File: BVH.cpp

package info (click to toggle)
vecgeom 1.2.1%2Bdfsg-1
  • links: PTS, VCS
  • area: main
  • in suites: bookworm
  • size: 23,928 kB
  • sloc: cpp: 88,717; ansic: 6,894; python: 1,035; sh: 582; sql: 538; makefile: 29
file content (461 lines) | stat: -rw-r--r-- 18,602 bytes parent folder | download
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
/// \file BVH.cpp
/// \author Guilherme Amadio

#include "VecGeom/base/BVH.h"

#include "VecGeom/management/ABBoxManager.h"

#include <algorithm>
#include <cmath>
#include <numeric>
#include <stdexcept>

namespace vecgeom {
inline namespace VECGEOM_IMPL_NAMESPACE {

constexpr int BVH::BVH_MAX_DEPTH;

enum class BVH::ConstructionAlgorithm : unsigned int {
  SplitLongestAxis = 0,
  LargestDistanceAlongAxis = 1,
  SurfaceAreaHeuristic = 2,
};

/**
 * \class BVH
 * The BVH class is based on a complete binary tree stored contiguously in an array.
 *
 * For a given node id, 2*id + 1 gives the left child id, and 2*id + 2 gives the right child id.
 * For example, node 0 has its children at positions 1 and 2 in the vector, and for node 2, the
 * child nodes are at positions 5 and 6. The tree has 1 + 2 + 4 + ... + d nodes in total, where
 * d is the depth of the tree, or 1, 3, 7, ..., 2^d - 1 nodes in total. Visually, the ids for each
 * node look like shown below for a tree of depth 3:
 *
 *                                              0
 *                                             / \
 *                                            1   2
 *                                           / \ / \
 *                                          3  4 5  6
 *
 * with 2^3 - 1 = 7 nodes in total. For each node id, fNChild[id] gives the number of children of
 * the logical volume that belong to that node, and fOffset[id] gives the offset in the id map
 * fPrimId where the ids of the child volumes are stored, such that accessing fPrimId[fOffset[id]]
 * gives the first child id, then fPrimId[fOffset[id] + 1] gives the second child, up to fNChild[id]
 * children. The bounding boxes stored in fAABBs are in the original order, so they are accessed by
 * the original child number (i.e. the id stored in fPrimId, not by a node id of the tree itself).
 */

BVH::BVH(LogicalVolume const &volume, int depth) : fLV(volume)
{
  int n;

  /* ptr is a pointer to ndaughters times (min, max) corner vectors of each AABB */
  Vector3D<Precision> *ptr = ABBoxManager::Instance().GetABBoxes(&volume, n);

  if (n <= 0) throw std::logic_error("Cannot construct BVH for volume with no children!");

  fAABBs = new AABB[n];
  for (int i = 0; i < n; ++i)
    fAABBs[i] = AABB(ptr[2 * i], ptr[2 * i + 1]);

  /* Initialize map of primitive ids (i.e. child volume ids) as {0, 1, 2, ...}. */
  fPrimId = new int[n];
  std::iota(fPrimId, fPrimId + n, 0);

  /*
   * If depth = 0, choose depth dynamically based on the number of child volumes, up to the fixed
   * maximum depth. We use n/2 here because that creates a tree with roughly one node for every two
   * volumes, or roughly at most 4 children per leaf node. For example, for 1000 volumes, the
   * default depth would be log2(500) = 8.96 -> 8, with 2^8 - 1 = 511 nodes, and 256 leaf nodes.
   */
  fDepth = std::min(depth ? depth : std::max(0, (int)std::log2(n / 2)), BVH_MAX_DEPTH);

  unsigned int nodes = (2 << fDepth) - 1;

  fNChild = new int[nodes];
  fOffset = new int[nodes];
  fNodes  = new AABB[nodes];
  std::fill(fNChild, fNChild+nodes, 0);
  std::fill(fOffset, fOffset+nodes, -1);

  /* Recursively initialize BVH nodes starting at the root node */
  ComputeNodes(0, fPrimId, fPrimId + n, nodes, ConstructionAlgorithm::SurfaceAreaHeuristic);

  /* Mark internal nodes with a negative number of children to simplify traversal */
  for (unsigned int id = 0; id < nodes / 2; ++id)
    if (fNChild[id] > 8 && (fNChild[id] == fNChild[2 * id + 1] + fNChild[2 * id + 2])) fNChild[id] = -1;
}

#ifdef VECGEOM_ENABLE_CUDA
VECCORE_ATT_DEVICE
BVH::BVH(LogicalVolume const *volume, int depth, int *dPrimId, AABB *dAABBs, int *dOffset, int *dNChild, AABB *dNodes)
    : fLV(*volume), fPrimId(dPrimId), fOffset(dOffset), fNChild(dNChild), fNodes(dNodes), fAABBs(dAABBs), fDepth(depth)
{
}
#endif

VECCORE_ATT_HOST_DEVICE
void BVH::Print(bool verbose) const
{
  printf("\nBVH(%u): addr: %p, depth: %d, nodes: %d, children: %zu, name: %s\n",
         fLV.id(), this, fDepth, (2 << fDepth) - 1, fLV.GetDaughters().size(),
         fLV.GetName() );
  if (verbose) {
    constexpr auto width = 4;
    int nChildToPad = 1;
    for (int depth = fDepth; depth >= 0; --depth) {
      const auto begin = (1 << depth) - 1;
      const auto end   = (2 << depth) - 1;
      for (int node = begin; node < end; ++node) {
        if (nChildToPad > 1) printf("%*c", (nChildToPad-1)*width/2, ' ');
        printf("%3d ", fNChild[node]);
        if (nChildToPad > 1) printf("%*c", (nChildToPad-1)*width/2, ' ');
      }
      printf("\n");
      nChildToPad *= 2;
    }
  }
}

#ifdef VECGEOM_CUDA_INTERFACE
DevicePtr<cuda::BVH> BVH::CopyToGpu(void *addr) const
{
  int *dPrimId;
  int *dOffset;
  int *dNChild;
  cuda::AABB *dAABBs;
  cuda::AABB *dNodes;

  if (!addr) throw std::logic_error("Cannot copy BVH into a null pointer!");

  int n = fLV.GetDaughters().size();

  CudaCheckError(CudaMalloc((void **)&dPrimId, n * sizeof(int)));
  CudaCheckError(CudaMalloc((void **)&dAABBs, n * sizeof(AABB)));

  CudaCheckError(CudaCopyToDevice((void *)dPrimId, (void *)fPrimId, n * sizeof(int)));
  CudaCheckError(CudaCopyToDevice((void *)dAABBs, (void *)fAABBs, n * sizeof(AABB)));

  int nodes = (2 << fDepth) - 1;

  CudaCheckError(CudaMalloc((void **)&dOffset, nodes * sizeof(int)));
  CudaCheckError(CudaMalloc((void **)&dNChild, nodes * sizeof(int)));
  CudaCheckError(CudaMalloc((void **)&dNodes, nodes * sizeof(AABB)));

  CudaCheckError(CudaCopyToDevice((void *)dOffset, (void *)fOffset, nodes * sizeof(int)));
  CudaCheckError(CudaCopyToDevice((void *)dNChild, (void *)fNChild, nodes * sizeof(int)));
  CudaCheckError(CudaCopyToDevice((void *)dNodes, (void *)fNodes, nodes * sizeof(AABB)));

  cuda::LogicalVolume const *dvolume = CudaManager::Instance().LookupLogical(&fLV).GetPtr();

  if (!dvolume) throw std::logic_error("Cannot copy BVH because logical volume does not exist on the device.");

  DevicePtr<cuda::BVH> dBVH(addr);

  dBVH.Construct(dvolume, fDepth, dPrimId, dAABBs, dOffset, dNChild, dNodes);

  return dBVH;
}
#endif

BVH::~BVH()
{
#ifndef VECCORE_CUDA_DEVICE_COMPILATION
  if (fPrimId) delete[] fPrimId;
  if (fOffset) delete[] fOffset;
  if (fNChild) delete[] fNChild;
  if (fNodes) delete[] fNodes;
  if (fAABBs) delete[] fAABBs;
#endif
}

namespace {
int ClosestAxis(Vector3D<Precision> v)
{
  v = v.Abs();
  return v[0] > v[2] ? (v[0] > v[1] ? 0 : 1) : (v[1] > v[2] ? 1 : 2);
}

int * splitAlongLongestAxis(const AABB * primitiveBoxes,
                            int * begin, int * end,
                            const AABB & currentBVHNode) {
  const Vector3D<Precision> basis[] = {{1.0, 0.0, 0.0}, {0.0, 1.0, 0.0}, {0.0, 0.0, 1.0}};
  Vector3D<Precision> p = currentBVHNode.Center();
  Vector3D<Precision> v = basis[ClosestAxis(currentBVHNode.Size())];

  return std::partition(begin, end, [&](size_t i) { return Vector3D<Precision>::Dot(primitiveBoxes[i].Center() - p, v) < 0.0; });
}

int * largestDistanceAlongAxis(const AABB * primitiveBoxes,
                               int * begin, int * end,
                               const AABB & /*currentBVHNode*/) {
  // Compute maximum extension of lower-left front corners along all axes
  float extension[3][2] = {{0.f, 0.f}, {0.f, 0.f}, {0.f, 0.f}};
  for (int axis = 0; axis <= 2; ++axis) {
    auto minMaxIt = std::minmax_element(begin, end, [=](size_t a, size_t b){
      return primitiveBoxes[a].Min()[axis] < primitiveBoxes[b].Min()[axis];
    });
    extension[axis][0] = primitiveBoxes[*minMaxIt.first].Min()[axis];
    extension[axis][1] = primitiveBoxes[*minMaxIt.second].Min()[axis];
  }

  const int splitAxis = std::distance(extension, std::max_element(extension, extension+3, [](float a[], float b[]){
    return a[1]-a[0] < b[1]-b[0];
  }));
  const float middlePoint = (extension[splitAxis][1] + extension[splitAxis][0]) / 2.;
  return std::partition(begin, end, [=](size_t i) {
    return primitiveBoxes[i].Min()[splitAxis] < middlePoint;
  });
}

/**
 * In order to achieve stable splitting for the BVH, we cannot only sort by one axis. There needs
 * to be a strict order, so elements are not silently considered equal by the STL algorithms.
 * @param left,right Compute `left < right`.
 * @param sortAxis Principal axis to sort by.
 */
template<typename T>
bool less3D(const T & left, const T & right, const int sortAxis) {
  return left[sortAxis] < right[sortAxis] ||
    ( left[sortAxis] == right[sortAxis] &&
      ( left[(sortAxis+1)%3] < right[(sortAxis+1)%3] ||
        ( left[(sortAxis+1)%3] == right[(sortAxis+1)%3] && left[(sortAxis+2)%3] < right[(sortAxis+2)%3] )
      )
    );
}

/**
 * Compute the surface areas of bounding boxes that surround the given primitives,
 * sweeping from left to right and vice-versa.
 *
 * For three objects 0 1 2, the vector contains the following surface areas:
 * ( | 0+1+2)  (0 | 1+2)   (0+1 | 2)
 *
 * That is, if the object N is intended to be the pivot object, the surface area of
 * - everything left of N is `areas[N].first`
 * - everything right of N + N itself is `areas[N].second`
 *
 * @param primitiveBoxes Array of bounding boxes of primitives.
 * @param begin Index of first primitive to be considered.
 * @param end   Past-the-end index of primitives to be considered.
 */
std::vector<std::pair<double, double>> sweepSurfaceArea(const AABB * primitiveBoxes, int const * begin, int const * end) {
  if (begin >= end) return {};

  std::vector<std::pair<double, double>> areas(std::distance(begin, end), {0., 0.});

  AABB box{primitiveBoxes[*begin]};
  for (auto it = begin+1; it < end; ++it) {
    areas[it-begin].first = box.SurfaceArea();
    box = AABB::Union(box, primitiveBoxes[*it]);
  }

  AABB box2{primitiveBoxes[*(end-1)]};
  for (auto it = end - 1; it >= begin; --it) {
    box2 = AABB::Union(box2, primitiveBoxes[*(it)]);
    areas[it-begin].second = box2.SurfaceArea();
  }

  return areas;
}

/**
 * Use the surface area heuristic to construct a BVH tree.
 * This algorithm tries to split the primitives such that they form clusters that have a minimal surface
 * area, as this decreases the likelihood that a BVH node is intersected by a ray.
 * Contrary to what's used in standard graphics, the cost function has an additional term that prevents
 * very large clusters. For the conventional SAH, a long line of equally spaced primitives would does not
 * yield an obvious splitting point, as all splits lead to the same total surface area for both child nodes.
 * To prevent this, there is an extra term, which will encourage a 50:50 split.
 * @param primitveBoxes Array of bounding boxes of primitives.
 * @param begin Index of first primitive to be considered.
 * @param end   Past-the-end index of primitives to be considered.
 * @return Index of the first element of the second group. If this is `end`, no good split was found.
 */
int * surfaceAreaHeuristic(const AABB * primitiveBoxes,
                          int * begin, int * end,
                          const AABB & /*currentBVHNode*/) {
  int bestSplitAxis = -1;
  double bestTraversalMetric = std::distance(begin, end);
  int bestSplitObject = -1;
  const auto nObj = std::distance(begin, end);

  int currentSortAxis = 0;
  auto sorter = [primitiveBoxes, &currentSortAxis](int a, int b) {
    const auto centroidA = primitiveBoxes[a].Center();
    const auto centroidB = primitiveBoxes[b].Center();
    constexpr double shift = 0.01;
    return less3D(centroidA + shift*(centroidA - primitiveBoxes[a].Min()),
                  centroidB + shift*(centroidB - primitiveBoxes[b].Min()),
                  currentSortAxis);
  };

  for (int axis = 0; axis <= 2; ++axis) {
    // Sort centroids along axis
    currentSortAxis = axis;
    std::sort(begin, end, sorter);

    // Sweep axis looking for best split
    const std::vector<std::pair<double,double>> surfaceSweep = sweepSurfaceArea(primitiveBoxes, begin, end);
    const auto totSurfArea = surfaceSweep.front().second;

    for (int * splitObject = begin; splitObject < end; ++splitObject) {
      const auto left  = surfaceSweep[splitObject-begin].first/totSurfArea;
      const auto right = surfaceSweep[splitObject-begin].second/totSurfArea;
      assert(left <= 1. && right <= 1.);

      const auto splitMetric =
            left * std::distance(begin, splitObject)
          + right * std::distance(splitObject, end)
          + 0.1 * abs(nObj/2 - std::distance(begin, splitObject) / nObj); // Prefer balanced splits

      if (splitMetric < bestTraversalMetric) {
        bestTraversalMetric = splitMetric;
        bestSplitAxis = axis;
        bestSplitObject = *splitObject;
      }
    }
  }

  if (bestSplitAxis == -1)
    return end;

  currentSortAxis = bestSplitAxis;
  auto result = std::partition(begin, end, [sorter,bestSplitObject](size_t i) {
    return sorter(i, bestSplitObject);
  });

  return result;
}

/**
 * Array of splitting functions that can be used to construct the BVH tree.
 * @see BVH::ConstructionAlgorithm
 */
int * (*splittingFunction[])(const AABB * /*primitveAABBs*/,
                            int * /*firstPrimitive*/, int * /*lastPrimitive*/,
                            const AABB & /*currentBVHNode*/) = {
  &splitAlongLongestAxis,
  &largestDistanceAlongAxis,
  &surfaceAreaHeuristic,
};

} // anonymous namespace

/*
 * BVH::ComputeNodes() initializes nodes of the BVH. It first computes the number of children that
 * belong to the current node based on the iterator range that is passed as input, as well as the
 * offset where the children of this node start. Then, it computes the overall bounding box of the
 * current node as the union of all bounding boxes of its child volumes. Then, if recursion should
 * continue, a splitting plane is chosen based on the longest dimension of the bounding box for the
 * current node, and the children are sorted such that all children on each side of the splitting
 * plane are stored contiguously. Then the function is called recursively with the iterator
 * sub-ranges for volumes on each side of the splitting plane to construct its left and right child
 * nodes. Recursion stops if a child node is deeper than the maximum depth, if the iterator range
 * is empty (i.e. no volumes on this node, maybe because all child volumes' centroids are on the
 * same side of the splitting plane), or if the node contains only a single volume.
 */

void BVH::ComputeNodes(unsigned int id, int *first, int *last, unsigned int nodes,
                       BVH::ConstructionAlgorithm constructionAlgorithm)
{
  if (id >= nodes) return;

  fNChild[id] = std::distance(first, last);
  fOffset[id] = std::distance(fPrimId, first);

  // Node without children. Stop recursing here.
  if (first == last) return;

  fNodes[id] = fAABBs[*first];
  for (auto it = std::next(first); it != last; ++it)
    fNodes[id] = AABB::Union(fNodes[id], fAABBs[*it]);

  // Only one child. No need to continue
  if (std::next(first) == last) return;

  const auto algo = static_cast<unsigned int>(constructionAlgorithm);
  assert(algo < sizeof(splittingFunction));

  int * pivot = splittingFunction[algo](fAABBs, first, last, fNodes[id]);
  assert(first <= pivot && pivot <= last);

  ComputeNodes(2 * id + 1, first, pivot, nodes, constructionAlgorithm);
  ComputeNodes(2 * id + 2, pivot, last,  nodes, constructionAlgorithm);
}

/*
 * BVH::ApproachNextDaughter is very similar to CheckDaughterIntersections but computes the first
 * hit daughter bounding box instead of the next hit shape. This lighter computation is used to
 * first approach the next hit solid before computing the actual distance, in the attempt to
 * reduce the numerical rounding error due to propagation to boundary.
 */

VECCORE_ATT_HOST_DEVICE
void BVH::ApproachNextDaughter(Vector3D<Precision> point, Vector3D<Precision> dir, Precision &step,
                               VPlacedVolume const *last) const
{
  unsigned int stack[BVH_MAX_DEPTH] = {0}, *ptr = &stack[1];

  /* Calculate and reuse inverse direction to save on divisions */
  Vector3D<Precision> invdir(1.0 / NonZero(dir[0]), 1.0 / NonZero(dir[1]), 1.0 / NonZero(dir[2]));

  do {
    unsigned int id = *--ptr; /* pop next node id to be checked from the stack */

    if (fNChild[id] >= 0) {
      /* For leaf nodes, loop over children */
      for (int i = 0; i < fNChild[id]; ++i) {
        int prim = fPrimId[fOffset[id] + i];
        /* Check AABB first, then the volume itself if needed */
        if (fAABBs[prim].IntersectInvDir(point, invdir, step)) {
          auto vol  = fLV.GetDaughters()[prim];
          // Convert point/direction to daughter frame
          Transformation3D const *tr     = vol->GetTransformation();
          Vector3D<Precision> localpoint = tr->Transform(point);
          Vector3D<Precision> localdir   = tr->TransformDirection(dir);
          Vector3D<Precision> invlocaldir(1.0 / NonZero(localdir[0]), 1.0 / NonZero(localdir[1]), 1.0 / NonZero(localdir[2]));
          auto dist = vol->GetUnplacedVolume()->ApproachSolid(localpoint, invlocaldir);
          /* If distance to current child is smaller than current step, update step and hitcandidate */
          if (dist < step && !(dist <= 0.0 && vol == last)) step = dist;
        }
      }
    } else {
      unsigned int childL = 2 * id + 1;
      unsigned int childR = 2 * id + 2;

      /* For internal nodes, check AABBs to know if we need to traverse left and right children */
      Precision tminL = kInfLength, tmaxL = -kInfLength, tminR = kInfLength, tmaxR = -kInfLength;

      fNodes[childL].ComputeIntersectionInvDir(point, invdir, tminL, tmaxL);
      fNodes[childR].ComputeIntersectionInvDir(point, invdir, tminR, tmaxR);

      bool traverseL = tminL <= tmaxL && tmaxL >= 0.0 && tminL < step;
      bool traverseR = tminR <= tmaxR && tmaxR >= 0.0 && tminR < step;

      /*
       * If both left and right nodes need to be checked, check closest one first.
       * This ensures step gets short as fast as possible so we can skip more nodes without checking.
       */
      if (tminR < tminL) {
        if (traverseR) *ptr++ = childR;
        if (traverseL) *ptr++ = childL;
      } else {
        if (traverseL) *ptr++ = childL;
        if (traverseR) *ptr++ = childR;
      }
    }
  } while (ptr > stack);
}


} // namespace VECGEOM_IMPL_NAMESPACE

#ifdef VECCORE_CUDA
namespace cxx {
template void DevicePtr<cuda::BVH>::Construct(cuda::LogicalVolume const *volume, int depth, int *dPrimId,
                                              cuda::AABB *dAABBs, int *dOffset, int *dNChild, cuda::AABB *dNodes) const;
} // namespace cxx
#endif

} // namespace vecgeom