1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275
|
/*
* HybridManager.cpp
*
* Created on: 03.08.2015
* Author: yang.zhang@cern.ch
*/
#include "VecGeom/management/HybridManager2.h"
#include "VecGeom/volumes/LogicalVolume.h"
#include "VecGeom/volumes/PlacedVolume.h"
#include "VecGeom/management/GeoManager.h"
#include "VecGeom/management/ABBoxManager.h"
#include "VecGeom/base/SOA3D.h"
#include "VecGeom/volumes/utilities/VolumeUtilities.h"
#include <map>
#include <vector>
#include <sstream>
#include <queue>
#include <set>
namespace vecgeom {
inline namespace VECGEOM_IMPL_NAMESPACE {
void HybridManager2::InitStructure(LogicalVolume const *lvol)
{
auto numregisteredlvols = GeoManager::Instance().GetRegisteredVolumesCount();
if (fStructureHolder.size() != numregisteredlvols) {
fStructureHolder.resize(numregisteredlvols, nullptr);
}
if (fStructureHolder[lvol->id()] != nullptr) {
RemoveStructure(lvol);
}
BuildStructure_v(lvol);
}
/**
* build bvh bruteforce AND vectorized
*/
void HybridManager2::BuildStructure_v(LogicalVolume const *vol)
{
// for a logical volume we are referring to the functions that builds everything giving just bounding
// boxes
int nDaughters{0};
// get the boxes (and number of boxes), must be called before the BuildStructure
// function call since otherwise nDaughters is not guaranteed to be initialized
auto boxes = ABBoxManager::Instance().GetABBoxes(vol, nDaughters);
auto structure = BuildStructure(boxes, nDaughters);
fStructureHolder[vol->id()] = structure;
assert((int)vol->GetDaughters().size() == nDaughters);
assert(structure == nullptr || structure->fNumberOfOriginalBoxes != 0);
}
/**
* build bvh bruteforce AND vectorized
*/
HybridManager2::HybridBoxAccelerationStructure *HybridManager2::BuildStructure(ABBoxManager::ABBoxContainer_t abboxes,
size_t numberofdaughters) const
{
if (numberofdaughters == 0) return nullptr;
constexpr auto kVS = vecCore::VectorSize<HybridManager2::Float_v>();
size_t numberOfFirstLevelNodes = numberofdaughters / kVS + (numberofdaughters % kVS == 0 ? 0 : 1);
size_t vectorsize =
numberOfFirstLevelNodes / kVS + (numberOfFirstLevelNodes % kVS == 0 ? 0 : 1) + numberOfFirstLevelNodes;
std::vector<std::vector<int>> clusters(numberOfFirstLevelNodes);
SOA3D<Precision> centers(numberOfFirstLevelNodes);
SOA3D<Precision> allvolumecenters(numberofdaughters);
InitClustersWithKMeans(abboxes, numberofdaughters, clusters, centers, allvolumecenters);
// EqualizeClusters(clusters, centers, allvolumecenters, HybridManager2::vecCore::VectorSize<Float_v>());
HybridBoxAccelerationStructure *structure = new HybridBoxAccelerationStructure();
using VectorOfInts = std::vector<int>; // to avoid clang-format error
structure->fNodeToDaughters = new VectorOfInts[numberOfFirstLevelNodes];
ABBoxContainer_v boxes_v = new ABBox_v[vectorsize * 2];
for (size_t i = 0; i < numberOfFirstLevelNodes; ++i) {
for (size_t d = 0; d < clusters[i].size(); ++d) {
int daughterIndex = clusters[i][d];
structure->fNodeToDaughters[i].push_back(daughterIndex);
}
}
// init boxes_v to -inf
int vectorindex_v = 0;
for (size_t i = 0; i < vectorsize * 2; i++) {
boxes_v[i] = -InfinityLength<typename HybridManager2::Float_v>();
}
// init internal nodes for vectorized
for (size_t i = 0; i < numberOfFirstLevelNodes; ++i) {
if (i % kVS == 0) {
vectorindex_v += 2;
}
Vector3D<Precision> lowerCornerFirstLevelNode(kInfLength), upperCornerFirstLevelNode(-kInfLength);
for (size_t d = 0; d < clusters[i].size(); ++d) {
int daughterIndex = clusters[i][d];
Vector3D<Precision> lowerCorner = abboxes[2 * daughterIndex];
Vector3D<Precision> upperCorner = abboxes[2 * daughterIndex + 1];
using vecCore::AssignLane;
AssignLane(boxes_v[vectorindex_v].x(), d, lowerCorner.x());
AssignLane(boxes_v[vectorindex_v].y(), d, lowerCorner.y());
AssignLane(boxes_v[vectorindex_v].z(), d, lowerCorner.z());
AssignLane(boxes_v[vectorindex_v + 1].x(), d, upperCorner.x());
AssignLane(boxes_v[vectorindex_v + 1].y(), d, upperCorner.y());
AssignLane(boxes_v[vectorindex_v + 1].z(), d, upperCorner.z());
for (int axis = 0; axis < 3; axis++) {
lowerCornerFirstLevelNode[axis] = std::min(lowerCornerFirstLevelNode[axis], lowerCorner[axis]);
upperCornerFirstLevelNode[axis] = std::max(upperCornerFirstLevelNode[axis], upperCorner[axis]);
}
}
vectorindex_v += 2;
// insert internal node ABBOX in boxes_v
int indexForInternalNode = i / kVS;
indexForInternalNode = 2 * (kVS + 1) * indexForInternalNode;
int offsetForInternalNode = i % kVS;
using vecCore::AssignLane;
AssignLane(boxes_v[indexForInternalNode].x(), offsetForInternalNode, lowerCornerFirstLevelNode.x());
AssignLane(boxes_v[indexForInternalNode].y(), offsetForInternalNode, lowerCornerFirstLevelNode.y());
AssignLane(boxes_v[indexForInternalNode].z(), offsetForInternalNode, lowerCornerFirstLevelNode.z());
AssignLane(boxes_v[indexForInternalNode + 1].x(), offsetForInternalNode, upperCornerFirstLevelNode.x());
AssignLane(boxes_v[indexForInternalNode + 1].y(), offsetForInternalNode, upperCornerFirstLevelNode.y());
AssignLane(boxes_v[indexForInternalNode + 1].z(), offsetForInternalNode, upperCornerFirstLevelNode.z());
}
structure->fNumberOfOriginalBoxes = numberofdaughters;
structure->fABBoxes_v = boxes_v;
return structure;
}
void HybridManager2::RemoveStructure(LogicalVolume const *lvol)
{
// FIXME: take care of memory deletion within acceleration structure
if (fStructureHolder[lvol->id()]) delete fStructureHolder[lvol->id()];
}
/**
* assign daughter volumes to its closest cluster using the cluster centers stored in centers.
* clusters need to be empty before this function is called
*/
void HybridManager2::AssignVolumesToClusters(std::vector<std::vector<int>> &clusters, SOA3D<Precision> const ¢ers,
SOA3D<Precision> const &allvolumecenters)
{
assert(centers.size() == clusters.size());
int numberOfDaughers = allvolumecenters.size();
int numberOfClusters = clusters.size();
Precision minDistance;
int closestCluster;
for (int d = 0; d < numberOfDaughers; d++) {
minDistance = kInfLength;
closestCluster = -1;
Precision dist;
for (int c = 0; c < numberOfClusters; ++c) {
dist = (allvolumecenters[d] - centers[c]).Length2();
if (dist < minDistance) {
minDistance = dist;
closestCluster = c;
}
}
clusters.at(closestCluster).push_back(d);
}
}
void HybridManager2::RecalculateCentres(SOA3D<Precision> ¢ers, SOA3D<Precision> const &allvolumecenters,
std::vector<std::vector<int>> const &clusters)
{
assert(centers.size() == clusters.size());
auto numberOfClusters = centers.size();
for (size_t c = 0; c < numberOfClusters; ++c) {
Vector3D<Precision> newCenter(0);
for (size_t clustersize = 0; clustersize < clusters[c].size(); ++clustersize) {
int daughterIndex = clusters[c][clustersize];
newCenter += allvolumecenters[daughterIndex];
}
newCenter /= clusters[c].size();
centers.set(c, newCenter);
}
}
template <typename Container_t>
void HybridManager2::InitClustersWithKMeans(ABBoxManager::ABBoxContainer_t boxes, int numberOfDaughters,
Container_t &clusters, SOA3D<Precision> ¢ers,
SOA3D<Precision> &allvolumecenters, int const numberOfIterations) const
{
int numberOfClusters = clusters.size();
Vector3D<Precision> meanCenter(0);
std::set<int> daughterSet;
for (int i = 0; i < numberOfDaughters; ++i) {
Vector3D<Precision> center = 0.5 * (boxes[2 * i] + boxes[2 * i + 1]);
allvolumecenters.set(i, center);
daughterSet.insert(i);
meanCenter += allvolumecenters[i];
}
meanCenter /= numberOfDaughters;
size_t clustersize = (numberOfDaughters + numberOfClusters - 1) / numberOfClusters;
for (int clusterindex = 0; clusterindex < numberOfClusters && !daughterSet.empty(); ++clusterindex) {
Vector3D<Precision> clusterMean(0);
while (clusters[clusterindex].size() < clustersize) {
// parametrized lambda used in std::max_element + std::min_element below
auto sortlambda = [&](Vector3D<Precision> const ¢er) {
return [&, center](int a, int b) {
return (allvolumecenters[a] - center).Mag2() < (allvolumecenters[b] - center).Mag2();
};
};
int addDaughter = clusters[clusterindex].size() == 0
? *std::max_element(daughterSet.begin(), daughterSet.end(), sortlambda(meanCenter))
: *std::min_element(daughterSet.begin(), daughterSet.end(), sortlambda(clusterMean));
daughterSet.erase(addDaughter);
clusters[clusterindex].emplace_back(addDaughter);
if (daughterSet.empty()) break;
meanCenter = (meanCenter * (daughterSet.size() + 1) - allvolumecenters[addDaughter]) / daughterSet.size();
clusterMean = (clusterMean * (clusters[clusterindex].size() - 1) + allvolumecenters[addDaughter]) /
clusters[clusterindex].size();
} // end while
}
}
template <typename Container_t>
void HybridManager2::EqualizeClusters(Container_t &clusters, SOA3D<Precision> ¢ers,
SOA3D<Precision> const &allvolumecenters, size_t const maxNodeSize)
{
// clusters need to be sorted
size_t numberOfClusters = clusters.size();
sort(clusters, IsBiggerCluster);
for (size_t c = 0; c < numberOfClusters; ++c) {
size_t clustersize = clusters[c].size();
if (clustersize > maxNodeSize) {
RecalculateCentres(centers, allvolumecenters, clusters);
distanceQueue clusterelemToCenterMap; // pairs of index of elem in cluster and distance to cluster center
for (size_t clusterElem = 0; clusterElem < clustersize; ++clusterElem) {
Precision distance2 = (centers[c] - allvolumecenters[clusters[c][clusterElem]]).Length2();
clusterelemToCenterMap.push(std::make_pair(clusters[c][clusterElem], distance2));
}
while (clusters[c].size() > maxNodeSize) {
// int daughterIndex = clusters[c][it];
int daughterIndex = clusterelemToCenterMap.top().first;
clusterelemToCenterMap.pop();
distanceQueue clusterToCenterMap2;
for (size_t nextclusterIndex = c + 1; nextclusterIndex < numberOfClusters; nextclusterIndex++) {
if (clusters[nextclusterIndex].size() < maxNodeSize) {
Precision distanceToOtherCenters = (centers[nextclusterIndex] - allvolumecenters[daughterIndex]).Length2();
clusterToCenterMap2.push(std::make_pair(nextclusterIndex, -distanceToOtherCenters));
}
}
// find nearest cluster to daughterIndex
clusters[c].erase(std::find(clusters[c].begin(), clusters[c].end(), daughterIndex));
clusters[clusterToCenterMap2.top().first].push_back(daughterIndex);
// RecalculateCentres(centers, allvolumecenters, clusters);
}
std::sort(clusters.begin() + c + 1, clusters.end(), IsBiggerCluster);
}
}
}
VPlacedVolume const *HybridManager2::PrintHybrid(LogicalVolume const *lvol) const
{
return 0;
}
} // namespace VECGEOM_IMPL_NAMESPACE
} // namespace vecgeom
|