1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105
|
#!/usr/bin/python
#
# File: plotNormalizedEvolution.py
#
from ROOT import TCanvas, gROOT, TGraphErrors, TPaveText, TLatex, TFile, gStyle
from PerfHistoryTools import readPerformanceData
### these are the full series
commits = ["c4154901", "1f673e0d", "458e6f08"]
shapes = ["Box", "Trapezoid", "Trd"]
algoNames = ["inside", "distToIn", "safeToIn", "contains", "distToOut", "safeToOut"]
implNames = ["vect", "unspec", "spec", "root", "usolids", "geant4"]
### read in the data points from external files
#.. loop over available commits, filling perf data into datasets
datasets = {}
i = 0
while i < len(commits):
commit = commits[i]
filename = commit+"/"+commit+"-perf.dat"
#print "commit: <%s> and file=<%s>" % (commit, filename)
readPerformanceData( i+1, filename, datasets )
i = i + 1
#.. show how to loop over data
#for key,val in datasets.iteritems():
# print val._shape, val._algo, val._impl, len(val._data), val._minkey, val._maxkey
# for i in range(len(val._data)):
# print " ",val._data[i]._x,val._data[i]._y,val._data[i]._dy
### Plot 1
c1 = TCanvas('c1','c1', 900, 600 )
c1.Divide(3,2)
#.. loop over all shapes requested
for shname in shapes:
shoffset = len(shname)
### normGraphs will contain the normalized datasets
normGraphs = []
for i in range(6): normGraphs.append([]) # 6 empty lists for each shape, one list per algo
#.. loop over perf data loaded into datasets
for key,dset in datasets.iteritems() :
if dset._shape != shname: continue
#algo = dset._algo
#impl = dset._impl
#print "shname=%s - Dataset %s %s %s: %d elements between %s and %s" % (shname, dset._shape, algo, impl, len(dset._data), dset._minkey, dset._maxkey )
#.. search perf data for each algorithm requested
for ialgo in range(6):
ilen = shoffset + len(algoNames[ialgo])
if key[shoffset:ilen] == algoNames[ialgo]:
#.. convert dataset into normalized y-values (processing times) with errors
tmpGraph = dset.tgraphNormError()
#.. search perf data for each implementation requested
for iimpl in range(6):
icolor = iimpl+1
if icolor>4: icolor=icolor+1
#ilen2 = len(implNames[iimpl])
if key[ilen:] == implNames[iimpl]:
#.. here for a shape/algo/implementation combination
#print "found:",impl, implNames[iimpl] #,normGraphs[ialgo].GetNumberOfElements()
tmpGraph.SetLineColor(icolor)
tmpGraph.SetMarkerStyle(20+iimpl)
tmpGraph.SetMarkerColor(icolor)
break
normGraphs[ialgo].append( tmpGraph )
#.. now plot the 6 separate groups of datasets
for ialgo in range(len(normGraphs)):
ipad = ialgo + 1
#.. scan data for ymin,ymax scale adjustment
ymin = 1.1
ymax = 0.9
for igraph in range(len(normGraphs[ialgo])):
tmp = normGraphs[ialgo][igraph]
npts = tmp.GetN()
x = tmp.GetX()
y = tmp.GetY()
for i in range(npts):
#print "point %i: (%f; %f)" % (i,x[i],y[i])
if y[i]<ymin: ymin = y[i]
if y[i]>ymax: ymax = y[i]
#print "ialgo=%i, igraph=%i, ymin=%f, ymax=%f" % (ialgo,igraph,ymin,ymax)
gPad = c1.cd(ipad)
gPad.SetGrid(1,1)
frame1 = gPad.DrawFrame(0, 0.95*ymin, 1+len(commits), 1.05*ymax)
frame1.SetTitle(algoNames[ialgo])
frame1.GetXaxis().SetTitle("Version")
frame1.GetYaxis().SetTitle("Normalized time")
for igra in range(len(normGraphs[ialgo])):
tmp = normGraphs[ialgo][igra]
#tmp.SetLineColor(ialgo+1)
if(tmp.GetN()>0): tmp.Draw("ELP")
c1.Update()
c1.SaveAs("normTimes-"+shname+".png")
|