File: HybridManager2.cpp

package info (click to toggle)
vecgeom 1.2.1%2Bdfsg-1
  • links: PTS, VCS
  • area: main
  • in suites: bookworm
  • size: 23,928 kB
  • sloc: cpp: 88,717; ansic: 6,894; python: 1,035; sh: 582; sql: 538; makefile: 29
file content (275 lines) | stat: -rw-r--r-- 11,583 bytes parent folder | download | duplicates (2)
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
/*
 * HybridManager.cpp
 *
 *  Created on: 03.08.2015
 *      Author: yang.zhang@cern.ch
 */

#include "VecGeom/management/HybridManager2.h"
#include "VecGeom/volumes/LogicalVolume.h"
#include "VecGeom/volumes/PlacedVolume.h"
#include "VecGeom/management/GeoManager.h"
#include "VecGeom/management/ABBoxManager.h"
#include "VecGeom/base/SOA3D.h"
#include "VecGeom/volumes/utilities/VolumeUtilities.h"
#include <map>
#include <vector>
#include <sstream>
#include <queue>
#include <set>

namespace vecgeom {
inline namespace VECGEOM_IMPL_NAMESPACE {

void HybridManager2::InitStructure(LogicalVolume const *lvol)
{
  auto numregisteredlvols = GeoManager::Instance().GetRegisteredVolumesCount();
  if (fStructureHolder.size() != numregisteredlvols) {
    fStructureHolder.resize(numregisteredlvols, nullptr);
  }
  if (fStructureHolder[lvol->id()] != nullptr) {
    RemoveStructure(lvol);
  }
  BuildStructure_v(lvol);
}

/**
 * build bvh bruteforce AND vectorized
 */
void HybridManager2::BuildStructure_v(LogicalVolume const *vol)
{
  // for a logical volume we are referring to the functions that builds everything giving just bounding
  // boxes
  int nDaughters{0};
  // get the boxes (and number of boxes), must be called before the BuildStructure
  // function call since otherwise nDaughters is not guaranteed to be initialized
  auto boxes                  = ABBoxManager::Instance().GetABBoxes(vol, nDaughters);
  auto structure              = BuildStructure(boxes, nDaughters);
  fStructureHolder[vol->id()] = structure;
  assert((int)vol->GetDaughters().size() == nDaughters);
  assert(structure == nullptr || structure->fNumberOfOriginalBoxes != 0);
}

/**
 * build bvh bruteforce AND vectorized
 */
HybridManager2::HybridBoxAccelerationStructure *HybridManager2::BuildStructure(ABBoxManager::ABBoxContainer_t abboxes,
                                                                               size_t numberofdaughters) const
{
  if (numberofdaughters == 0) return nullptr;

  constexpr auto kVS             = vecCore::VectorSize<HybridManager2::Float_v>();
  size_t numberOfFirstLevelNodes = numberofdaughters / kVS + (numberofdaughters % kVS == 0 ? 0 : 1);
  size_t vectorsize =
      numberOfFirstLevelNodes / kVS + (numberOfFirstLevelNodes % kVS == 0 ? 0 : 1) + numberOfFirstLevelNodes;

  std::vector<std::vector<int>> clusters(numberOfFirstLevelNodes);
  SOA3D<Precision> centers(numberOfFirstLevelNodes);
  SOA3D<Precision> allvolumecenters(numberofdaughters);

  InitClustersWithKMeans(abboxes, numberofdaughters, clusters, centers, allvolumecenters);

  // EqualizeClusters(clusters, centers, allvolumecenters, HybridManager2::vecCore::VectorSize<Float_v>());
  HybridBoxAccelerationStructure *structure = new HybridBoxAccelerationStructure();

  using VectorOfInts          = std::vector<int>; // to avoid clang-format error
  structure->fNodeToDaughters = new VectorOfInts[numberOfFirstLevelNodes];
  ABBoxContainer_v boxes_v    = new ABBox_v[vectorsize * 2];

  for (size_t i = 0; i < numberOfFirstLevelNodes; ++i) {
    for (size_t d = 0; d < clusters[i].size(); ++d) {
      int daughterIndex = clusters[i][d];
      structure->fNodeToDaughters[i].push_back(daughterIndex);
    }
  }

  // init boxes_v to -inf
  int vectorindex_v = 0;
  for (size_t i = 0; i < vectorsize * 2; i++) {
    boxes_v[i] = -InfinityLength<typename HybridManager2::Float_v>();
  }

  // init internal nodes for vectorized
  for (size_t i = 0; i < numberOfFirstLevelNodes; ++i) {
    if (i % kVS == 0) {
      vectorindex_v += 2;
    }
    Vector3D<Precision> lowerCornerFirstLevelNode(kInfLength), upperCornerFirstLevelNode(-kInfLength);
    for (size_t d = 0; d < clusters[i].size(); ++d) {
      int daughterIndex               = clusters[i][d];
      Vector3D<Precision> lowerCorner = abboxes[2 * daughterIndex];
      Vector3D<Precision> upperCorner = abboxes[2 * daughterIndex + 1];

      using vecCore::AssignLane;
      AssignLane(boxes_v[vectorindex_v].x(), d, lowerCorner.x());
      AssignLane(boxes_v[vectorindex_v].y(), d, lowerCorner.y());
      AssignLane(boxes_v[vectorindex_v].z(), d, lowerCorner.z());
      AssignLane(boxes_v[vectorindex_v + 1].x(), d, upperCorner.x());
      AssignLane(boxes_v[vectorindex_v + 1].y(), d, upperCorner.y());
      AssignLane(boxes_v[vectorindex_v + 1].z(), d, upperCorner.z());
      for (int axis = 0; axis < 3; axis++) {
        lowerCornerFirstLevelNode[axis] = std::min(lowerCornerFirstLevelNode[axis], lowerCorner[axis]);
        upperCornerFirstLevelNode[axis] = std::max(upperCornerFirstLevelNode[axis], upperCorner[axis]);
      }
    }
    vectorindex_v += 2;
    // insert internal node ABBOX in boxes_v
    int indexForInternalNode  = i / kVS;
    indexForInternalNode      = 2 * (kVS + 1) * indexForInternalNode;
    int offsetForInternalNode = i % kVS;
    using vecCore::AssignLane;
    AssignLane(boxes_v[indexForInternalNode].x(), offsetForInternalNode, lowerCornerFirstLevelNode.x());
    AssignLane(boxes_v[indexForInternalNode].y(), offsetForInternalNode, lowerCornerFirstLevelNode.y());
    AssignLane(boxes_v[indexForInternalNode].z(), offsetForInternalNode, lowerCornerFirstLevelNode.z());
    AssignLane(boxes_v[indexForInternalNode + 1].x(), offsetForInternalNode, upperCornerFirstLevelNode.x());
    AssignLane(boxes_v[indexForInternalNode + 1].y(), offsetForInternalNode, upperCornerFirstLevelNode.y());
    AssignLane(boxes_v[indexForInternalNode + 1].z(), offsetForInternalNode, upperCornerFirstLevelNode.z());
  }
  structure->fNumberOfOriginalBoxes = numberofdaughters;
  structure->fABBoxes_v             = boxes_v;
  return structure;
}

void HybridManager2::RemoveStructure(LogicalVolume const *lvol)
{
  // FIXME: take care of memory deletion within acceleration structure
  if (fStructureHolder[lvol->id()]) delete fStructureHolder[lvol->id()];
}

/**
 * assign daughter volumes to its closest cluster using the cluster centers stored in centers.
 * clusters need to be empty before this function is called
 */
void HybridManager2::AssignVolumesToClusters(std::vector<std::vector<int>> &clusters, SOA3D<Precision> const &centers,
                                             SOA3D<Precision> const &allvolumecenters)
{

  assert(centers.size() == clusters.size());
  int numberOfDaughers = allvolumecenters.size();
  int numberOfClusters = clusters.size();

  Precision minDistance;
  int closestCluster;

  for (int d = 0; d < numberOfDaughers; d++) {
    minDistance    = kInfLength;
    closestCluster = -1;

    Precision dist;
    for (int c = 0; c < numberOfClusters; ++c) {
      dist = (allvolumecenters[d] - centers[c]).Length2();
      if (dist < minDistance) {
        minDistance    = dist;
        closestCluster = c;
      }
    }

    clusters.at(closestCluster).push_back(d);
  }
}

void HybridManager2::RecalculateCentres(SOA3D<Precision> &centers, SOA3D<Precision> const &allvolumecenters,
                                        std::vector<std::vector<int>> const &clusters)
{
  assert(centers.size() == clusters.size());
  auto numberOfClusters = centers.size();
  for (size_t c = 0; c < numberOfClusters; ++c) {
    Vector3D<Precision> newCenter(0);
    for (size_t clustersize = 0; clustersize < clusters[c].size(); ++clustersize) {
      int daughterIndex = clusters[c][clustersize];
      newCenter += allvolumecenters[daughterIndex];
    }
    newCenter /= clusters[c].size();
    centers.set(c, newCenter);
  }
}

template <typename Container_t>
void HybridManager2::InitClustersWithKMeans(ABBoxManager::ABBoxContainer_t boxes, int numberOfDaughters,
                                            Container_t &clusters, SOA3D<Precision> &centers,
                                            SOA3D<Precision> &allvolumecenters, int const numberOfIterations) const
{
  int numberOfClusters = clusters.size();

  Vector3D<Precision> meanCenter(0);
  std::set<int> daughterSet;
  for (int i = 0; i < numberOfDaughters; ++i) {
    Vector3D<Precision> center = 0.5 * (boxes[2 * i] + boxes[2 * i + 1]);
    allvolumecenters.set(i, center);
    daughterSet.insert(i);
    meanCenter += allvolumecenters[i];
  }
  meanCenter /= numberOfDaughters;

  size_t clustersize = (numberOfDaughters + numberOfClusters - 1) / numberOfClusters;
  for (int clusterindex = 0; clusterindex < numberOfClusters && !daughterSet.empty(); ++clusterindex) {
    Vector3D<Precision> clusterMean(0);
    while (clusters[clusterindex].size() < clustersize) {
      // parametrized lambda used in std::max_element + std::min_element below
      auto sortlambda = [&](Vector3D<Precision> const &center) {
        return [&, center](int a, int b) {
          return (allvolumecenters[a] - center).Mag2() < (allvolumecenters[b] - center).Mag2();
        };
      };

      int addDaughter = clusters[clusterindex].size() == 0
                            ? *std::max_element(daughterSet.begin(), daughterSet.end(), sortlambda(meanCenter))
                            : *std::min_element(daughterSet.begin(), daughterSet.end(), sortlambda(clusterMean));

      daughterSet.erase(addDaughter);
      clusters[clusterindex].emplace_back(addDaughter);

      if (daughterSet.empty()) break;
      meanCenter  = (meanCenter * (daughterSet.size() + 1) - allvolumecenters[addDaughter]) / daughterSet.size();
      clusterMean = (clusterMean * (clusters[clusterindex].size() - 1) + allvolumecenters[addDaughter]) /
                    clusters[clusterindex].size();
    } // end while
  }
}

template <typename Container_t>
void HybridManager2::EqualizeClusters(Container_t &clusters, SOA3D<Precision> &centers,
                                      SOA3D<Precision> const &allvolumecenters, size_t const maxNodeSize)
{
  // clusters need to be sorted
  size_t numberOfClusters = clusters.size();
  sort(clusters, IsBiggerCluster);
  for (size_t c = 0; c < numberOfClusters; ++c) {
    size_t clustersize = clusters[c].size();
    if (clustersize > maxNodeSize) {
      RecalculateCentres(centers, allvolumecenters, clusters);
      distanceQueue clusterelemToCenterMap; // pairs of index of elem in cluster and distance to cluster center
      for (size_t clusterElem = 0; clusterElem < clustersize; ++clusterElem) {
        Precision distance2 = (centers[c] - allvolumecenters[clusters[c][clusterElem]]).Length2();
        clusterelemToCenterMap.push(std::make_pair(clusters[c][clusterElem], distance2));
      }

      while (clusters[c].size() > maxNodeSize) {
        // int daughterIndex = clusters[c][it];
        int daughterIndex = clusterelemToCenterMap.top().first;
        clusterelemToCenterMap.pop();
        distanceQueue clusterToCenterMap2;
        for (size_t nextclusterIndex = c + 1; nextclusterIndex < numberOfClusters; nextclusterIndex++) {
          if (clusters[nextclusterIndex].size() < maxNodeSize) {
            Precision distanceToOtherCenters = (centers[nextclusterIndex] - allvolumecenters[daughterIndex]).Length2();
            clusterToCenterMap2.push(std::make_pair(nextclusterIndex, -distanceToOtherCenters));
          }
        }
        // find nearest cluster to daughterIndex

        clusters[c].erase(std::find(clusters[c].begin(), clusters[c].end(), daughterIndex));
        clusters[clusterToCenterMap2.top().first].push_back(daughterIndex);
        // RecalculateCentres(centers, allvolumecenters, clusters);
      }

      std::sort(clusters.begin() + c + 1, clusters.end(), IsBiggerCluster);
    }
  }
}

VPlacedVolume const *HybridManager2::PrintHybrid(LogicalVolume const *lvol) const
{
  return 0;
}
} // namespace VECGEOM_IMPL_NAMESPACE
} // namespace vecgeom