1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 300 301 302 303 304 305 306 307 308 309 310 311 312 313 314 315 316 317 318 319 320 321 322 323 324 325 326 327 328 329 330 331 332 333 334 335 336 337 338 339 340 341 342 343 344 345 346 347 348 349 350 351 352 353 354 355 356 357 358 359 360 361 362 363 364 365 366 367 368 369 370 371 372 373 374 375 376 377 378 379 380 381 382 383 384 385 386 387 388 389 390 391 392 393 394 395 396 397 398 399 400 401 402 403 404 405 406 407 408 409 410 411 412 413 414 415 416 417 418 419 420 421 422 423 424 425 426 427 428 429 430 431 432 433 434 435 436 437 438 439 440 441 442 443 444 445 446 447 448 449 450 451 452 453 454 455 456 457 458 459 460 461
|
/// \file BVH.cpp
/// \author Guilherme Amadio
#include "VecGeom/base/BVH.h"
#include "VecGeom/management/ABBoxManager.h"
#include <algorithm>
#include <cmath>
#include <numeric>
#include <stdexcept>
namespace vecgeom {
inline namespace VECGEOM_IMPL_NAMESPACE {
constexpr int BVH::BVH_MAX_DEPTH;
enum class BVH::ConstructionAlgorithm : unsigned int {
SplitLongestAxis = 0,
LargestDistanceAlongAxis = 1,
SurfaceAreaHeuristic = 2,
};
/**
* \class BVH
* The BVH class is based on a complete binary tree stored contiguously in an array.
*
* For a given node id, 2*id + 1 gives the left child id, and 2*id + 2 gives the right child id.
* For example, node 0 has its children at positions 1 and 2 in the vector, and for node 2, the
* child nodes are at positions 5 and 6. The tree has 1 + 2 + 4 + ... + d nodes in total, where
* d is the depth of the tree, or 1, 3, 7, ..., 2^d - 1 nodes in total. Visually, the ids for each
* node look like shown below for a tree of depth 3:
*
* 0
* / \
* 1 2
* / \ / \
* 3 4 5 6
*
* with 2^3 - 1 = 7 nodes in total. For each node id, fNChild[id] gives the number of children of
* the logical volume that belong to that node, and fOffset[id] gives the offset in the id map
* fPrimId where the ids of the child volumes are stored, such that accessing fPrimId[fOffset[id]]
* gives the first child id, then fPrimId[fOffset[id] + 1] gives the second child, up to fNChild[id]
* children. The bounding boxes stored in fAABBs are in the original order, so they are accessed by
* the original child number (i.e. the id stored in fPrimId, not by a node id of the tree itself).
*/
BVH::BVH(LogicalVolume const &volume, int depth) : fLV(volume)
{
int n;
/* ptr is a pointer to ndaughters times (min, max) corner vectors of each AABB */
Vector3D<Precision> *ptr = ABBoxManager::Instance().GetABBoxes(&volume, n);
if (n <= 0) throw std::logic_error("Cannot construct BVH for volume with no children!");
fAABBs = new AABB[n];
for (int i = 0; i < n; ++i)
fAABBs[i] = AABB(ptr[2 * i], ptr[2 * i + 1]);
/* Initialize map of primitive ids (i.e. child volume ids) as {0, 1, 2, ...}. */
fPrimId = new int[n];
std::iota(fPrimId, fPrimId + n, 0);
/*
* If depth = 0, choose depth dynamically based on the number of child volumes, up to the fixed
* maximum depth. We use n/2 here because that creates a tree with roughly one node for every two
* volumes, or roughly at most 4 children per leaf node. For example, for 1000 volumes, the
* default depth would be log2(500) = 8.96 -> 8, with 2^8 - 1 = 511 nodes, and 256 leaf nodes.
*/
fDepth = std::min(depth ? depth : std::max(0, (int)std::log2(n / 2)), BVH_MAX_DEPTH);
unsigned int nodes = (2 << fDepth) - 1;
fNChild = new int[nodes];
fOffset = new int[nodes];
fNodes = new AABB[nodes];
std::fill(fNChild, fNChild+nodes, 0);
std::fill(fOffset, fOffset+nodes, -1);
/* Recursively initialize BVH nodes starting at the root node */
ComputeNodes(0, fPrimId, fPrimId + n, nodes, ConstructionAlgorithm::SurfaceAreaHeuristic);
/* Mark internal nodes with a negative number of children to simplify traversal */
for (unsigned int id = 0; id < nodes / 2; ++id)
if (fNChild[id] > 8 && (fNChild[id] == fNChild[2 * id + 1] + fNChild[2 * id + 2])) fNChild[id] = -1;
}
#ifdef VECGEOM_ENABLE_CUDA
VECCORE_ATT_DEVICE
BVH::BVH(LogicalVolume const *volume, int depth, int *dPrimId, AABB *dAABBs, int *dOffset, int *dNChild, AABB *dNodes)
: fLV(*volume), fPrimId(dPrimId), fOffset(dOffset), fNChild(dNChild), fNodes(dNodes), fAABBs(dAABBs), fDepth(depth)
{
}
#endif
VECCORE_ATT_HOST_DEVICE
void BVH::Print(bool verbose) const
{
printf("\nBVH(%u): addr: %p, depth: %d, nodes: %d, children: %zu, name: %s\n",
fLV.id(), this, fDepth, (2 << fDepth) - 1, fLV.GetDaughters().size(),
fLV.GetName() );
if (verbose) {
constexpr auto width = 4;
int nChildToPad = 1;
for (int depth = fDepth; depth >= 0; --depth) {
const auto begin = (1 << depth) - 1;
const auto end = (2 << depth) - 1;
for (int node = begin; node < end; ++node) {
if (nChildToPad > 1) printf("%*c", (nChildToPad-1)*width/2, ' ');
printf("%3d ", fNChild[node]);
if (nChildToPad > 1) printf("%*c", (nChildToPad-1)*width/2, ' ');
}
printf("\n");
nChildToPad *= 2;
}
}
}
#ifdef VECGEOM_CUDA_INTERFACE
DevicePtr<cuda::BVH> BVH::CopyToGpu(void *addr) const
{
int *dPrimId;
int *dOffset;
int *dNChild;
cuda::AABB *dAABBs;
cuda::AABB *dNodes;
if (!addr) throw std::logic_error("Cannot copy BVH into a null pointer!");
int n = fLV.GetDaughters().size();
CudaCheckError(CudaMalloc((void **)&dPrimId, n * sizeof(int)));
CudaCheckError(CudaMalloc((void **)&dAABBs, n * sizeof(AABB)));
CudaCheckError(CudaCopyToDevice((void *)dPrimId, (void *)fPrimId, n * sizeof(int)));
CudaCheckError(CudaCopyToDevice((void *)dAABBs, (void *)fAABBs, n * sizeof(AABB)));
int nodes = (2 << fDepth) - 1;
CudaCheckError(CudaMalloc((void **)&dOffset, nodes * sizeof(int)));
CudaCheckError(CudaMalloc((void **)&dNChild, nodes * sizeof(int)));
CudaCheckError(CudaMalloc((void **)&dNodes, nodes * sizeof(AABB)));
CudaCheckError(CudaCopyToDevice((void *)dOffset, (void *)fOffset, nodes * sizeof(int)));
CudaCheckError(CudaCopyToDevice((void *)dNChild, (void *)fNChild, nodes * sizeof(int)));
CudaCheckError(CudaCopyToDevice((void *)dNodes, (void *)fNodes, nodes * sizeof(AABB)));
cuda::LogicalVolume const *dvolume = CudaManager::Instance().LookupLogical(&fLV).GetPtr();
if (!dvolume) throw std::logic_error("Cannot copy BVH because logical volume does not exist on the device.");
DevicePtr<cuda::BVH> dBVH(addr);
dBVH.Construct(dvolume, fDepth, dPrimId, dAABBs, dOffset, dNChild, dNodes);
return dBVH;
}
#endif
BVH::~BVH()
{
#ifndef VECCORE_CUDA_DEVICE_COMPILATION
if (fPrimId) delete[] fPrimId;
if (fOffset) delete[] fOffset;
if (fNChild) delete[] fNChild;
if (fNodes) delete[] fNodes;
if (fAABBs) delete[] fAABBs;
#endif
}
namespace {
int ClosestAxis(Vector3D<Precision> v)
{
v = v.Abs();
return v[0] > v[2] ? (v[0] > v[1] ? 0 : 1) : (v[1] > v[2] ? 1 : 2);
}
int * splitAlongLongestAxis(const AABB * primitiveBoxes,
int * begin, int * end,
const AABB & currentBVHNode) {
const Vector3D<Precision> basis[] = {{1.0, 0.0, 0.0}, {0.0, 1.0, 0.0}, {0.0, 0.0, 1.0}};
Vector3D<Precision> p = currentBVHNode.Center();
Vector3D<Precision> v = basis[ClosestAxis(currentBVHNode.Size())];
return std::partition(begin, end, [&](size_t i) { return Vector3D<Precision>::Dot(primitiveBoxes[i].Center() - p, v) < 0.0; });
}
int * largestDistanceAlongAxis(const AABB * primitiveBoxes,
int * begin, int * end,
const AABB & /*currentBVHNode*/) {
// Compute maximum extension of lower-left front corners along all axes
float extension[3][2] = {{0.f, 0.f}, {0.f, 0.f}, {0.f, 0.f}};
for (int axis = 0; axis <= 2; ++axis) {
auto minMaxIt = std::minmax_element(begin, end, [=](size_t a, size_t b){
return primitiveBoxes[a].Min()[axis] < primitiveBoxes[b].Min()[axis];
});
extension[axis][0] = primitiveBoxes[*minMaxIt.first].Min()[axis];
extension[axis][1] = primitiveBoxes[*minMaxIt.second].Min()[axis];
}
const int splitAxis = std::distance(extension, std::max_element(extension, extension+3, [](float a[], float b[]){
return a[1]-a[0] < b[1]-b[0];
}));
const float middlePoint = (extension[splitAxis][1] + extension[splitAxis][0]) / 2.;
return std::partition(begin, end, [=](size_t i) {
return primitiveBoxes[i].Min()[splitAxis] < middlePoint;
});
}
/**
* In order to achieve stable splitting for the BVH, we cannot only sort by one axis. There needs
* to be a strict order, so elements are not silently considered equal by the STL algorithms.
* @param left,right Compute `left < right`.
* @param sortAxis Principal axis to sort by.
*/
template<typename T>
bool less3D(const T & left, const T & right, const int sortAxis) {
return left[sortAxis] < right[sortAxis] ||
( left[sortAxis] == right[sortAxis] &&
( left[(sortAxis+1)%3] < right[(sortAxis+1)%3] ||
( left[(sortAxis+1)%3] == right[(sortAxis+1)%3] && left[(sortAxis+2)%3] < right[(sortAxis+2)%3] )
)
);
}
/**
* Compute the surface areas of bounding boxes that surround the given primitives,
* sweeping from left to right and vice-versa.
*
* For three objects 0 1 2, the vector contains the following surface areas:
* ( | 0+1+2) (0 | 1+2) (0+1 | 2)
*
* That is, if the object N is intended to be the pivot object, the surface area of
* - everything left of N is `areas[N].first`
* - everything right of N + N itself is `areas[N].second`
*
* @param primitiveBoxes Array of bounding boxes of primitives.
* @param begin Index of first primitive to be considered.
* @param end Past-the-end index of primitives to be considered.
*/
std::vector<std::pair<double, double>> sweepSurfaceArea(const AABB * primitiveBoxes, int const * begin, int const * end) {
if (begin >= end) return {};
std::vector<std::pair<double, double>> areas(std::distance(begin, end), {0., 0.});
AABB box{primitiveBoxes[*begin]};
for (auto it = begin+1; it < end; ++it) {
areas[it-begin].first = box.SurfaceArea();
box = AABB::Union(box, primitiveBoxes[*it]);
}
AABB box2{primitiveBoxes[*(end-1)]};
for (auto it = end - 1; it >= begin; --it) {
box2 = AABB::Union(box2, primitiveBoxes[*(it)]);
areas[it-begin].second = box2.SurfaceArea();
}
return areas;
}
/**
* Use the surface area heuristic to construct a BVH tree.
* This algorithm tries to split the primitives such that they form clusters that have a minimal surface
* area, as this decreases the likelihood that a BVH node is intersected by a ray.
* Contrary to what's used in standard graphics, the cost function has an additional term that prevents
* very large clusters. For the conventional SAH, a long line of equally spaced primitives would does not
* yield an obvious splitting point, as all splits lead to the same total surface area for both child nodes.
* To prevent this, there is an extra term, which will encourage a 50:50 split.
* @param primitveBoxes Array of bounding boxes of primitives.
* @param begin Index of first primitive to be considered.
* @param end Past-the-end index of primitives to be considered.
* @return Index of the first element of the second group. If this is `end`, no good split was found.
*/
int * surfaceAreaHeuristic(const AABB * primitiveBoxes,
int * begin, int * end,
const AABB & /*currentBVHNode*/) {
int bestSplitAxis = -1;
double bestTraversalMetric = std::distance(begin, end);
int bestSplitObject = -1;
const auto nObj = std::distance(begin, end);
int currentSortAxis = 0;
auto sorter = [primitiveBoxes, ¤tSortAxis](int a, int b) {
const auto centroidA = primitiveBoxes[a].Center();
const auto centroidB = primitiveBoxes[b].Center();
constexpr double shift = 0.01;
return less3D(centroidA + shift*(centroidA - primitiveBoxes[a].Min()),
centroidB + shift*(centroidB - primitiveBoxes[b].Min()),
currentSortAxis);
};
for (int axis = 0; axis <= 2; ++axis) {
// Sort centroids along axis
currentSortAxis = axis;
std::sort(begin, end, sorter);
// Sweep axis looking for best split
const std::vector<std::pair<double,double>> surfaceSweep = sweepSurfaceArea(primitiveBoxes, begin, end);
const auto totSurfArea = surfaceSweep.front().second;
for (int * splitObject = begin; splitObject < end; ++splitObject) {
const auto left = surfaceSweep[splitObject-begin].first/totSurfArea;
const auto right = surfaceSweep[splitObject-begin].second/totSurfArea;
assert(left <= 1. && right <= 1.);
const auto splitMetric =
left * std::distance(begin, splitObject)
+ right * std::distance(splitObject, end)
+ 0.1 * abs(nObj/2 - std::distance(begin, splitObject) / nObj); // Prefer balanced splits
if (splitMetric < bestTraversalMetric) {
bestTraversalMetric = splitMetric;
bestSplitAxis = axis;
bestSplitObject = *splitObject;
}
}
}
if (bestSplitAxis == -1)
return end;
currentSortAxis = bestSplitAxis;
auto result = std::partition(begin, end, [sorter,bestSplitObject](size_t i) {
return sorter(i, bestSplitObject);
});
return result;
}
/**
* Array of splitting functions that can be used to construct the BVH tree.
* @see BVH::ConstructionAlgorithm
*/
int * (*splittingFunction[])(const AABB * /*primitveAABBs*/,
int * /*firstPrimitive*/, int * /*lastPrimitive*/,
const AABB & /*currentBVHNode*/) = {
&splitAlongLongestAxis,
&largestDistanceAlongAxis,
&surfaceAreaHeuristic,
};
} // anonymous namespace
/*
* BVH::ComputeNodes() initializes nodes of the BVH. It first computes the number of children that
* belong to the current node based on the iterator range that is passed as input, as well as the
* offset where the children of this node start. Then, it computes the overall bounding box of the
* current node as the union of all bounding boxes of its child volumes. Then, if recursion should
* continue, a splitting plane is chosen based on the longest dimension of the bounding box for the
* current node, and the children are sorted such that all children on each side of the splitting
* plane are stored contiguously. Then the function is called recursively with the iterator
* sub-ranges for volumes on each side of the splitting plane to construct its left and right child
* nodes. Recursion stops if a child node is deeper than the maximum depth, if the iterator range
* is empty (i.e. no volumes on this node, maybe because all child volumes' centroids are on the
* same side of the splitting plane), or if the node contains only a single volume.
*/
void BVH::ComputeNodes(unsigned int id, int *first, int *last, unsigned int nodes,
BVH::ConstructionAlgorithm constructionAlgorithm)
{
if (id >= nodes) return;
fNChild[id] = std::distance(first, last);
fOffset[id] = std::distance(fPrimId, first);
// Node without children. Stop recursing here.
if (first == last) return;
fNodes[id] = fAABBs[*first];
for (auto it = std::next(first); it != last; ++it)
fNodes[id] = AABB::Union(fNodes[id], fAABBs[*it]);
// Only one child. No need to continue
if (std::next(first) == last) return;
const auto algo = static_cast<unsigned int>(constructionAlgorithm);
assert(algo < sizeof(splittingFunction));
int * pivot = splittingFunction[algo](fAABBs, first, last, fNodes[id]);
assert(first <= pivot && pivot <= last);
ComputeNodes(2 * id + 1, first, pivot, nodes, constructionAlgorithm);
ComputeNodes(2 * id + 2, pivot, last, nodes, constructionAlgorithm);
}
/*
* BVH::ApproachNextDaughter is very similar to CheckDaughterIntersections but computes the first
* hit daughter bounding box instead of the next hit shape. This lighter computation is used to
* first approach the next hit solid before computing the actual distance, in the attempt to
* reduce the numerical rounding error due to propagation to boundary.
*/
VECCORE_ATT_HOST_DEVICE
void BVH::ApproachNextDaughter(Vector3D<Precision> point, Vector3D<Precision> dir, Precision &step,
VPlacedVolume const *last) const
{
unsigned int stack[BVH_MAX_DEPTH] = {0}, *ptr = &stack[1];
/* Calculate and reuse inverse direction to save on divisions */
Vector3D<Precision> invdir(1.0 / NonZero(dir[0]), 1.0 / NonZero(dir[1]), 1.0 / NonZero(dir[2]));
do {
unsigned int id = *--ptr; /* pop next node id to be checked from the stack */
if (fNChild[id] >= 0) {
/* For leaf nodes, loop over children */
for (int i = 0; i < fNChild[id]; ++i) {
int prim = fPrimId[fOffset[id] + i];
/* Check AABB first, then the volume itself if needed */
if (fAABBs[prim].IntersectInvDir(point, invdir, step)) {
auto vol = fLV.GetDaughters()[prim];
// Convert point/direction to daughter frame
Transformation3D const *tr = vol->GetTransformation();
Vector3D<Precision> localpoint = tr->Transform(point);
Vector3D<Precision> localdir = tr->TransformDirection(dir);
Vector3D<Precision> invlocaldir(1.0 / NonZero(localdir[0]), 1.0 / NonZero(localdir[1]), 1.0 / NonZero(localdir[2]));
auto dist = vol->GetUnplacedVolume()->ApproachSolid(localpoint, invlocaldir);
/* If distance to current child is smaller than current step, update step and hitcandidate */
if (dist < step && !(dist <= 0.0 && vol == last)) step = dist;
}
}
} else {
unsigned int childL = 2 * id + 1;
unsigned int childR = 2 * id + 2;
/* For internal nodes, check AABBs to know if we need to traverse left and right children */
Precision tminL = kInfLength, tmaxL = -kInfLength, tminR = kInfLength, tmaxR = -kInfLength;
fNodes[childL].ComputeIntersectionInvDir(point, invdir, tminL, tmaxL);
fNodes[childR].ComputeIntersectionInvDir(point, invdir, tminR, tmaxR);
bool traverseL = tminL <= tmaxL && tmaxL >= 0.0 && tminL < step;
bool traverseR = tminR <= tmaxR && tmaxR >= 0.0 && tminR < step;
/*
* If both left and right nodes need to be checked, check closest one first.
* This ensures step gets short as fast as possible so we can skip more nodes without checking.
*/
if (tminR < tminL) {
if (traverseR) *ptr++ = childR;
if (traverseL) *ptr++ = childL;
} else {
if (traverseL) *ptr++ = childL;
if (traverseR) *ptr++ = childR;
}
}
} while (ptr > stack);
}
} // namespace VECGEOM_IMPL_NAMESPACE
#ifdef VECCORE_CUDA
namespace cxx {
template void DevicePtr<cuda::BVH>::Construct(cuda::LogicalVolume const *volume, int depth, int *dPrimId,
cuda::AABB *dAABBs, int *dOffset, int *dNChild, cuda::AABB *dNodes) const;
} // namespace cxx
#endif
} // namespace vecgeom
|