1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 300 301 302 303 304 305 306 307 308 309 310 311 312 313 314 315 316 317 318 319 320 321 322 323 324 325 326 327 328 329 330 331 332 333 334 335 336 337 338 339 340 341 342 343 344 345 346 347 348 349 350 351 352 353 354 355 356 357 358 359 360 361 362 363 364 365 366 367 368 369 370 371 372 373 374 375 376 377 378 379 380 381 382 383 384 385 386 387 388 389 390 391 392 393 394 395 396 397 398 399 400 401 402 403 404 405 406 407 408 409 410 411 412 413 414 415 416 417 418 419 420 421 422 423 424 425 426 427 428 429 430 431 432 433 434 435 436 437 438 439 440 441 442 443 444 445 446 447 448 449 450 451 452 453 454 455 456 457 458 459 460 461 462 463 464 465 466 467 468 469 470 471 472 473 474 475 476 477 478 479 480 481 482 483 484 485 486 487 488 489 490 491 492 493 494 495 496 497 498 499 500 501 502 503 504 505 506 507 508 509 510 511 512 513 514 515 516 517 518 519 520 521 522 523 524 525 526 527 528 529 530 531 532 533 534 535 536 537 538 539 540 541 542 543 544 545 546 547 548 549 550 551 552 553 554 555 556 557 558 559 560 561 562 563 564 565 566 567 568 569 570 571 572 573 574 575 576 577 578 579 580 581 582 583 584 585 586 587 588 589 590 591 592 593 594 595 596 597 598 599 600 601 602 603 604 605 606 607 608 609 610 611 612 613 614 615 616 617 618 619 620 621 622 623 624 625 626 627 628 629 630 631 632 633 634 635 636 637 638 639 640 641 642 643 644 645 646 647 648 649 650 651 652 653 654 655 656 657 658 659 660 661 662 663 664 665 666 667 668 669 670 671 672 673 674 675 676 677 678 679 680 681 682 683 684 685 686 687 688 689 690 691 692 693 694 695 696 697 698 699 700 701 702 703 704 705 706 707 708 709 710 711 712 713 714 715 716 717 718 719 720 721 722 723 724 725 726 727 728 729 730 731 732 733 734 735 736 737 738 739 740 741 742 743 744 745 746 747 748 749 750 751 752 753 754 755 756 757 758 759 760 761 762 763 764 765 766 767 768 769 770 771 772 773 774 775 776 777 778 779 780 781 782 783 784 785 786 787 788 789 790 791 792 793 794 795 796 797 798 799 800 801 802 803 804 805 806 807 808 809 810 811 812 813 814 815 816 817 818 819 820 821 822 823 824 825 826 827 828 829 830 831 832 833 834 835 836 837 838 839 840 841 842 843 844 845 846 847 848 849 850 851 852 853 854 855 856 857 858 859 860 861 862 863 864 865 866 867 868 869 870 871 872 873 874 875 876 877 878 879 880 881 882 883 884 885 886 887 888 889 890 891 892 893 894 895 896 897 898 899 900 901 902 903 904 905 906 907 908 909 910 911 912 913 914 915 916 917 918 919 920 921 922 923 924 925 926 927 928 929 930 931 932 933 934 935 936 937 938 939 940 941 942 943 944 945 946 947 948 949 950 951 952 953 954 955 956 957 958 959 960 961 962 963 964 965 966 967 968 969 970 971 972 973 974 975 976 977 978 979 980 981 982 983 984 985 986 987 988 989 990 991 992 993 994 995 996 997 998 999 1000 1001 1002 1003 1004 1005 1006 1007 1008 1009 1010 1011 1012 1013 1014 1015 1016 1017 1018 1019 1020 1021 1022 1023 1024 1025 1026 1027 1028 1029 1030 1031 1032 1033 1034 1035 1036 1037 1038 1039 1040 1041 1042 1043 1044 1045 1046 1047 1048 1049 1050 1051 1052 1053 1054 1055 1056 1057 1058 1059 1060 1061 1062 1063 1064 1065 1066 1067 1068 1069 1070 1071 1072 1073 1074 1075 1076 1077 1078 1079 1080 1081 1082 1083 1084 1085 1086 1087 1088 1089 1090 1091 1092 1093 1094 1095 1096 1097 1098 1099 1100 1101 1102 1103 1104 1105 1106
|
/// @file TubeImplementation.h
/// @author Georgios Bitzes (georgios.bitzes@cern.ch)
#ifndef VECGEOM_VOLUMES_KERNEL_TUBEIMPLEMENTATION_H_
#define VECGEOM_VOLUMES_KERNEL_TUBEIMPLEMENTATION_H_
#include "VecGeom/base/Vector3D.h"
#include "VecGeom/volumes/kernel/GenericKernels.h"
#include "VecGeom/volumes/kernel/shapetypes/TubeTypes.h"
#include "VecGeom/volumes/TubeStruct.h"
#include "VecGeom/volumes/Wedge.h"
#include <cstdio>
#define TUBE_SAFETY_OLD // use old (and faster) definitions of SafetyToIn() and
// SafetyToOut()
namespace vecgeom {
VECGEOM_DEVICE_DECLARE_CONV_TEMPLATE(struct, TubeImplementation, typename);
inline namespace VECGEOM_IMPL_NAMESPACE {
namespace TubeUtilities {
/**
* Returns whether a point is inside a cylindrical sector, as defined
* by the two vectors that go along the endpoints of the sector
*
* The same could be achieved using atan2 to calculate the angle formed
* by the point, the origin and the X-axes, but this is a lot faster,
* using only multiplications and comparisons
*
* (-x*starty + y*startx) >= 0: calculates whether going from the start vector to the point
* we are traveling in the CCW direction (taking the shortest direction, of course)
*
* (-endx*y + endy*x) >= 0: calculates whether going from the point to the end vector
* we are traveling in the CCW direction (taking the shortest direction, of course)
*
* For a sector smaller than pi, we need that BOTH of them hold true - if going from start, to the
* point, and then to the end we are travelling in CCW, it's obvious the point is inside the
* cylindrical sector.
*
* For a sector bigger than pi, only one of the conditions needs to be true. This is less obvious why.
* Since the sector angle is greater than pi, it can be that one of the two vectors might be
* farther than pi away from the point. In that case, the shortest direction will be CW, so even
* if the point is inside, only one of the two conditions need to hold.
*
* If going from start to point is CCW, then certainly the point is inside as the sector
* is larger than pi.
*
* If going from point to end is CCW, again, the point is certainly inside.
*
* This function is a frankensteinian creature that can determine which of the two cases (smaller vs
* larger than pi) to use either at compile time (if it has enough information, saving an if
* statement) or at runtime.
**/
template <typename Real_v, typename ShapeType, typename UnplacedVolumeType, bool onSurfaceT,
bool includeSurface = true>
VECGEOM_FORCE_INLINE
VECCORE_ATT_HOST_DEVICE
void PointInCyclicalSector(UnplacedVolumeType const &volume, Real_v const &x, Real_v const &y,
typename vecCore::Mask_v<Real_v> &ret)
{
using namespace ::vecgeom::TubeTypes;
// assert(SectorType<ShapeType>::value != kNoAngle && "ShapeType without a
// sector passed to PointInCyclicalSector");
Real_v startx(volume.fAlongPhi1x);
Real_v starty(volume.fAlongPhi1y);
Real_v endx(volume.fAlongPhi2x);
Real_v endy(volume.fAlongPhi2y);
bool smallerthanpi;
if (SectorType<ShapeType>::value == kUnknownAngle)
smallerthanpi = volume.fDphi <= M_PI;
else
smallerthanpi = SectorType<ShapeType>::value == kOnePi || SectorType<ShapeType>::value == kSmallerThanPi;
Real_v startCheck = (-x * starty + y * startx);
Real_v endCheck = (-endx * y + endy * x);
if (onSurfaceT) {
// in this case, includeSurface is irrelevant
ret = (Abs(startCheck) <= kHalfTolerance) || (Abs(endCheck) <= kHalfTolerance);
} else {
if (smallerthanpi) {
if (includeSurface)
ret = (startCheck >= -kHalfTolerance) & (endCheck >= -kHalfTolerance);
else
ret = (startCheck >= kHalfTolerance) & (endCheck >= kHalfTolerance);
} else {
if (includeSurface)
ret = (startCheck >= -kHalfTolerance) || (endCheck >= -kHalfTolerance);
else
ret = (startCheck >= kHalfTolerance) || (endCheck >= kHalfTolerance);
}
}
}
template <typename Real_v, typename UnplacedStruct_t, typename TubeType, bool LargestSolution, bool insectorCheck>
VECGEOM_FORCE_INLINE
VECCORE_ATT_HOST_DEVICE
void CircleTrajectoryIntersection(Real_v const &b, Real_v const &c, UnplacedStruct_t const &tube,
Vector3D<Real_v> const &pos, Vector3D<Real_v> const &dir, Real_v &dist,
typename vecCore::Mask_v<Real_v> &ok)
{
using namespace ::vecgeom::TubeTypes;
using Bool_v = vecCore::Mask_v<Real_v>;
Real_v delta = b * b - c;
ok = delta > Real_v(0.);
if (LargestSolution) ok |= delta == Real_v(0.); // this takes care of scratching conventions
vecCore::MaskedAssign(delta, !ok, Real_v(0.));
delta = Sqrt(delta);
if (!LargestSolution) delta = -delta;
dist = -b + delta;
// ok &= vecCore::math::Abs(dist) <= kTolerance;
// vecCore::MaskedAssign(dist,ok,Real_v(0.));
// A.G There may be points propagated to Rmax+tolerance which get here and NEED to se a valid negative crossing
// at distance > tolerance, so we need to enlarge the tolerance
ok &= dist >= -2 * kTolerance;
if (vecCore::EarlyReturnAllowed() && vecCore::MaskEmpty(ok)) return;
if (insectorCheck) {
/* if dist > 100*tube.fRmax, then instead of solving quadratic again,
** use Newton method to recalculate the root, taking previous distance
** as initial guess for newton method.
**
** Commenting the code for root recalculation, coz that sometimes overfits
** and ShapeTester starts complaining for TestAccuracyDistanceToIn tests
** The condition is handled in DistanceToIn itself.
**
** Still keeping the code in comments for reference.
**
** Real_v x(0.), y(0.);
** vecCore::MaskedAssign(x, dist > 100 * tube.fRmax, pos.x() + dist * dir.x());
** vecCore::MaskedAssign(y, dist > 100 * tube.fRmax, pos.y() + dist * dir.y());
** vecCore::MaskedAssign(dist, dist > 100 * tube.fRmax,
** dist - (x * x + y * y - tube.fRmax2) * 0.5 / NonZero(dir.x() * x + dir.y() * y));
*/
Real_v hitz = pos.z() + dist * dir.z();
ok &= (Abs(hitz) <= tube.fZ);
if (vecCore::EarlyReturnAllowed() && vecCore::MaskEmpty(ok)) return;
if (checkPhiTreatment<TubeType>(tube)) {
Bool_v insector(false);
Real_v hitx = pos.x() + dist * dir.x();
Real_v hity = pos.y() + dist * dir.y();
PointInCyclicalSector<Real_v, TubeType, UnplacedStruct_t, false, true>(tube, hitx, hity, insector);
// insector = tube.fPhiWedge.ContainsWithBoundary<Real_v>(
// Vector3D<Real_v>(hitx, hity, hitz) );
ok &= insector;
}
}
}
/*
* Input: A point p and a unit vector v.
* Returns the perpendicular distance between
* (the infinite line defined by the vector)
* and (the point)
*
* How does it work? Let phi be the angle formed
* by v and the position vector of the point.
*
* Let proj be the projection vector of point onto that
* line.
*
* We now have a right triangle formed by points
* (0, 0), point and the projected point
*
* For that triangle, it holds that
* sin theta = perpendiculardistance / (magnitude of point vector)
*
* So perpendiculardistance = sin theta * (magnitude of point vector)
*
* But.. the magnitude of the cross product between the point vector
* and the v vector is:
*
* |p x v| = |p| * |v| * sin theta
*
* Since |v| = 1, the magnitude of the cross product is exactly
* what we're looking for, the formula for which is simply
* p.x * v.y - p.y * v.x
*
*/
template <typename Real_v>
VECGEOM_FORCE_INLINE
VECCORE_ATT_HOST_DEVICE
Real_v PerpDist2D(Real_v const &px, Real_v const &py, Real_v const &vx, Real_v const &vy)
{
return px * vy - py * vx;
}
/*
* Find safety distance from a point to the phi plane
*/
template <typename Real_v, typename UnplacedStruct_t, typename TubeType, bool inside>
VECGEOM_FORCE_INLINE
VECCORE_ATT_HOST_DEVICE
void PhiPlaneSafety(UnplacedStruct_t const &tube, Vector3D<Real_v> const &pos, Real_v &safety)
{
using namespace ::vecgeom::TubeTypes;
if ((SectorType<TubeType>::value == kUnknownAngle && tube.fDphi > M_PI) ||
(SectorType<TubeType>::value == kBiggerThanPi)) {
safety = Sqrt(pos.x() * pos.x() + pos.y() * pos.y());
} else {
safety = kInfLength;
}
Real_v phi1 = PerpDist2D<Real_v>(pos.x(), pos.y(), Real_v(tube.fAlongPhi1x), Real_v(tube.fAlongPhi1y));
if (inside) phi1 *= -1;
if (SectorType<TubeType>::value == kOnePi) {
auto absphi1 = Abs(phi1);
vecCore::MaskedAssign(safety, absphi1 > kHalfTolerance, absphi1);
return;
}
// make sure point falls on positive part of projection
vecCore::MaskedAssign(safety,
phi1 > -kHalfTolerance &&
/*pos.x() * tube.fAlongPhi1x + pos.y() * tube.fAlongPhi1y > 0. &&*/ phi1 < safety,
phi1);
Real_v phi2 = PerpDist2D<Real_v>(pos.x(), pos.y(), Real_v(tube.fAlongPhi2x), Real_v(tube.fAlongPhi2y));
if (!inside) phi2 *= -1;
// make sure point falls on positive part of projection
vecCore::MaskedAssign(safety,
phi2 > -kHalfTolerance &&
/*pos.x() * tube.fAlongPhi2x + pos.y() * tube.fAlongPhi2y > 0. &&*/ phi2 < safety,
phi2);
}
/*
* Check intersection of the trajectory with a phi-plane
* All points of the along-vector of a phi plane lie on
* s * (alongX, alongY)
* All points of the trajectory of the particle lie on
* (x, y) + t * (vx, vy)
* Thefore, it must hold that s * (alongX, alongY) == (x, y) + t * (vx, vy)
* Solving by t we get t = (alongY*x - alongX*y) / (vy*alongX - vx*alongY)
* s = (x + t*vx) / alongX = (newx) / alongX
*
* If we have two non colinear phi-planes, need to make sure
* point falls on its positive direction <=> dot product between
* along vector and hit-point is positive <=> hitx*alongX + hity*alongY > 0
*/
template <typename Real_v, typename UnplacedStruct_t, typename TubeType, bool PositiveDirectionOfPhiVector,
bool insectorCheck>
VECGEOM_FORCE_INLINE
VECCORE_ATT_HOST_DEVICE
void PhiPlaneTrajectoryIntersection(Precision alongX, Precision alongY, Precision normalX, Precision normalY,
UnplacedStruct_t const &tube, Vector3D<Real_v> const &pos,
Vector3D<Real_v> const &dir, Real_v &dist, typename vecCore::Mask_v<Real_v> &ok)
{
dist = kInfLength;
// approaching phi plane from the right side?
// this depends whether we use it for DistanceToIn or DistanceToOut
// Note: wedge normals poing towards the wedge inside, by convention!
Real_v dirDotNorm = dir.x() * normalX + dir.y() * normalY;
if (insectorCheck)
ok = (dirDotNorm > Real_v(0.)); // DistToIn -- require tracks entering volume
else
ok = (dirDotNorm < Real_v(0.)); // DistToOut -- require tracks leaving volume
// if( vecCore::EarlyReturnAllowed() && vecCore::MaskEmpty(ok) ) return;
Real_v dirDotXY = (dir.y() * alongX - dir.x() * alongY);
dist = (alongY * pos.x() - alongX * pos.y()) / NonZero(dirDotXY);
// A.G to check validity, we have to compare with tolerance the safety rather than the distance to plane
ok &= (dist * Abs(dirDotNorm)) > -kHalfTolerance;
// if( vecCore::EarlyReturnAllowed() && vecCore::MaskEmpty(ok) ) return;
if (insectorCheck) {
Real_v hitx = pos.x() + dist * dir.x();
Real_v hity = pos.y() + dist * dir.y();
Real_v hitz = pos.z() + dist * dir.z();
Real_v r2 = hitx * hitx + hity * hity;
ok &= Abs(hitz) <= tube.fTolOz && (r2 >= tube.fTolOrmin2) && (r2 <= tube.fTolOrmax2);
// GL: tested with this if(PosDirPhiVec) around if(insector), so
// if(insector){} requires PosDirPhiVec==true to run
// --> shapeTester still finishes OK (no mismatches) (some cycles saved...)
if (PositiveDirectionOfPhiVector) {
ok = ok && (hitx * alongX + hity * alongY) > Real_v(0.);
}
} else {
if (PositiveDirectionOfPhiVector) {
Real_v hitx = pos.x() + dist * dir.x();
Real_v hity = pos.y() + dist * dir.y();
ok = ok && (hitx * alongX + hity * alongY) >= Real_v(0.);
}
}
}
template <typename Real_v, typename UnplacedStruct_t, bool ForInnerSurface>
VECGEOM_FORCE_INLINE
VECCORE_ATT_HOST_DEVICE
typename vecCore::Mask_v<Real_v> IsOnTubeSurface(UnplacedStruct_t const &tube, Vector3D<Real_v> const &point)
{
const Real_v rho = point.Perp2();
if (ForInnerSurface) {
return (rho >= tube.fTolOrmin2) && (rho <= tube.fTolIrmin2) && (Abs(point.z()) < (tube.fZ + kTolerance));
} else {
return (rho >= tube.fTolIrmax2) && (rho <= tube.fTolOrmax2) && (Abs(point.z()) < (tube.fZ + kTolerance));
}
}
template <typename Real_v, bool ForInnerSurface>
VECCORE_ATT_HOST_DEVICE
Vector3D<Real_v> GetNormal(Vector3D<Real_v> const &point)
{
Vector3D<Real_v> norm(0., 0., 0.);
if (ForInnerSurface) {
norm.Set(-point.x(), -point.y(), 0.);
} else {
norm.Set(point.x(), point.y(), 0.);
}
return norm;
}
template <typename Real_v, typename UnplacedStruct_t, bool ForInnerSurface>
VECGEOM_FORCE_INLINE
VECCORE_ATT_HOST_DEVICE
typename vecCore::Mask_v<Real_v> IsMovingInsideTubeSurface(UnplacedStruct_t const &tube, Vector3D<Real_v> const &point,
Vector3D<Real_v> const &direction)
{
return IsOnTubeSurface<Real_v, UnplacedStruct_t, ForInnerSurface>(tube, point) &&
(direction.Dot(GetNormal<Real_v, ForInnerSurface>(point)) <= Real_v(0.));
}
} // namespace TubeUtilities
template <typename T>
class SPlacedTube;
template <typename T>
class SUnplacedTube;
template <typename tubeTypeT>
struct TubeImplementation {
using UnplacedStruct_t = ::vecgeom::TubeStruct<Precision>;
using UnplacedVolume_t = SUnplacedTube<tubeTypeT>;
using PlacedShape_t = SPlacedTube<UnplacedVolume_t>;
VECCORE_ATT_HOST_DEVICE
static void PrintType()
{
// have to implement this somewhere else
// printf("SpecializedTube<%i, %i, %s>", transCodeT, rotCodeT,
// tubeTypeT::toString());
}
template <typename Stream>
static void PrintType(Stream &s, int transCodeT = translation::kGeneric, int rotCodeT = rotation::kGeneric)
{
s << "SpecializedTube<" << transCodeT << "," << rotCodeT << ",TubeTypes::" << tubeTypeT::toString() << ">";
}
template <typename Stream>
static void PrintImplementationType(Stream &s)
{
(void)s;
// have to implement this somewhere else
// s << "TubeImplementation<" << transCodeT << "," << rotCodeT <<
// ",TubeTypes::" << tubeTypeT::toString() << ">";
}
template <typename Stream>
static void PrintUnplacedType(Stream &s)
{
s << "UnplacedTube";
}
/////GenericKernel Contains/Inside implementation
template <typename Real_v, bool ForInside>
VECGEOM_FORCE_INLINE
VECCORE_ATT_HOST_DEVICE
static void GenericKernelForContainsAndInside(UnplacedStruct_t const &tube, Vector3D<Real_v> const &point,
typename vecCore::Mask_v<Real_v> &completelyinside,
typename vecCore::Mask_v<Real_v> &completelyoutside)
{
using namespace ::vecgeom::TubeTypes;
using Bool_v = vecCore::Mask_v<Real_v>;
// very fast check on z-height
Real_v absz = Abs(point[2]);
completelyoutside = absz > MakePlusTolerant<ForInside>(tube.fZ);
if (ForInside) {
completelyinside = absz < MakeMinusTolerant<ForInside>(tube.fZ);
}
if (vecCore::EarlyReturnAllowed()) {
if (vecCore::MaskFull(completelyoutside)) {
return;
}
}
// check on RMAX
Real_v r2 = point.x() * point.x() + point.y() * point.y();
// calculate cone radius at the z-height of position
completelyoutside |= r2 > MakePlusTolerantSquare<ForInside>(tube.fRmax);
if (ForInside) {
completelyinside &= r2 < MakeMinusTolerantSquare<ForInside>(tube.fRmax);
}
if (vecCore::EarlyReturnAllowed()) {
if (vecCore::MaskFull(completelyoutside)) {
return;
}
}
// check on RMIN
if (checkRminTreatment<tubeTypeT>(tube)) {
completelyoutside |= r2 <= MakeMinusTolerantSquare<ForInside>(tube.fRmin);
if (ForInside) {
completelyinside &= r2 > MakePlusTolerantSquare<ForInside>(tube.fRmin);
}
if (vecCore::EarlyReturnAllowed()) {
if (vecCore::MaskFull(completelyoutside)) {
return;
}
}
}
if (checkPhiTreatment<tubeTypeT>(tube)) {
Bool_v completelyoutsidephi(false);
Bool_v completelyinsidephi(false);
tube.fPhiWedge.GenericKernelForContainsAndInside<Real_v, ForInside>(point, completelyinsidephi,
completelyoutsidephi);
completelyoutside |= completelyoutsidephi;
if (ForInside) completelyinside &= completelyinsidephi;
}
}
template <typename Real_v>
VECGEOM_FORCE_INLINE
VECCORE_ATT_HOST_DEVICE
static void Contains(UnplacedStruct_t const &tube, Vector3D<Real_v> const &point,
typename vecCore::Mask_v<Real_v> &contains)
{
using Bool_v = vecCore::Mask_v<Real_v>;
Bool_v unused, outside;
GenericKernelForContainsAndInside<Real_v, false>(tube, point, unused, outside);
contains = !outside;
}
template <typename Real_v, typename Inside_t>
VECGEOM_FORCE_INLINE
VECCORE_ATT_HOST_DEVICE
static void Inside(UnplacedStruct_t const &tube, Vector3D<Real_v> const &point, Inside_t &inside)
{
using Bool_v = vecCore::Mask_v<Real_v>;
using InsideBool_v = vecCore::Mask_v<Inside_t>;
Bool_v completelyinside, completelyoutside;
GenericKernelForContainsAndInside<Real_v, true>(tube, point, completelyinside, completelyoutside);
inside = EInside::kSurface;
vecCore::MaskedAssign(inside, (InsideBool_v)completelyoutside, Inside_t(EInside::kOutside));
vecCore::MaskedAssign(inside, (InsideBool_v)completelyinside, Inside_t(EInside::kInside));
}
template <typename Real_v>
VECGEOM_FORCE_INLINE
VECCORE_ATT_HOST_DEVICE
static void DistanceToIn(UnplacedStruct_t const &tube, Vector3D<Real_v> const &pointt, Vector3D<Real_v> const &dir,
Real_v const &stepMax, Real_v &distance)
{
Vector3D<Real_v> point = pointt;
Real_v ptDist = point.Mag();
Real_v distToMove(0.);
using Bool_v = vecCore::Mask_v<Real_v>;
Precision order = 100.;
Bool_v cond = (ptDist > order * tube.fMaxVal);
/* if the point is at a distance (DIST) of more than 100 times of the maximum dimension
* (of the shape) from the origin of shape, then before calculating distance, first
* manually move the point with distance ( distToMove = DIST-100.*maxDim) along the
* direction, and then calculate DistanceToIn of new moved point using DistanceToInKernel,
*
* The final distance will be (distToMove + DistanceToIn),
*
* This logic no longer requires the recalculation of the roots using Newton method in
* CircleTrajectoryIntersection function, and will also give consistent results with
* ShapeTester
*/
vecCore__MaskedAssignFunc(distToMove, cond, (ptDist - Real_v(order * tube.fMaxVal)));
vecCore__MaskedAssignFunc(point, cond, point + distToMove * dir);
DistanceToInKernel<Real_v>(tube, point, dir, stepMax, distance);
distance += distToMove;
}
template <typename Real_v>
VECGEOM_FORCE_INLINE
VECCORE_ATT_HOST_DEVICE
static void DistanceToInKernel(UnplacedStruct_t const &tube, Vector3D<Real_v> const &point,
Vector3D<Real_v> const &dir, Real_v const &stepMax, Real_v &distance)
{
(void)stepMax;
using namespace TubeUtilities;
using namespace ::vecgeom::TubeTypes;
using Bool_v = vecCore::Mask_v<Real_v>;
Bool_v done(false);
//=== First, for points outside and moving away --> return infinity
distance = kInfLength;
// outside of Z range and going away?
Real_v distz = Abs(point.z()) - tube.fZ; // avoid a division for now
done |= distz > kHalfTolerance && point.z() * dir.z() >= 0;
// // outside of tube and going away?
// done |= Abs(point.x()) > tube.rmax()+kHalfTolerance && point.x()*dir.x()
// >= 0;
// done |= Abs(point.y()) > tube.rmax()+kHalfTolerance && point.y()*dir.y()
// >= 0;
// if(vecCore::EarlyReturnAllowed() && vecCore::MaskFull(done)) return;
// outside of outer tube and going away?
Real_v rsq = point.x() * point.x() + point.y() * point.y();
Real_v rdotn = point.x() * dir.x() + point.y() * dir.y();
done |= rsq > tube.fTolIrmax2 && rdotn >= 0;
if (vecCore::EarlyReturnAllowed() && vecCore::MaskFull(done)) return;
//=== Next, check all dimensions of the tube, whether points are inside -->
// return -1
vecCore__MaskedAssignFunc(distance, !done, Real_v(-1.0));
// For points inside z-range, return -1
Bool_v inside = distz < -kHalfTolerance;
inside &= rsq < tube.fTolIrmax2;
if (checkRminTreatment<tubeTypeT>(tube)) {
inside &= rsq > tube.fTolIrmin2;
}
if (checkPhiTreatment<tubeTypeT>(tube) && !vecCore::MaskEmpty(inside)) {
Bool_v insector;
PointInCyclicalSector<Real_v, tubeTypeT, UnplacedStruct_t, false, false>(tube, point.x(), point.y(), insector);
inside &= insector;
// inside &= tube.fPhiWedge.ContainsWithoutBoundary<Real_v>( point ); //
// slower than PointInCyclicalSector()
}
done |= inside;
if (vecCore::EarlyReturnAllowed() && vecCore::MaskFull(done)) return;
//=== Next step: check if z-plane is the right entry point (both r,phi
// should be valid at z-plane crossing)
vecCore::MaskedAssign(distance, !done, Real_v(kInfLength));
distz /= NonZeroAbs(dir.z());
// std::cout << "Dist : " << distz << std::endl;
Real_v hitx = point.x() + distz * dir.x();
Real_v hity = point.y() + distz * dir.y();
Real_v r2 = hitx * hitx + hity * hity; // radius of intersection with z-plane
Bool_v okz = distz > -kHalfTolerance && (point.z() * dir.z() < 0);
okz &= (r2 <= tube.fRmax2);
if (checkRminTreatment<tubeTypeT>(tube)) {
okz &= (tube.fRmin2 <= r2);
}
if (checkPhiTreatment<tubeTypeT>(tube) && !vecCore::MaskEmpty(okz)) {
Bool_v insector;
PointInCyclicalSector<Real_v, tubeTypeT, UnplacedStruct_t, false>(tube, hitx, hity, insector);
okz &= insector;
// okz &= tube.fPhiWedge.ContainsWithBoundary<Real_v>(
// Vector3D<Real_v>(hitx, hity, 0.0) );
}
vecCore::MaskedAssign(distance, !done && okz, distz);
done |= okz;
Bool_v isOnSurfaceAndMovingInside = IsMovingInsideTubeSurface<Real_v, UnplacedStruct_t, false>(tube, point, dir);
if (checkRminTreatment<tubeTypeT>(tube)) {
isOnSurfaceAndMovingInside |= IsMovingInsideTubeSurface<Real_v, UnplacedStruct_t, true>(tube, point, dir);
}
if (!checkPhiTreatment<tubeTypeT>(tube)) {
vecCore__MaskedAssignFunc(distance, !done && isOnSurfaceAndMovingInside, Real_v(0.));
done |= isOnSurfaceAndMovingInside;
if (vecCore::MaskFull(done)) return;
} else {
Bool_v insector(false);
PointInCyclicalSector<Real_v, tubeTypeT, UnplacedStruct_t, false>(tube, point.x(), point.y(), insector);
vecCore__MaskedAssignFunc(distance, !done && insector && isOnSurfaceAndMovingInside, Real_v(0.));
done |= (insector && isOnSurfaceAndMovingInside);
if (vecCore::MaskFull(done)) return;
}
// std::cout << "distance : " << distance << std::endl;
// if(vecCore::EarlyReturnAllowed() && vecCore::MaskFull(done) ) return;
//=== Next step: intersection of the trajectories with the two circles
// Here for values used in both rmin and rmax calculations
Real_v invnsq = Real_v(1.) / NonZero(Real_v(1.) - dir.z() * dir.z());
Real_v b = invnsq * rdotn;
/*
* rmax
* If the particle were to hit rmax, it would hit the closest point of the
* two
* --> only consider the smallest solution of the quadratic equation
*/
Real_v crmax = invnsq * (rsq - tube.fRmax2);
Real_v dist_rmax;
Bool_v ok_rmax(false);
CircleTrajectoryIntersection<Real_v, UnplacedStruct_t, tubeTypeT, false, true>(b, crmax, tube, point, dir,
dist_rmax, ok_rmax);
ok_rmax &= dist_rmax < distance;
vecCore::MaskedAssign(distance, !done && ok_rmax, dist_rmax);
done |= ok_rmax;
if (vecCore::EarlyReturnAllowed() && vecCore::MaskFull(done)) return;
/*
* rmin
* If the particle were to hit rmin, it would hit the farthest point of the
* two
* --> only consider the largest solution to the quadratic equation
*/
Real_v dist_rmin(-kInfLength);
Bool_v ok_rmin(false);
if (checkRminTreatment<tubeTypeT>(tube)) {
/*
* What happens if both intersections are valid for the same particle?
* This can only happen when particle is outside of the hollow space and
* will certainly hit rmax, not rmin
* So rmax solution always takes priority over rmin, and will overwrite it
* in case both are valid
*/
Real_v crmin = invnsq * (rsq - tube.fRmin2);
CircleTrajectoryIntersection<Real_v, UnplacedStruct_t, tubeTypeT, true, true>(b, crmin, tube, point, dir,
dist_rmin, ok_rmin);
ok_rmin &= dist_rmin < distance;
vecCore::MaskedAssign(distance, !done && ok_rmin, dist_rmin);
// done |= ok_rmin; // can't be done here, it's wrong in case
// phi-treatment is needed!
}
/*
* Calculate intersection between trajectory and the two phi planes
*/
if (checkPhiTreatment<tubeTypeT>(tube)) {
Real_v dist_phi;
Bool_v ok_phi;
auto const &w = tube.fPhiWedge;
PhiPlaneTrajectoryIntersection<Real_v, UnplacedStruct_t, tubeTypeT, SectorType<tubeTypeT>::value != kOnePi, true>(
tube.fAlongPhi1x, tube.fAlongPhi1y, w.GetNormal1().x(), w.GetNormal1().y(), tube, point, dir, dist_phi,
ok_phi);
ok_phi &= dist_phi < distance;
vecCore::MaskedAssign(distance, !done && ok_phi, dist_phi);
done |= ok_phi;
// if(vecCore::EarlyReturnAllowed() && vecCore::MaskFull(done))
// return;
/*
* If the tube is pi degrees, there's just one phi plane,
* so no need to check again
*/
if (SectorType<tubeTypeT>::value != kOnePi) {
PhiPlaneTrajectoryIntersection<Real_v, UnplacedStruct_t, tubeTypeT, true, true>(
tube.fAlongPhi2x, tube.fAlongPhi2y, w.GetNormal2().x(), w.GetNormal2().y(), tube, point, dir, dist_phi,
ok_phi);
vecCore::MaskedAssign(distance, ok_phi && dist_phi < distance, dist_phi);
}
}
} // end of DistanceToIn()
template <typename Real_v>
VECGEOM_FORCE_INLINE
VECCORE_ATT_HOST_DEVICE
static void DistanceToOut(UnplacedStruct_t const &tube, Vector3D<Real_v> const &point, Vector3D<Real_v> const &dir,
Real_v const &stepMax, Real_v &distance)
{
(void)stepMax;
using namespace ::vecgeom::TubeTypes;
using namespace TubeUtilities;
using Bool_v = vecCore::Mask_v<Real_v>;
distance = Real_v(-1.);
Bool_v done(false);
//=== First we check all dimensions of the tube, whether points are outside
//--> return -1
// For points outside z-range, return -1
Real_v distz = tube.fZ - Abs(point.z()); // avoid a division for now
done |= distz < -kHalfTolerance; // distance is already set to -1
if (vecCore::EarlyReturnAllowed() && vecCore::MaskFull(done)) return;
Real_v rsq = point.x() * point.x() + point.y() * point.y();
Real_v rdotn = dir.x() * point.x() + dir.y() * point.y();
Real_v crmax = rsq - tube.fRmax2; // avoid a division for now
Real_v crmin = rsq;
// if outside of Rmax, return -1
done |= crmax > Real_v(2.0 * kTolerance * tube.fRmax);
if (vecCore::EarlyReturnAllowed() && vecCore::MaskFull(done)) return;
if (checkRminTreatment<tubeTypeT>(tube)) {
// if point is within inner-hole of a hollow tube, it is outside of the
// tube --> return -1
crmin -= tube.fRmin2; // avoid a division for now
done |= crmin < Real_v(-2.0 * kTolerance * tube.fRmin);
if (vecCore::EarlyReturnAllowed() && vecCore::MaskFull(done)) return;
}
// TODO: add outside check for phi-sections here
if (checkPhiTreatment<tubeTypeT>(tube)) {
Bool_v completelyoutsidephi(false);
Bool_v completelyinsidephi(false);
tube.fPhiWedge.GenericKernelForContainsAndInside<Real_v, true>(point, completelyinsidephi, completelyoutsidephi);
done |= completelyoutsidephi;
if (vecCore::EarlyReturnAllowed() && vecCore::MaskFull(done)) return;
}
// OK, since we're here, then distance must be non-negative, and the
// smallest of possible intersections
vecCore::MaskedAssign(distance, !done, Real_v(kInfLength));
Real_v invdirz = Real_v(1.) / NonZero(dir.z());
distz = (tube.fZ - point.z()) * invdirz;
vecCore__MaskedAssignFunc(distz, dir.z() < 0, (-tube.fZ - point.z()) * invdirz);
vecCore::MaskedAssign(distance, !done && dir.z() != Real_v(0.) && distz < distance, distz);
/*
* Find the intersection of the trajectories with the two circles.
* Here I compute values used in both rmin and rmax calculations.
*/
Real_v invnsq = Real_v(1.) / NonZero(Real_v(1.) - dir.z() * dir.z());
Real_v b = invnsq * rdotn;
/*
* rmin
*/
if (checkRminTreatment<tubeTypeT>(tube)) {
Real_v dist_rmin(kInfLength);
Bool_v ok_rmin(false);
crmin *= invnsq;
CircleTrajectoryIntersection<Real_v, UnplacedStruct_t, tubeTypeT, false, false>(b, crmin, tube, point, dir,
dist_rmin, ok_rmin);
vecCore::MaskedAssign(distance, ok_rmin && dist_rmin < distance, dist_rmin);
}
/*
* rmax
*/
Real_v dist_rmax(kInfLength);
Bool_v ok_rmax(false);
crmax *= invnsq;
CircleTrajectoryIntersection<Real_v, UnplacedStruct_t, tubeTypeT, true, false>(b, crmax, tube, point, dir,
dist_rmax, ok_rmax);
vecCore::MaskedAssign(distance, ok_rmax && dist_rmax < distance, dist_rmax);
/* Phi planes
*
* OK, this is getting weird - the only time I need to
* check if hit-point falls on the positive direction
* of the phi-vector is when angle is bigger than PI.
*
* Otherwise, any distance I get from there is guaranteed to
* be larger - so final result would still be correct and no need to
* check it
*/
if (checkPhiTreatment<tubeTypeT>(tube)) {
Real_v dist_phi(kInfLength);
Bool_v ok_phi(false);
auto const &w = tube.fPhiWedge;
if (SectorType<tubeTypeT>::value == kSmallerThanPi) {
Precision normal1X = w.GetNormal1().x();
Precision normal1Y = w.GetNormal1().y();
PhiPlaneTrajectoryIntersection<Real_v, UnplacedStruct_t, tubeTypeT, false, false>(
tube.fAlongPhi1x, tube.fAlongPhi1y, normal1X, normal1Y, tube, point, dir, dist_phi, ok_phi);
vecCore::MaskedAssign(distance, ok_phi && dist_phi < distance, dist_phi);
PhiPlaneTrajectoryIntersection<Real_v, UnplacedStruct_t, tubeTypeT, false, false>(
tube.fAlongPhi2x, tube.fAlongPhi2y, w.GetNormal2().x(), w.GetNormal2().y(), tube, point, dir, dist_phi,
ok_phi);
vecCore::MaskedAssign(distance, ok_phi && dist_phi < distance, dist_phi);
} else if (SectorType<tubeTypeT>::value == kOnePi) {
PhiPlaneTrajectoryIntersection<Real_v, UnplacedStruct_t, tubeTypeT, false, false>(
tube.fAlongPhi2x, tube.fAlongPhi2y, w.GetNormal2().x(), w.GetNormal2().x(), tube, point, dir, dist_phi,
ok_phi);
vecCore::MaskedAssign(distance, ok_phi && dist_phi < distance, dist_phi);
} else {
// angle bigger than pi or unknown
// need to check that point falls on positive direction of phi-vectors
PhiPlaneTrajectoryIntersection<Real_v, UnplacedStruct_t, tubeTypeT, true, false>(
tube.fAlongPhi1x, tube.fAlongPhi1y, w.GetNormal1().x(), w.GetNormal1().y(), tube, point, dir, dist_phi,
ok_phi);
vecCore::MaskedAssign(distance, ok_phi && dist_phi < distance, dist_phi);
PhiPlaneTrajectoryIntersection<Real_v, UnplacedStruct_t, tubeTypeT, true, false>(
tube.fAlongPhi2x, tube.fAlongPhi2y, w.GetNormal2().x(), w.GetNormal2().y(), tube, point, dir, dist_phi,
ok_phi);
vecCore::MaskedAssign(distance, ok_phi && dist_phi < distance, dist_phi);
}
}
return;
}
/// This function keeps track of both positive (outside) and negative (inside)
/// distances separately
template <typename Real_v>
VECGEOM_FORCE_INLINE
VECCORE_ATT_HOST_DEVICE
static void SafetyAssign(Real_v safety, Real_v &positiveSafety, Real_v &negativeSafety)
{
vecCore::MaskedAssign(positiveSafety, safety >= Real_v(0.) && safety < positiveSafety, safety);
vecCore::MaskedAssign(negativeSafety, safety <= Real_v(0.) && safety > negativeSafety, safety);
}
/** SafetyKernel finds distances from point to each face of the tube,
returning
largest negative distance (w.r.t. faces which point is inside of ) and
smallest positive distance (w.r.t. faces which point is outside of)
*/
template <typename Real_v>
VECGEOM_FORCE_INLINE
VECCORE_ATT_HOST_DEVICE
static void SafetyKernel(UnplacedStruct_t const &tube, Vector3D<Real_v> const &point, Real_v &safePos,
Real_v &safeNeg)
{
// TODO: implement caching if input point is not changed
using namespace ::vecgeom::TubeTypes;
using namespace TubeUtilities;
safePos = kInfLength;
safeNeg = -safePos; // reuse to avoid casting overhead
Real_v safez = Abs(point.z()) - tube.fZ;
SafetyAssign(safez, safePos, safeNeg);
Real_v r = Sqrt(point.x() * point.x() + point.y() * point.y());
Real_v safermax = r - tube.fRmax;
SafetyAssign(safermax, safePos, safeNeg);
if (checkRminTreatment<tubeTypeT>(tube)) {
Real_v safermin = tube.fRmin - r;
SafetyAssign(safermin, safePos, safeNeg);
}
if (checkPhiTreatment<tubeTypeT>(tube)) {
Real_v safephi;
PhiPlaneSafety<Real_v, UnplacedStruct_t, tubeTypeT, false>(tube, point, safephi);
SafetyAssign(safephi, safePos, safeNeg);
}
}
template <typename Real_v>
VECGEOM_FORCE_INLINE
VECCORE_ATT_HOST_DEVICE
static void SafetyToIn(UnplacedStruct_t const &tube, Vector3D<Real_v> const &point, Real_v &safety)
{
#ifdef TUBE_SAFETY_OLD
SafetyToInOld(tube, point, safety);
#else
Real_v safetyInsidePoint, safetyOutsidePoint;
SafetyKernel(tube, point, safetyOutsidePoint, safetyInsidePoint);
// Mostly called for points outside --> safetyOutside is finite --> return
// safetyOutside
// If safetyOutside == infinity --> return safetyInside
safety = vecCore::Blend(safetyOutsidePoint == InfinityLength<Real_v>(), safetyInsidePoint, safetyOutsidePoint);
#endif
}
template <typename Real_v>
VECGEOM_FORCE_INLINE
VECCORE_ATT_HOST_DEVICE
static void SafetyToOut(UnplacedStruct_t const &tube, Vector3D<Real_v> const &point, Real_v &safety)
{
#ifdef TUBE_SAFETY_OLD
SafetyToOutOld(tube, point, safety);
#else
Real_v safetyInsidePoint, safetyOutsidePoint;
SafetyKernel<Real_v>(tube, point, safetyOutsidePoint, safetyInsidePoint);
// Mostly called for points inside --> safetyOutside==infinity, return
// |safetyInside| (flip sign)
// If called for points outside -- return -safetyOutside
safety = -vecCore::Blend(safetyOutsidePoint == InfinityLength<Real_v>(), safetyInsidePoint, safetyOutsidePoint);
#endif
}
template <typename Real_v>
VECGEOM_FORCE_INLINE
VECCORE_ATT_HOST_DEVICE
static void SafetyToInOld(UnplacedStruct_t const &tube, Vector3D<Real_v> const &point, Real_v &safety)
{
using namespace ::vecgeom::TubeTypes;
using namespace TubeUtilities;
using Bool_v = vecCore::Mask_v<Real_v>;
safety = Abs(point.z()) - tube.fZ;
Real_v r = Sqrt(point.x() * point.x() + point.y() * point.y());
Real_v safermax = r - tube.fRmax;
vecCore::MaskedAssign(safety, safermax > safety, safermax);
if (checkRminTreatment<tubeTypeT>(tube)) {
Real_v safermin = tube.fRmin - r;
vecCore::MaskedAssign(safety, safermin > safety, safermin);
}
if (checkPhiTreatment<tubeTypeT>(tube)) {
Bool_v insector;
PointInCyclicalSector<Real_v, tubeTypeT, UnplacedStruct_t, false, false>(tube, point.x(), point.y(), insector);
if (vecCore::EarlyReturnAllowed() && vecCore::MaskFull(insector)) return;
Real_v safephi;
PhiPlaneSafety<Real_v, UnplacedStruct_t, tubeTypeT, false>(tube, point, safephi);
vecCore::MaskedAssign(safety, !insector && safephi < kInfLength && safephi > safety, safephi);
}
}
template <typename Real_v>
VECGEOM_FORCE_INLINE
VECCORE_ATT_HOST_DEVICE
static void SafetyToOutOld(UnplacedStruct_t const &tube, Vector3D<Real_v> const &point, Real_v &safety)
{
using namespace ::vecgeom::TubeTypes;
using namespace TubeUtilities;
safety = tube.fZ - Abs(point.z());
Real_v r = Sqrt(point.x() * point.x() + point.y() * point.y());
Real_v safermax = tube.fRmax - r;
vecCore::MaskedAssign(safety, safermax < safety, safermax);
if (checkRminTreatment<tubeTypeT>(tube)) {
Real_v safermin = r - tube.fRmin;
vecCore::MaskedAssign(safety, safermin < safety, safermin);
}
if (checkPhiTreatment<tubeTypeT>(tube)) {
// Now using Wedge to calculate the SafetyToOut for a sector of a tube
Real_v safephi = tube.fPhiWedge.SafetyToOut<Real_v>(point);
vecCore::MaskedAssign(safety, safephi < safety, safephi);
}
}
template <typename Real_v>
VECGEOM_FORCE_INLINE
VECCORE_ATT_HOST_DEVICE
static Vector3D<Real_v> ApproxSurfaceNormalKernel(UnplacedStruct_t const &unplaced, Vector3D<Real_v> const &point)
{
Vector3D<Real_v> norm(0., 0., 0.);
Real_v radius = point.Perp();
Real_v distRMax = vecCore::math::Abs(radius - unplaced.fRmax);
Real_v distRMin = kInfLength;
vecCore__MaskedAssignFunc(distRMax, distRMax < Real_v(0.), InfinityLength<Real_v>());
if (unplaced.fRmin) {
distRMin = Abs(unplaced.fRmin - radius);
vecCore__MaskedAssignFunc(distRMin, distRMin < Real_v(0.), InfinityLength<Real_v>());
}
Real_v distMin = Min(distRMin, distRMax);
Real_v distPhi1 = kInfLength, distPhi2 = kInfLength;
if (unplaced.fDphi != vecgeom::kTwoPi) {
distPhi1 = point.x() * unplaced.fPhiWedge.GetNormal1().x() + point.y() * unplaced.fPhiWedge.GetNormal1().y();
distPhi2 = point.x() * unplaced.fPhiWedge.GetNormal2().x() + point.y() * unplaced.fPhiWedge.GetNormal2().y();
vecCore__MaskedAssignFunc(distPhi1, distPhi1 < Real_v(0.), InfinityLength<Real_v>());
vecCore__MaskedAssignFunc(distPhi2, distPhi2 < Real_v(0.), InfinityLength<Real_v>());
distMin = Min(distMin, Min(distPhi1, distPhi2));
}
Real_v distZ = kInfLength;
vecCore__MaskedAssignFunc(distZ, point.z() < Real_v(0.), vecCore::math::Abs(point.z() + unplaced.fZ));
vecCore__MaskedAssignFunc(distZ, point.z() >= Real_v(0.), vecCore::math::Abs(point.z() - unplaced.fZ));
distMin = Min(distMin, distZ);
if (unplaced.fDphi) {
Vector3D<Real_v> normal1 = unplaced.fPhiWedge.GetNormal1();
Vector3D<Real_v> normal2 = unplaced.fPhiWedge.GetNormal2();
vecCore__MaskedAssignFunc(norm, distMin == distPhi1, -normal1);
vecCore__MaskedAssignFunc(norm, distMin == distPhi2, -normal2);
}
vecCore__MaskedAssignFunc(norm, (distMin == distZ) && (point.z() < Real_v(0.)), Vector3D<Real_v>(0., 0., -1.));
vecCore__MaskedAssignFunc(norm, (distMin == distZ) && (point.z() >= Real_v(0.)), Vector3D<Real_v>(0., 0., 1.));
if (vecCore::math::Abs(point.z()) < (unplaced.fZ + kTolerance)) {
Vector3D<Real_v> temp = point;
temp.z() = Real_v(0.);
vecCore__MaskedAssignFunc(norm, distMin == distRMax, temp.Unit());
if (unplaced.fRmin) vecCore__MaskedAssignFunc(norm, distMin == distRMin, -temp.Unit());
}
return norm;
}
template <typename Real_v, typename Bool_v>
VECGEOM_FORCE_INLINE
VECCORE_ATT_HOST_DEVICE
static void NormalKernel(UnplacedStruct_t const &unplaced, Vector3D<Real_v> const &point, Vector3D<Real_v> &norm,
Bool_v &valid)
{
valid = Bool_v(false);
Bool_v isPointInside(false), isPointOutside(false);
GenericKernelForContainsAndInside<Real_v, true>(unplaced, point, isPointInside, isPointOutside);
if (isPointInside || isPointOutside) {
norm = ApproxSurfaceNormalKernel<Real_v>(unplaced, point);
return;
}
int nosurface = 0; // idea from trapezoid;; change nomenclature as confusing
Precision x2y2 = Sqrt(point.x() * point.x() + point.y() * point.y());
bool inZ = ((point.z() < unplaced.fZ + kTolerance) && (point.z() > -unplaced.fZ - kTolerance)); // in right z range
bool inR = ((x2y2 >= unplaced.fRmin - kTolerance) && (x2y2 <= unplaced.fRmax + kTolerance)); // in right r range
// bool inPhi = fWedge.Contains(point);
// can we combine these two into one??
if (inR && (Abs(point.z() - unplaced.fZ) <= kTolerance)) { // top lid, normal along +Z
norm.Set(0., 0., 1.);
nosurface++;
}
if (inR && (Abs(point.z() + unplaced.fZ) <= kTolerance)) { // bottom base, normal along -Z
if (nosurface > 0) {
// norm exists already; just add to it
norm[2] += Real_v(-1.);
} else {
norm.Set(0., 0., -1.);
}
nosurface++;
}
if (unplaced.fRmin > 0.) {
if (inZ && (Abs(x2y2 - unplaced.fRmin) <= kTolerance)) { // inner tube wall, normal towards center
Precision invx2y2 = 1. / x2y2;
if (nosurface == 0) {
norm[0] = -point[0] * invx2y2;
norm[1] = -point[1] * invx2y2; // -ve due to inwards
norm[2] = Real_v(0.);
} else {
norm[0] += -point[0] * invx2y2;
norm[1] += -point[1] * invx2y2;
}
nosurface++;
}
}
if (inZ && (Abs(x2y2 - unplaced.fRmax) <= kTolerance)) { // outer tube wall, normal outwards
Precision invx2y2 = 1. / x2y2;
if (nosurface > 0) {
norm[0] += point[0] * invx2y2;
norm[1] += point[1] * invx2y2;
} else {
norm[0] = point[0] * invx2y2;
norm[1] = point[1] * invx2y2;
norm[2] = Real_v(0.);
}
nosurface++;
}
// otherwise we get a normal from the wedge
if (unplaced.fDphi < vecgeom::kTwoPi) {
if (inR && unplaced.fPhiWedge.IsOnSurface1(point)) {
if (nosurface == 0)
norm = -unplaced.fPhiWedge.GetNormal1();
else
norm += -unplaced.fPhiWedge.GetNormal1();
nosurface++;
}
if (inR && unplaced.fPhiWedge.IsOnSurface2(point)) {
if (nosurface == 0)
norm = -unplaced.fPhiWedge.GetNormal2();
else
norm += -unplaced.fPhiWedge.GetNormal2();
nosurface++;
}
}
if (nosurface > 1) norm = norm / std::sqrt(1. * nosurface);
valid = nosurface != 0; // this is for testing only
}
}; // End of struct TubeImplementation
} // namespace VECGEOM_IMPL_NAMESPACE
} // namespace vecgeom
#endif
|