir.x() + fPlanes[i].fB * dir.y() + fPlanes[i].fC * dir.z();

      vdist[i] = -pdist[i] / NonZero(proj[i]);
    }
  }
#endif

  template <typename Real_v, typename Bool_v>
  VECGEOM_FORCE_INLINE
  VECCORE_ATT_HOST_DEVICE
  static void Contains(UnplacedStruct_t const &unplaced, Vector3D<Real_v> const &point, Bool_v &inside)
  {
    Bool_v unused(false), outside(false);
    GenericKernelForContainsAndInside<Real_v, Bool_v, false>(unplaced, point, unused, outside);
    inside = !outside;
  }

  // BIG QUESTION: DO WE WANT TO GIVE ALL 3 TEMPLATE PARAMETERS
  // -- OR -- DO WE WANT TO DEDUCE Bool_v, Index_t from Real_v???
  template <typename Real_v, typename Inside_t>
  VECGEOM_FORCE_INLINE
  VECCORE_ATT_HOST_DEVICE
  static void Inside(UnplacedStruct_t const &unplaced, Vector3D<Real_v> const &point, Inside_t &inside)
  {
    using Bool_v = vecCore::Mask_v<Real_v>;
    Bool_v completelyInside(false), completelyOutside(false);
    GenericKernelForContainsAndInside<Real_v, Bool_v, true>(unplaced, point, completelyInside, completelyOutside);

    using InsideBool_v = vecCore::Mask_v<Inside_t>;
    inside             = Inside_t(EInside::kSurface);
    vecCore__MaskedAssignFunc(inside, (InsideBool_v)completelyOutside, Inside_t(EInside::kOutside));
    vecCore__MaskedAssignFunc(inside, (InsideBool_v)completelyInside, Inside_t(EInside::kInside));

    return;
  }

  template <typename Real_v, typename Bool_v, bool ForInside>
  VECGEOM_FORCE_INLINE
  VECCORE_ATT_HOST_DEVICE
  static void GenericKernelForContainsAndInside(UnplacedStruct_t const &unplaced, Vector3D<Real_v> const &point,
                                                Bool_v &completelyInside, Bool_v &completelyOutside)
  {
    // z-region
    completelyOutside = Abs(point[2]) > MakePlusTolerant<ForInside>(unplaced.fDz);
    // if (vecCore::EarlyReturnMaxLength(completelyOutside,1) && vecCore::MaskFull(completelyOutside)) {
    //   completelyInside = Bool_v(false);
    //   return;
    // }
    if (ForInside) {
      completelyInside = Abs(point[2]) < MakeMinusTolerant<ForInside>(unplaced.fDz);
    }

#ifndef VECGEOM_PLANESHELL_DISABLE
    unplaced.GetPlanes()->GenericKernelForContainsAndInside<Real_v, ForInside>(point, completelyInside,
                                                                               completelyOutside);
#else
    // here for PLANESHELL=OFF (disabled)
    TrapSidePlane const *fPlanes = unplaced.GetPlanes();
    Real_v dist[4];
    for (unsigned int i = 0; i < 4; ++i) {
      dist[i] = fPlanes[i].fA * point.x() + fPlanes[i].fB * point.y() + fPlanes[i].fC * point.z() + fPlanes[i].fD;
    }

    for (unsigned int i = 0; i < 4; ++i) {
      // is it outside of this side plane?
      completelyOutside = completelyOutside || dist[i] > Real_v(MakePlusTolerant<ForInside>(0.));
      if (ForInside) {
        completelyInside = completelyInside && dist[i] < Real_v(MakeMinusTolerant<ForInside>(0.));
      }
      // if (vecCore::EarlyReturnMaxLength(completelyOutside,1) && vecCore::MaskFull(completelyOutside)) return;
    }
#endif

    return;
  }

  ////////////////////////////////////////////////////////////////////////////
  //
  // Calculate distance to shape from outside - return kInfLength if no
  // intersection.
  //
  // ALGORITHM: For each component (z-planes, side planes), calculate
  // pair of minimum (smin) and maximum (smax) intersection values for
  // which the particle is in the extent of the shape.  The point of
  // entrance (exit) is found by the largest smin (smallest smax).
  //
  //  If largest smin > smallest smax, the trajectory does not reach
  //  inside the shape.
  //
  template <typename Real_v>
  VECGEOM_FORCE_INLINE
  VECCORE_ATT_HOST_DEVICE
  static void DistanceToIn(UnplacedStruct_t const &unplaced, Vector3D<Real_v> const &point, Vector3D<Real_v> const &dir,
                           Real_v const &stepMax, Real_v &distance)
  {
    (void)stepMax;
    using Bool_v = vecCore::Mask_v<Real_v>;
    distance     = kInfLength;

    //
    // Step 1: find range of distances along dir between Z-planes (smin, smax)
    //

    // step 1.a) input particle is moving away --> return infinity
    Real_v signZdir = Sign(dir.z());
    Real_v max      = signZdir * unplaced.fDz - point.z(); // z-dist to farthest z-plane

    // done = done || (dir.z()>0.0 && max < MakePlusTolerant<true>(0.));  // check if moving away towards +z
    // done = done || (dir.z()<0.0 && max > MakeMinusTolerant<true>(0.)); // check if moving away towards -z
    Bool_v done(signZdir * max < Real_v(MakePlusTolerant<true>(0.0))); // if outside + moving away towards +/-z

    // if all particles moving away, we're done
    if (vecCore::EarlyReturnMaxLength(done, 1) && vecCore::MaskFull(done)) return;

    // Step 1.b) General case:
    //   smax,smin are range of distances within z-range, taking direction into account.
    //   smin<smax - smax is positive, but smin may be either positive or negative
    Real_v invdir = Real_v(1.0) / NonZero(dir.z()); // convert distances from z to dir
    Real_v smax   = max * invdir;
    Real_v smin   = -(signZdir * unplaced.fDz + point.z()) * invdir;

    //
    // Step 2: find distances for intersections with side planes.
    //

#ifndef VECGEOM_PLANESHELL_DISABLE
    // If disttoplanes is such that smin < dist < smax, then distance=disttoplanes
    Real_v disttoplanes = unplaced.GetPlanes()->DistanceToIn(point, dir, smin, smax);
    vecCore::MaskedAssign(distance, !done, disttoplanes);

#else

    // here for VECGEOM_PLANESHELL_DISABLE

    // loop over side planes - find pdist,Comp for each side plane
    Real_v pdist[4], comp[4], vdist[4];
    // EvaluateTrack<Real_v>(unplaced, point, dir, pdist, comp, vdist);

    // auto-vectorizable part of loop
    TrapSidePlane const *fPlanes = unplaced.GetPlanes();
    for (unsigned int i = 0; i < 4; ++i) {
      // Note: normal vector is pointing outside the volume (convention), therefore
      // pdist>0 if point is outside  and  pdist<0 means inside
      pdist[i] = fPlanes[i].fA * point.x() + fPlanes[i].fB * point.y() + fPlanes[i].fC * point.z() + fPlanes[i].fD;

      // Comp is projection of dir over the normal vector of side plane, hence
      // Comp > 0 if pointing ~same direction as normal and Comp<0 if ~opposite to normal
      comp[i] = fPlanes[i].fA * dir.x() + fPlanes[i].fB * dir.y() + fPlanes[i].fC * dir.z();

      vdist[i] = -pdist[i] / NonZero(comp[i]);
    }

    // check special cases
    for (int i = 0; i < 4; ++i) {
      // points fully outside a plane and moving away or parallel to that plane
      done = done || (pdist[i] > Real_v(MakePlusTolerant<true>(0.)) && comp[i] >= Real_v(0.));
      // points at a plane surface and exiting
      done = done || (pdist[i] > Real_v(MakeMinusTolerant<true>(0.)) && comp[i] > Real_v(0.));
    }
    // if all particles moving away, we're done
    if (vecCore::EarlyReturnMaxLength(done, 1) && vecCore::MaskFull(done)) return;

    // this part does not auto-vectorize
    for (unsigned int i = 0; i < 4; ++i) {
      // if outside and moving away, return infinity
      Bool_v posPoint = pdist[i] > Real_v(MakeMinusTolerant<true>(0.));
      Bool_v posDir   = comp[i] > 0;

      // check if trajectory will intercept plane within current range (smin,smax), otherwise track misses shape
      Bool_v interceptFromInside  = (!posPoint && posDir);
      Bool_v interceptFromOutside = (posPoint && !posDir);

      //.. If dist is such that smin < dist < smax, then adjust either smin or smax
      vecCore__MaskedAssignFunc(smax, interceptFromInside && vdist[i] < smax, vdist[i]);
      vecCore__MaskedAssignFunc(smin, interceptFromOutside && vdist[i] > smin, vdist[i]);
    }

    vecCore::MaskedAssign(distance, !done && smin <= smax, smin);
    vecCore__MaskedAssignFunc(distance, distance < Real_v(MakeMinusTolerant<true>(0.0)), Real_v(-1.));
#endif
  }

  template <typename Real_v>
  VECGEOM_FORCE_INLINE
  VECCORE_ATT_HOST_DEVICE
  static void DistanceToOut(UnplacedStruct_t const &unplaced, Vector3D<Real_v> const &point,
                            Vector3D<Real_v> const &dir, Real_v const &stepMax, Real_v &distance)
  {
    (void)stepMax;
    using Bool_v = vecCore::Mask_v<Real_v>;

    // step 0: if point is outside any plane --> return -1, otherwise initialize at Infinity
    Bool_v outside = Abs(point.z()) > MakePlusTolerant<true>(unplaced.fDz);
    distance       = vecCore::Blend(outside, Real_v(-1.0), InfinityLength<Real_v>());
    Bool_v done(outside);
    if (vecCore::EarlyReturnMaxLength(done, 1) && vecCore::MaskFull(done)) return;

    //
    // Step 1: find range of distances along dir between Z-planes (smin, smax)
    //

    Real_v distz = (Sign(dir.z()) * unplaced.fDz - point.z()) / NonZero(dir.z());
    vecCore__MaskedAssignFunc(distance, !done && dir.z() != Real_v(0.), distz);

    //
    // Step 2: find distances for intersections with side planes.
    //

#ifndef VECGEOM_PLANESHELL_DISABLE
    Real_v disttoplanes = unplaced.GetPlanes()->DistanceToOut(point, dir);
    vecCore::MaskedAssign(distance, disttoplanes < distance, disttoplanes);

#else
    //=== Here for VECGEOM_PLANESHELL_DISABLE

    // loop over side planes - find pdist,Proj for each side plane
    Real_v pdist[4], proj[4], vdist[4];
    // Real_v dist1(distance);
    // EvaluateTrack<Real_v>(unplaced, point, dir, pdist, proj, vdist);

    TrapSidePlane const *fPlanes = unplaced.GetPlanes();
    for (unsigned int i = 0; i < 4; ++i) {
      // Note: normal vector is pointing outside the volume (convention), therefore
      // pdist>0 if point is outside  and  pdist<0 means inside
      pdist[i] = fPlanes[i].fA * point.x() + fPlanes[i].fB * point.y() + fPlanes[i].fC * point.z() + fPlanes[i].fD;

      // Proj is projection of dir over the normal vector of side plane, hence
      // Proj > 0 if pointing ~same direction as normal and Proj<0 if pointing ~opposite to normal
      proj[i] = fPlanes[i].fA * dir.x() + fPlanes[i].fB * dir.y() + fPlanes[i].fC * dir.z();

      vdist[i] = -pdist[i] / NonZero(proj[i]);
    }

    // early return if point is outside of plane
    // for (unsigned int i = 0; i < 4; ++i) {
    //   done = done || (pdist[i] > MakePlusTolerant<true>(0.));
    // }
    // vecCore::MaskedAssign(dist1, done, Real_v(-1.0));
    // if (vecCore::EarlyReturnMaxLength(done,1) && vecCore::MaskFull(done)) return;

    // std::cout<<"=== point="<< point <<", dir="<< dir <<", distance="<< distance <<"\n";
    for (unsigned int i = 0; i < 4; ++i) {
      // if track is pointing towards plane and vdist<distance, then distance=vdist
      // vecCore__MaskedAssignFunc(dist1, !done && proj[i] > 0.0 && vdist[i] < dist1, vdist[i]);
      vecCore__MaskedAssignFunc(distance, pdist[i] > MakePlusTolerant<true>(0.), Real_v(-1.0));
      vecCore__MaskedAssignFunc(distance, proj[i] > 0.0 && -Sign(pdist[i]) * vdist[i] < distance,
                                -Sign(pdist[i]) * vdist[i]);
      // std::cout<<"i="<< i <<", pdist="<< pdist[i] <<", proj="<< proj[i] <<", vdist="<< vdist[i] <<" --> dist="<<
      // dist1 <<", "<< distance <<"\n";
    }
#endif
  }

  template <typename Real_v>
  VECGEOM_FORCE_INLINE
  VECCORE_ATT_HOST_DEVICE
  static void SafetyToIn(UnplacedStruct_t const &unplaced, Vector3D<Real_v> const &point, Real_v &safety)
  {
    safety = Abs(point.z()) - unplaced.fDz;

#ifndef VECGEOM_PLANESHELL_DISABLE
    // Get safety over side planes
    unplaced.GetPlanes()->SafetyToIn(point, safety);
#else
    // Loop over side planes
    TrapSidePlane const *fPlanes = unplaced.GetPlanes();
    Real_v dist[4];
    for (int i = 0; i < 4; ++i) {
      dist[i] = fPlanes[i].fA * point.x() + fPlanes[i].fB * point.y() + fPlanes[i].fC * point.z() + fPlanes[i].fD;
    }

    // for (int i = 0; i < 4; ++i) {
    //   vecCore::MaskedAssign(safety, dist[i] > safety, dist[i]);
    // }
    Real_v safmax = Max(Max(dist[0], dist[1]), Max(dist[2], dist[3]));
    vecCore::MaskedAssign(safety, safmax > safety, safmax);
#endif
  }

  template <typename Real_v>
  VECGEOM_FORCE_INLINE
  VECCORE_ATT_HOST_DEVICE
  static void SafetyToOut(UnplacedStruct_t const &unplaced, Vector3D<Real_v> const &point, Real_v &safety)
  {
    // If point is outside (wrong-side) --> safety to negative value
    safety = unplaced.fDz - Abs(point.z());

    // If all test points are outside, we're done
    // if (vecCore::EarlyReturnMaxLength(safety,1)) {
    //   if (vecCore::MaskFull(safety < kHalfTolerance)) return;
    // }

#ifndef VECGEOM_PLANESHELL_DISABLE
    // Get safety over side planes
    unplaced.GetPlanes()->SafetyToOut(point, safety);
#else
    // Loop over side planes
    TrapSidePlane const *fPlanes = unplaced.GetPlanes();

    // auto-vectorizable loop
    Real_v dist[4];
    for (int i = 0; i < 4; ++i) {
      dist[i] = -(fPlanes[i].fA * point.x() + fPlanes[i].fB * point.y() + fPlanes[i].fC * point.z() + fPlanes[i].fD);
    }

    // unvectorizable loop
    // for (int i = 0; i < 4; ++i) {
    //   vecCore::MaskedAssign(safety, dist[i] < safety, dist[i]);
    // }

    Real_v safmin = Min(Min(dist[0], dist[1]), Min(dist[2], dist[3]));
    vecCore::MaskedAssign(safety, safmin < safety, safmin);
#endif
  }

  template <typename Real_v>
  VECGEOM_FORCE_INLINE
  VECCORE_ATT_HOST_DEVICE
  static Vector3D<Real_v> NormalKernel(UnplacedStruct_t const &unplaced, Vector3D<Real_v> const &point,
                                       typename vecCore::Mask_v<Real_v> &valid)
  {

    VECGEOM_CONST Precision delta = 1000. * kTolerance;
    Vector3D<Real_v> normal(0.);
    Real_v safety = -InfinityLength<Real_v>();

#ifndef VECGEOM_PLANESHELL_DISABLE
    // Get normal from side planes -- PlaneShell case
    safety = unplaced.GetPlanes()->NormalKernel(point, normal);

#else
    // Loop over side planes

    // vectorizable loop
    TrapSidePlane const *fPlanes = unplaced.GetPlanes();
    Real_v dist[4];
    for (int i = 0; i < 4; ++i) {
      dist[i] = (fPlanes[i].fA * point.x() + fPlanes[i].fB * point.y() + fPlanes[i].fC * point.z() + fPlanes[i].fD);
    }

    // non-vectorizable part
    for (int i = 0; i < 4; ++i) {
      Real_v saf_i = dist[i] - safety;

      // if more planes found as far (within tolerance) as the best one so far *and not fully inside*, add its normal
      vecCore__MaskedAssignFunc(normal, Abs(saf_i) < kHalfTolerance && dist[i] >= -kHalfTolerance,
                                normal + unplaced.normals[i]);

      // this one is farther than our previous one -- update safety and normal
      vecCore__MaskedAssignFunc(normal, saf_i > 0.0, unplaced.normals[i]);
      vecCore__MaskedAssignFunc(safety, saf_i > 0.0, dist[i]);
      // std::cout<<"dist["<< i <<"]="<< dist[i] <<", saf_i="<< saf_i <<", safety="<< safety <<", normal="<< normal
      // <<"\n";
    }
#endif

    // check if normal is valid w.r.t. z-planes, and define normals based on safety (see above)
    Real_v safz(Sign(point[2]) * point[2] - unplaced.fDz);

    vecCore__MaskedAssignFunc(normal, Abs(safz - safety) < kHalfTolerance && safz >= -kHalfTolerance,
                              normal + Vector3D<Real_v>(0, 0, Sign(point.z())));

    vecCore__MaskedAssignFunc(normal, safz > safety && safz >= -kHalfTolerance,
                              Vector3D<Real_v>(0, 0, Sign(point.z())));
    vecCore::MaskedAssign(safety, safz > safety, safz);
    valid = Abs(safety) <= delta;
    // std::cout<<"safz="<< safz <<", safety="<< safety <<", normal="<< normal <<", valid="<< valid <<"\n";

    // returned vector must be normalized
    if (normal.Mag2() > 1.0) normal.Normalize(); //??? check use of MaskedAssignFunc here!!!

    return normal;
  }
};

} // namespace VECGEOM_IMPL_NAMESPACE
} // namespace vecgeom

#endif // VECGEOM_VOLUMES_KERNEL_TRAPEZOIDIMPLEMENTATION_H_