1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 300 301 302 303 304 305 306 307 308 309 310 311 312 313 314 315 316 317 318 319 320 321 322 323 324 325 326 327 328 329 330 331 332 333 334 335 336 337 338 339 340 341 342 343 344 345 346 347 348 349 350 351 352 353 354 355 356 357 358 359 360 361 362 363 364 365 366 367 368 369 370 371 372 373 374 375 376 377 378 379 380 381 382 383 384 385 386 387 388 389 390 391 392 393 394 395 396 397 398 399 400 401 402 403 404 405 406 407 408 409 410 411 412 413 414 415 416 417 418 419 420 421 422 423 424 425 426 427 428 429 430 431 432 433 434 435 436 437 438 439 440 441 442 443 444 445 446 447 448 449 450 451 452 453 454 455 456 457 458 459 460 461 462 463 464 465 466 467 468 469 470 471 472 473 474 475 476 477 478 479 480 481 482 483 484 485 486 487 488 489 490 491 492 493 494 495 496 497 498 499 500 501 502 503 504 505 506 507 508 509 510 511 512 513 514 515 516 517 518 519 520 521 522
|
// This file is part of VecGeom and is distributed under the
// conditions in the file LICENSE.txt in the top directory.
// For the full list of authors see CONTRIBUTORS.txt and `git log`.
/// This file implements the algorithms for Trd
/// @file volumes/kernel/TrdImplementation.h
/// @author Georgios Bitzes
#ifndef VECGEOM_VOLUMES_KERNEL_TRDIMPLEMENTATION_H_
#define VECGEOM_VOLUMES_KERNEL_TRDIMPLEMENTATION_H_
#include "VecGeom/base/Global.h"
#include "VecGeom/volumes/kernel/GenericKernels.h"
#include "VecGeom/volumes/TrdStruct.h"
#include "VecGeom/volumes/kernel/shapetypes/TrdTypes.h"
#include <stdlib.h>
#include <cstdio>
namespace vecgeom {
VECGEOM_DEVICE_DECLARE_CONV_TEMPLATE(struct, TrdImplementation, typename);
inline namespace VECGEOM_IMPL_NAMESPACE {
namespace TrdUtilities {
/*
* Checks whether a point (x, y) falls on the left or right half-plane
* of a line. The line is defined by a (vx, vy) vector, extended to infinity.
*
* Of course this can only be used for lines that pass through (0, 0), but
* you can supply transformed coordinates for the point to check for any line.
*
* This simply calculates the magnitude of the cross product of vectors (px, py)
* and (vx, vy), which is defined as |x| * |v| * sin theta.
*
* If the cross product is positive, the point is clockwise of V, or the "right"
* half-plane. If it's negative, the point is CCW and on the "left" half-plane.
*/
template <typename Real_v>
VECGEOM_FORCE_INLINE
VECCORE_ATT_HOST_DEVICE
void PointLineOrientation(Real_v const &px, Real_v const &py, Precision const &vx, Precision const &vy,
Real_v &crossProduct)
{
crossProduct = vx * py - vy * px;
}
/*
* Check intersection of the trajectory of a particle with a segment
* that's bound from -Ylimit to +Ylimit.j
*
* All points of the along-vector of a plane lie on
* s * (alongX, alongY)
* All points of the trajectory of the particle lie on
* (x, y) + t * (vx, vy)
* Thefore, it must hold that s * (alongX, alongY) == (x, y) + t * (vx, vy)
* Solving by t we get t = (alongY*x - alongX*y) / (vy*alongX - vx*alongY)
*
* t gives the distance, but how to make sure hitpoint is inside the
* segment and not just the infinite line defined by the segment?
*
* Check that |hity| <= Ylimit
*/
template <typename Real_v>
VECGEOM_FORCE_INLINE
VECCORE_ATT_HOST_DEVICE
void PlaneTrajectoryIntersection(Real_v const &alongX, Real_v const &alongY, Real_v const &ylimit, Real_v const &posx,
Real_v const &posy, Real_v const &dirx, Real_v const &diry, Real_v &dist,
vecCore::Mask_v<Real_v> &ok)
{
dist = (alongY * posx - alongX * posy) / (diry * alongX - dirx * alongY);
Real_v hity = posy + dist * diry;
ok = vecCore::math::Abs(hity) <= ylimit && dist > 0;
}
template <typename Real_v, bool forY, bool mirroredPoint, bool toInside>
VECGEOM_FORCE_INLINE
VECCORE_ATT_HOST_DEVICE
void FaceTrajectoryIntersection(TrdStruct<Precision> const &trd, Vector3D<Real_v> const &pos,
Vector3D<Real_v> const &dir, Real_v &dist, vecCore::Mask_v<Real_v> &ok)
{
Real_v alongV, posV, dirV, posK, dirK, fV, fK, halfKplus, v1, ndotv;
// fNormals[0].Set(-fCalfX, 0., fFx*fCalfX);
// fNormals[1].Set(fCalfX, 0., fFx*fCalfX);
// fNormals[2].Set(0., -fCalfY, fFy*fCalfY);
// fNormals[3].Set(0., fCalfY, fFy*fCalfY);
if (forY) {
alongV = trd.fY2minusY1;
v1 = trd.fDY1;
posV = pos.y();
posK = pos.x();
dirV = dir.y();
dirK = dir.x();
fK = trd.fFx;
fV = trd.fFy;
halfKplus = trd.fHalfX1plusX2;
} else {
alongV = trd.fX2minusX1;
v1 = trd.fDX1;
posV = pos.x();
posK = pos.y();
dirV = dir.x();
dirK = dir.y();
fK = trd.fFy;
fV = trd.fFx;
halfKplus = trd.fHalfY1plusY2;
}
if (mirroredPoint) {
posV *= Real_v(-1.);
dirV *= Real_v(-1.);
}
ndotv = dirV + fV * dir.z();
if (toInside)
ok = ndotv < Real_v(0.);
else
ok = ndotv > Real_v(0.);
if (vecCore::MaskEmpty(ok)) return;
Real_v alongZ = Real_v(2.0) * trd.fDZ;
// distance from trajectory to face
dist = (alongZ * (posV - v1) - alongV * (pos.z() + trd.fDZ)) / (dir.z() * alongV - dirV * alongZ + kTiny);
ok &= dist > Real_v(MakeMinusTolerant<true>(0.));
if (!vecCore::MaskEmpty(ok)) {
// need to make sure z hit falls within bounds
Real_v hitz = pos.z() + dist * dir.z();
ok &= vecCore::math::Abs(hitz) <= trd.fDZ;
// need to make sure hit on varying dimension falls within bounds
Real_v hitk = posK + dist * dirK;
Real_v dK = halfKplus - fK * hitz; // calculate the width of the varying dimension at hitz
ok &= vecCore::math::Abs(hitk) <= dK;
vecCore::MaskedAssign(dist, ok & (vecCore::math::Abs(dist) < kHalfTolerance), Real_v(0.0));
}
}
template <typename Real_v, typename trdTypeT, bool inside>
VECGEOM_FORCE_INLINE
VECCORE_ATT_HOST_DEVICE
void Safety(TrdStruct<Precision> const &trd, Vector3D<Real_v> const &pos, Real_v &dist)
{
using namespace TrdTypes;
using Bool_v = vecCore::Mask_v<Real_v>;
Real_v safz = trd.fDZ - vecCore::math::Abs(pos.z());
// std::cout << "safz: " << safz << std::endl;
dist = safz;
Real_v distx = trd.fHalfX1plusX2 - trd.fFx * pos.z();
Bool_v okx = distx >= 0;
Real_v safx = (distx - vecCore::math::Abs(pos.x())) * trd.fCalfX;
vecCore::MaskedAssign(dist, okx && safx < dist, safx);
// std::cout << "safx: " << safx << std::endl;
if (checkVaryingY<trdTypeT>(trd)) {
Real_v disty = trd.fHalfY1plusY2 - trd.fFy * pos.z();
Bool_v oky = disty >= 0;
Real_v safy = (disty - vecCore::math::Abs(pos.y())) * trd.fCalfY;
vecCore::MaskedAssign(dist, oky && safy < dist, safy);
} else {
Real_v safy = trd.fDY1 - vecCore::math::Abs(pos.y());
vecCore::MaskedAssign(dist, safy < dist, safy);
}
if (!inside) dist = -dist;
}
template <typename Real_v, typename trdTypeT, bool surfaceT>
VECGEOM_FORCE_INLINE
VECCORE_ATT_HOST_DEVICE
static void UnplacedInside(TrdStruct<Precision> const &trd, Vector3D<Real_v> const &point,
vecCore::Mask_v<Real_v> &completelyinside, vecCore::Mask_v<Real_v> &completelyoutside)
{
using namespace TrdUtilities;
using namespace TrdTypes;
Real_v pzPlusDz = point.z() + trd.fDZ;
// inside Z?
completelyoutside = vecCore::math::Abs(point.z()) > MakePlusTolerant<surfaceT>(trd.fDZ);
if (surfaceT) completelyinside = vecCore::math::Abs(point.z()) < MakeMinusTolerant<surfaceT>(trd.fDZ);
// inside X?
Real_v cross;
// Note: we cannot compare directly the cross product with the surface tolerance, but with
// the tolerance multiplied by the length of the lateral segment connecting dx1 and dx2
PointLineOrientation<Real_v>(vecCore::math::Abs(point.x()) - trd.fDX1, pzPlusDz, trd.fX2minusX1, 2.0 * trd.fDZ,
cross);
if (surfaceT) {
completelyoutside |= cross < -trd.fToleranceX;
completelyinside &= cross > trd.fToleranceX;
} else {
completelyoutside |= cross < 0;
}
// inside Y?
if (HasVaryingY<trdTypeT>::value != TrdTypes::kNo) {
// If Trd type is unknown don't bother with a runtime check, assume the general case
PointLineOrientation<Real_v>(vecCore::math::Abs(point.y()) - trd.fDY1, pzPlusDz, trd.fY2minusY1, 2.0 * trd.fDZ,
cross);
if (surfaceT) {
completelyoutside |= cross < -trd.fToleranceY;
completelyinside &= cross > trd.fToleranceY;
} else {
completelyoutside |= cross < 0;
}
} else {
completelyoutside |= vecCore::math::Abs(point.y()) > MakePlusTolerant<surfaceT>(trd.fDY1);
if (surfaceT) completelyinside &= vecCore::math::Abs(point.y()) < MakeMinusTolerant<surfaceT>(trd.fDY1);
}
}
} // namespace TrdUtilities
template <typename T>
class SPlacedTrd;
template <typename T>
class SUnplacedTrd;
template <typename T>
struct TrdStruct;
template <typename trdTypeT>
struct TrdImplementation {
using UnplacedStruct_t = TrdStruct<Precision>;
using UnplacedVolume_t = SUnplacedTrd<trdTypeT>;
using PlacedShape_t = SPlacedTrd<UnplacedVolume_t>;
VECCORE_ATT_HOST_DEVICE
static void PrintType() {}
template <typename Stream>
static void PrintType(Stream &s, int transCodeT = translation::kGeneric, int rotCodeT = rotation::kGeneric)
{
s << "SpecializedTrd<" << transCodeT << "," << rotCodeT << ">";
}
template <typename Stream>
static void PrintImplementationType(Stream & /*s*/)
{
}
template <typename Stream>
static void PrintUnplacedType(Stream & /*s*/)
{
}
template <typename Real_v, typename Bool_v>
VECGEOM_FORCE_INLINE
VECCORE_ATT_HOST_DEVICE
static void UnplacedContains(UnplacedStruct_t const &trd, Vector3D<Real_v> const &point, Bool_v &inside)
{
Bool_v unused;
TrdUtilities::UnplacedInside<Real_v, trdTypeT, false>(trd, point, unused, inside);
inside = !inside;
}
template <typename Real_v, typename Bool_v>
VECGEOM_FORCE_INLINE
VECCORE_ATT_HOST_DEVICE
static void Contains(UnplacedStruct_t const &trd, Vector3D<Real_v> const &point, Bool_v &inside)
{
Bool_v unused;
TrdUtilities::UnplacedInside<Real_v, trdTypeT, false>(trd, point, unused, inside);
inside = !inside;
}
template <typename Real_v, typename Inside_v>
VECGEOM_FORCE_INLINE
VECCORE_ATT_HOST_DEVICE
static void Inside(UnplacedStruct_t const &trd, Vector3D<Real_v> const &point, Inside_v &inside)
{
// use double-based vector for result, as Bool_v is a mask for precision_v
using Bool_v = vecCore::Mask_v<Real_v>;
const Real_v in(EInside::kInside);
const Real_v out(EInside::kOutside);
Bool_v inmask = Bool_v(false);
Bool_v outmask = Bool_v(false);
Real_v result(EInside::kSurface);
TrdUtilities::UnplacedInside<Real_v, trdTypeT, true>(trd, point, inmask, outmask);
vecCore::MaskedAssign(result, inmask, in);
vecCore::MaskedAssign(result, outmask, out);
// Manual conversion from double to int here is necessary because int_v and
// precision_v have different number of elements in SIMD vector, so Bool_v
// (mask for precision_v) cannot be cast to mask for inside, which is a
// different type and does not exist in the current backend system
for (size_t i = 0; i < vecCore::VectorSize(result); i++)
vecCore::Set(inside, i, vecCore::Get(result, i));
}
template <typename Real_v>
VECGEOM_FORCE_INLINE
VECCORE_ATT_HOST_DEVICE
static void DistanceToIn(UnplacedStruct_t const &trd, Vector3D<Real_v> const &point,
Vector3D<Real_v> const &direction, Real_v const & /*stepMax*/, Real_v &distance)
{
using namespace TrdUtilities;
using namespace TrdTypes;
using Bool_v = vecCore::Mask_v<Real_v>;
Real_v hitx, hity;
// Real_v hitz;
Vector3D<Real_v> pos_local;
Vector3D<Real_v> dir_local;
distance = InfinityLength<Real_v>();
// hit Z faces?
Bool_v inz = vecCore::math::Abs(point.z()) < Real_v(MakeMinusTolerant<true>(trd.fDZ));
Real_v distx = trd.fHalfX1plusX2 - trd.fFx * point.z();
Bool_v inx = (distx - vecCore::math::Abs(point.x())) * trd.fCalfX > Real_v(MakePlusTolerant<true>(0.));
Real_v disty;
Bool_v iny;
if (checkVaryingY<trdTypeT>(trd)) {
disty = trd.fHalfY1plusY2 - trd.fFy * point.z();
iny = (disty - vecCore::math::Abs(point.y())) * trd.fCalfY > Real_v(MakePlusTolerant<true>(0.));
} else {
disty = vecCore::math::Abs(point.y()) - trd.fDY1;
iny = disty < Real_v(MakeMinusTolerant<true>(0.));
}
Bool_v inside = inx & iny & inz;
vecCore__MaskedAssignFunc(distance, inside, Real_v(-1.));
Bool_v done = inside;
Bool_v okz = point.z() * direction.z() < Real_v(0.);
okz &= !inz;
if (!vecCore::MaskEmpty(okz)) {
Real_v distz = (vecCore::math::Abs(point.z()) - trd.fDZ) / vecCore::math::Abs(direction.z());
// exclude case in which particle is going away
hitx = vecCore::math::Abs(point.x() + distz * direction.x());
hity = vecCore::math::Abs(point.y() + distz * direction.y());
// hitting top face?
Bool_v okzt = point.z() > (trd.fDZ - kHalfTolerance) && hitx <= trd.fDX2 && hity <= trd.fDY2;
// hitting bottom face?
Bool_v okzb = point.z() < (-trd.fDZ + kHalfTolerance) && hitx <= trd.fDX1 && hity <= trd.fDY1;
okz &= (okzt | okzb);
vecCore::MaskedAssign(distance, okz, distz);
}
done |= okz;
if (vecCore::MaskFull(done)) {
vecCore::MaskedAssign(distance, vecCore::math::Abs(distance) < kHalfTolerance, Real_v(0.0));
return;
}
// hitting X faces?
Bool_v okx = Bool_v(false);
if (!vecCore::MaskFull(inx)) {
FaceTrajectoryIntersection<Real_v, false, false, true>(trd, point, direction, distx, okx);
vecCore::MaskedAssign(distance, okx, distx);
FaceTrajectoryIntersection<Real_v, false, true, true>(trd, point, direction, distx, okx);
vecCore::MaskedAssign(distance, okx, distx);
}
done |= okx;
if (vecCore::MaskFull(done)) {
vecCore::MaskedAssign(distance, vecCore::math::Abs(distance) < kHalfTolerance, Real_v(0.0));
return;
}
// hitting Y faces?
Bool_v oky;
if (checkVaryingY<trdTypeT>(trd)) {
if (!vecCore::MaskFull(iny)) {
FaceTrajectoryIntersection<Real_v, true, false, true>(trd, point, direction, disty, oky);
vecCore::MaskedAssign(distance, oky, disty);
FaceTrajectoryIntersection<Real_v, true, true, true>(trd, point, direction, disty, oky);
vecCore::MaskedAssign(distance, oky, disty);
}
} else {
if (!vecCore::MaskFull(iny)) {
disty /= vecCore::math::Abs(direction.y());
Real_v zhit = point.z() + disty * direction.z();
Real_v xhit = point.x() + disty * direction.x();
Real_v dx = trd.fHalfX1plusX2 - trd.fFx * zhit;
oky = point.y() * direction.y() < 0 && disty > -kHalfTolerance && vecCore::math::Abs(xhit) < dx &&
vecCore::math::Abs(zhit) < trd.fDZ;
vecCore::MaskedAssign(distance, oky, disty);
}
}
vecCore::MaskedAssign(distance, vecCore::math::Abs(distance) < kHalfTolerance, Real_v(0.0));
}
template <typename Real_v>
VECGEOM_FORCE_INLINE
VECCORE_ATT_HOST_DEVICE
static void DistanceToOut(UnplacedStruct_t const &trd, Vector3D<Real_v> const &point, Vector3D<Real_v> const &dir,
Real_v const & /*stepMax*/, Real_v &distance)
{
using namespace TrdUtilities;
using namespace TrdTypes;
using Bool_v = vecCore::Mask_v<Real_v>;
Real_v hitx, hity;
// Real_v hitz;
distance = Real_v(0.0);
// hit top Z face?
Real_v invdir = Real_v(1.) / vecCore::math::Abs(dir.z() + kTiny);
Real_v safz = trd.fDZ - vecCore::math::Abs(point.z());
Bool_v out = safz < Real_v(MakeMinusTolerant<true>(0.));
Real_v distx = trd.fHalfX1plusX2 - trd.fFx * point.z();
out |= (distx - vecCore::math::Abs(point.x())) * trd.fCalfX < Real_v(MakeMinusTolerant<true>(0.));
Real_v disty;
if (checkVaryingY<trdTypeT>(trd)) {
disty = trd.fHalfY1plusY2 - trd.fFy * point.z();
out |= (disty - vecCore::math::Abs(point.y())) * trd.fCalfY < Real_v(MakeMinusTolerant<true>(0.));
} else {
disty = trd.fDY1 - vecCore::math::Abs(point.y());
out |= disty < Real_v(MakeMinusTolerant<true>(0.));
}
if (/*vecCore::EarlyReturnAllowed() && */ vecCore::MaskFull(out)) {
distance = Real_v(-1.);
return;
}
Bool_v okzt = dir.z() > Real_v(0.);
if (!vecCore::MaskEmpty(okzt)) {
Real_v distz = (trd.fDZ - point.z()) * invdir;
hitx = vecCore::math::Abs(point.x() + distz * dir.x());
hity = vecCore::math::Abs(point.y() + distz * dir.y());
okzt &= hitx <= trd.fDX2 && hity <= trd.fDY2;
vecCore::MaskedAssign(distance, okzt, distz);
if (vecCore::EarlyReturnAllowed() && vecCore::MaskFull(okzt)) {
vecCore::MaskedAssign(distance, vecCore::math::Abs(distance) < kHalfTolerance, Real_v(0.0));
return;
}
}
// hit bottom Z face?
Bool_v okzb = dir.z() < Real_v(0.);
if (!vecCore::MaskEmpty(okzb)) {
Real_v distz = (point.z() + trd.fDZ) * invdir;
hitx = vecCore::math::Abs(point.x() + distz * dir.x());
hity = vecCore::math::Abs(point.y() + distz * dir.y());
okzb &= hitx <= trd.fDX1 && hity <= trd.fDY1;
vecCore::MaskedAssign(distance, okzb, distz);
if (vecCore::EarlyReturnAllowed() && vecCore::MaskFull(okzb)) {
vecCore::MaskedAssign(distance, vecCore::math::Abs(distance) < kHalfTolerance, Real_v(0.0));
return;
}
}
// hitting X faces?
Bool_v okx;
FaceTrajectoryIntersection<Real_v, false, false, false>(trd, point, dir, distx, okx);
vecCore::MaskedAssign(distance, okx, distx);
if (vecCore::EarlyReturnAllowed() && vecCore::MaskFull(okx)) {
vecCore::MaskedAssign(distance, vecCore::math::Abs(distance) < kHalfTolerance, Real_v(0.0));
return;
}
FaceTrajectoryIntersection<Real_v, false, true, false>(trd, point, dir, distx, okx);
vecCore::MaskedAssign(distance, okx, distx);
if (vecCore::EarlyReturnAllowed() && vecCore::MaskFull(okx)) {
vecCore::MaskedAssign(distance, vecCore::math::Abs(distance) < kHalfTolerance, Real_v(0.0));
return;
}
// hitting Y faces?
Bool_v oky;
if (checkVaryingY<trdTypeT>(trd)) {
FaceTrajectoryIntersection<Real_v, true, false, false>(trd, point, dir, disty, oky);
vecCore::MaskedAssign(distance, oky, disty);
if (vecCore::EarlyReturnAllowed() && vecCore::MaskFull(oky)) {
vecCore::MaskedAssign(distance, vecCore::math::Abs(distance) < kHalfTolerance, Real_v(0.0));
return;
}
FaceTrajectoryIntersection<Real_v, true, true, false>(trd, point, dir, disty, oky);
vecCore::MaskedAssign(distance, oky, disty);
} else {
Real_v plane = trd.fDY1;
vecCore__MaskedAssignFunc(plane, dir.y() < Real_v(0.), Real_v(-trd.fDY1));
disty = (plane - point.y()) / dir.y();
Real_v zhit = point.z() + disty * dir.z();
Real_v xhit = point.x() + disty * dir.x();
Real_v dx = trd.fHalfX1plusX2 - trd.fFx * zhit;
oky = vecCore::math::Abs(xhit) < dx && vecCore::math::Abs(zhit) < trd.fDZ;
vecCore::MaskedAssign(distance, oky, disty);
}
vecCore__MaskedAssignFunc(distance, vecCore::math::Abs(distance) < kHalfTolerance, Real_v(0.0));
vecCore__MaskedAssignFunc(distance, out, Real_v(-1.0));
}
template <typename Real_v>
VECGEOM_FORCE_INLINE
VECCORE_ATT_HOST_DEVICE
static void SafetyToIn(UnplacedStruct_t const &trd, Vector3D<Real_v> const &point, Real_v &safety)
{
using namespace TrdUtilities;
Safety<Real_v, trdTypeT, false>(trd, point, safety);
}
template <typename Real_v>
VECGEOM_FORCE_INLINE
VECCORE_ATT_HOST_DEVICE
static void SafetyToOut(UnplacedStruct_t const &trd, Vector3D<Real_v> const &point, Real_v &safety)
{
using namespace TrdUtilities;
Safety<Real_v, trdTypeT, true>(trd, point, safety);
}
};
} // namespace VECGEOM_IMPL_NAMESPACE
} // namespace vecgeom
#endif // VECGEOM_VOLUMES_KERNEL_TRDIMPLEMENTATION_H_
|