1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 300 301 302 303 304 305 306 307 308 309 310 311 312 313 314 315 316 317 318 319 320 321 322 323 324 325 326 327 328 329 330 331 332 333 334 335 336 337 338 339 340 341 342 343 344 345
|
/// \file UnplacedHype.cpp
/// \author Marilena Bandieramonte (marilena.bandieramonte@cern.ch)
#include "VecGeom/volumes/UnplacedHype.h"
#include "VecGeom/management/VolumeFactory.h"
#include "VecGeom/volumes/SpecializedHype.h"
#include "VecGeom/volumes/utilities/GenerationUtilities.h"
#ifdef VECGEOM_ROOT
#include "TGeoHype.h"
#endif
#ifdef VECGEOM_GEANT4
#include "G4Hype.hh"
#endif
#ifndef VECCORE_CUDA
#include "VecGeom/volumes/UnplacedImplAs.h"
#endif
#include <stdio.h>
#include "VecGeom/base/RNG.h"
#include "VecGeom/base/Global.h"
#ifndef VECGEOM_NO_SPECIALIZATION
#include "VecGeom/volumes/UnplacedTube.h"
#endif
namespace vecgeom {
inline namespace VECGEOM_IMPL_NAMESPACE {
template <>
UnplacedHype *Maker<UnplacedHype>::MakeInstance(const Precision rMin, const Precision rMax, const Precision stIn,
const Precision stOut, const Precision dz)
{
#ifndef VECGEOM_NO_SPECIALIZATION
#ifndef VECCORE_CUDA
if (rMin <= 0) {
// Solid Hype
if ((stIn <= 0.) && (stOut > 0.)) {
return new SUnplacedHype<HypeTypes::NonHollowHype>(0., rMax, 0., stOut, dz);
}
// Hype becomes solid Tube with outer radius equals rMax
if ((stIn <= 0.) && (stOut <= 0.)) {
return new SUnplacedImplAs<SUnplacedHype<HypeTypes::NonHollowHype>, SUnplacedTube<TubeTypes::NonHollowTube>>(
0., rMax, dz, 0., 2 * kPi);
}
} else if (rMin > 0) {
// Hype becomes hollow Tube with inner radius equals rMin and outer radius equals rMax
if ((stIn <= 0.) && (stOut <= 0.)) {
return new SUnplacedImplAs<SUnplacedHype<HypeTypes::HollowHype>, SUnplacedTube<TubeTypes::HollowTube>>(
rMin, rMax, dz, 0., 2 * kPi);
}
if ((stIn > 0.) || (stOut > 0.)) {
return new SUnplacedHype<HypeTypes::HollowHype>(rMin, rMax, stIn, stOut, dz);
}
}
return new SUnplacedHype<HypeTypes::UniversalHype>(rMin, rMax, stIn, stOut, dz);
#endif
#endif
return new SUnplacedHype<HypeTypes::UniversalHype>(rMin, rMax, stIn, stOut, dz);
}
#ifndef VECCORE_CUDA
#ifdef VECGEOM_ROOT
TGeoShape const *UnplacedHype::ConvertToRoot(char const *label) const
{
return new TGeoHype(label, GetRmin(), GetStIn() * kRadToDeg, GetRmax(), GetStOut() * kRadToDeg, GetDz());
}
#endif
#ifdef VECGEOM_GEANT4
G4VSolid const *UnplacedHype::ConvertToGeant4(char const *label) const
{
return new G4Hype(label, GetRmin(), GetRmax(), GetStIn(), GetStOut(), GetDz());
}
#endif
#endif
VECCORE_ATT_HOST_DEVICE
void UnplacedHype::DetectConvexity()
{
// Default Convexity set to false
fGlobalConvexity = false;
// Logic to calculate the convexity
if ((fHype.fRmin == 0.) && (fHype.fStIn == 0.) && (fHype.fStOut == 0.)) // Hype becomes Solid Tube.
fGlobalConvexity = true;
}
VECCORE_ATT_HOST_DEVICE
void UnplacedHype::Extent(Vector3D<Precision> &aMin, Vector3D<Precision> &aMax) const
{
// Returns the full 3D cartesian extent of the solid.
Precision rMax = GetEndOuterRadius();
aMin.Set(-rMax, -rMax, -fHype.fDz);
aMax.Set(rMax, rMax, fHype.fDz);
}
std::string UnplacedHype::GetEntityType() const
{
return "Hyperboloid\n";
}
Vector3D<Precision> UnplacedHype::SamplePointOnSurface() const
{
Precision xRand, yRand, zRand, r2, aOne, aTwo, aThree, chose, sinhu;
Precision phi, cosphi, sinphi, rBar2Out, rBar2In, alpha, t, rOut, rIn2, rOut2;
// we use the formula of the area of a surface of revolution to compute
// the areas, using the equation of the hyperbola:
// x^2 + y^2 = (z*tanphi)^2 + r^2
rBar2Out = fHype.fRmax2;
alpha = 2. * kPi * rBar2Out * std::cos(fHype.fStOut) / fHype.fTOut;
t = fHype.fDz * fHype.fTOut / (fHype.fRmax * std::cos(fHype.fStOut));
t = std::log(t + std::sqrt(t * t + 1)); // sqr(t*t)
aOne = std::fabs(2. * alpha * (std::sinh(2. * t) / 4. + t / 2.));
rBar2In = fHype.fRmin2;
alpha = 2. * kPi * rBar2In * std::cos(fHype.fStIn) / fHype.fTIn;
t = fHype.fDz * fHype.fTIn / (fHype.fRmin * std::cos(fHype.fStIn));
t = std::log(t + std::sqrt(t * t + 1)); // sqr(t*t)
aTwo = std::fabs(2. * alpha * (std::sinh(2. * t) / 4. + t / 2.));
aThree = kPi * ((fHype.fRmax2 + (fHype.fDz * fHype.fTOut) * (fHype.fDz * fHype.fTOut) -
(fHype.fRmin2 + (fHype.fDz * fHype.fTIn) * (fHype.fDz * fHype.fTIn))));
if (fHype.fStOut == 0.) {
aOne = std::fabs(2. * kPi * fHype.fRmax * 2. * fHype.fDz);
}
if (fHype.fStIn == 0.) {
aTwo = std::fabs(2. * kPi * fHype.fRmin * 2. * fHype.fDz);
}
phi = RNG::Instance().uniform(0., 2. * kPi);
cosphi = std::cos(phi);
sinphi = std::sin(phi);
sinhu = RNG::Instance().uniform(-1. * fHype.fDz * fHype.fTOut / fHype.fRmax, fHype.fDz * fHype.fTOut / fHype.fRmax);
chose = RNG::Instance().uniform(0., aOne + aTwo + 2. * aThree);
if (chose >= 0. && chose < aOne) {
if (fHype.fStOut != 0.) {
zRand = fHype.fRmax * sinhu / fHype.fTOut;
xRand = std::sqrt((sinhu * sinhu) + 1) * fHype.fRmax * cosphi;
yRand = std::sqrt((sinhu * sinhu) + 1) * fHype.fRmax * sinphi;
return Vector3D<Precision>(xRand, yRand, zRand);
} else {
return Vector3D<Precision>(fHype.fRmax * cosphi, fHype.fRmax * sinphi,
RNG::Instance().uniform(-fHype.fDz, fHype.fDz)); // RandFlat::shoot
}
} else if (chose >= aOne && chose < aOne + aTwo) {
if (fHype.fStIn != 0.) {
sinhu = RNG::Instance().uniform(-1. * fHype.fDz * fHype.fTIn / fHype.fRmin, fHype.fDz * fHype.fTIn / fHype.fRmin);
zRand = fHype.fRmin * sinhu / fHype.fTIn;
xRand = std::sqrt((sinhu * sinhu) + 1) * fHype.fRmin * cosphi;
yRand = std::sqrt((sinhu * sinhu) + 1) * fHype.fRmin * sinphi;
return Vector3D<Precision>(xRand, yRand, zRand);
} else {
return Vector3D<Precision>(fHype.fRmin * cosphi, fHype.fRmin * sinphi,
RNG::Instance().uniform(-1. * fHype.fDz, fHype.fDz));
}
} else if (chose >= aOne + aTwo && chose < aOne + aTwo + aThree) {
rIn2 = fHype.fRmin2 + fHype.fTIn2 * fHype.fDz * fHype.fDz;
rOut2 = fHype.fRmax2 + fHype.fTOut2 * fHype.fDz * fHype.fDz;
rOut = std::sqrt(rOut2);
do {
xRand = RNG::Instance().uniform(-rOut, rOut);
yRand = RNG::Instance().uniform(-rOut, rOut);
r2 = xRand * xRand + yRand * yRand;
} while (!(r2 >= rIn2 && r2 <= rOut2));
zRand = fHype.fDz;
return Vector3D<Precision>(xRand, yRand, zRand);
} else {
rIn2 = fHype.fRmin2 + fHype.fTIn2 * fHype.fDz * fHype.fDz;
rOut2 = fHype.fRmax2 + fHype.fTOut2 * fHype.fDz * fHype.fDz;
rOut = std::sqrt(rOut2);
do {
xRand = RNG::Instance().uniform(-rOut, rOut);
yRand = RNG::Instance().uniform(-rOut, rOut);
r2 = xRand * xRand + yRand * yRand;
} while (!(r2 >= rIn2 && r2 <= rOut2));
zRand = -1. * fHype.fDz;
return Vector3D<Precision>(xRand, yRand, zRand);
}
}
VECCORE_ATT_HOST_DEVICE
void UnplacedHype::GetParametersList(int, Precision *aArray) const
{
aArray[0] = fHype.fRmin; // GetRmin();
aArray[1] = fHype.fStIn; // GetStIn();
aArray[2] = fHype.fRmax; // GetRmax();
aArray[3] = fHype.fStOut; // GetStOut();
aArray[4] = fHype.fDz; // GetDz();
}
VECCORE_ATT_HOST_DEVICE
UnplacedHype *UnplacedHype::Clone() const
{
return new SUnplacedHype<HypeTypes::UniversalHype>(fHype.fRmin, fHype.fStIn, fHype.fRmax, fHype.fStOut, fHype.fDz);
}
std::ostream &UnplacedHype::StreamInfo(std::ostream &os) const
// Definition taken from
{
int oldprc = os.precision(16);
os << "-----------------------------------------------------------\n"
<< " *** Dump for solid - " << GetEntityType() << " ***\n"
<< " ===================================================\n"
<< " Solid type: VecGeomHype\n"
<< " Parameters: \n"
<< " Inner radius: " << fHype.fRmin << " mm \n"
<< " Inner Stereo Angle " << fHype.fStIn << " rad \n"
<< " Outer radius: " << fHype.fRmax << "mm\n"
<< " Outer Stereo Angle " << fHype.fStOut << " rad \n"
<< " Half Height: " << fHype.fDz << " mm \n"
<< "-----------------------------------------------------------\n";
os.precision(oldprc);
return os;
}
VECCORE_ATT_HOST_DEVICE
void UnplacedHype::Print() const
{
printf("UnplacedHype {%.2f, %.2f, %.2f, %.2f, %.2f}", fHype.fRmin, fHype.fRmax, fHype.fStIn, fHype.fStOut, fHype.fDz);
}
void UnplacedHype::Print(std::ostream &os) const
{
os << "UnplacedHype {" << fHype.fRmin << ", " << fHype.fRmax << ", " << fHype.fStIn << ", " << fHype.fStOut << ", "
<< fHype.fDz << "}";
}
#ifndef VECCORE_CUDA
SolidMesh *UnplacedHype::CreateMesh3D(Transformation3D const &trans, size_t nSegments) const
{
typedef Vector3D<Precision> Vec_t;
SolidMesh *sm = new SolidMesh();
// sm->ResetMesh(4 * nMeshVertices, nMeshPolygons);
Precision x, y;
Precision z_step = 2 * GetDz() / nSegments;
Precision z = -GetDz();
Precision phi = 0;
Precision phi_step = 2 * M_PI / nSegments;
Precision cos_angle, sin_angle, outerEq, innerEq;
Vec_t *vertices = new Vec_t[2 * (nSegments + 1) * (nSegments + 1)];
size_t idx0 = 0;
size_t idx1 = (nSegments + 1) * (nSegments + 1);
for (size_t i = 0; i <= nSegments; ++i, z += z_step, phi = 0.) {
outerEq = std::sqrt(GetRmax2() + (z * z * GetTOut2()));
innerEq = std::sqrt(GetRmin2() + (z * z * GetTIn2()));
for (size_t j = 0; j <= nSegments; ++j, phi += phi_step) {
cos_angle = std::cos(phi);
sin_angle = std::sin(phi);
x = outerEq * cos_angle;
y = outerEq * sin_angle;
vertices[idx0++] = Vec_t(x, y, z); // outer
x = innerEq * cos_angle;
y = innerEq * sin_angle;
vertices[idx1++] = Vec_t(x, y, z); // inner
}
}
sm->SetVertices(vertices, 2 * (nSegments + 1) * (nSegments + 1));
delete[] vertices;
sm->TransformVertices(trans);
// lower face
for (size_t j = 0, k = (nSegments + 1) * (nSegments + 1); j < nSegments; j++, k++) {
sm->AddPolygon(4, {j + 1, j, k, k + 1}, true);
}
// upper face
for (size_t i = 0, m = (nSegments + 1) * (nSegments), n = m + (nSegments + 1) * (nSegments + 1); i < nSegments;
i++, m++, n++) {
sm->AddPolygon(4, {n + 1, n, m, m + 1}, true);
}
// outer surface
for (size_t j = 0, k = 0; j < nSegments; j++, k++) {
for (size_t i = 0, l = k + (nSegments + 1); i < nSegments; i++, k++, l++) {
sm->AddPolygon(4, {l + 1, l, k, k + 1}, true);
}
}
// inner surface
for (size_t j = 0, k = (nSegments + 1) * (nSegments + 1); j < nSegments; j++, k++) {
for (size_t i = 0, l = k + (nSegments + 1); i < nSegments; i++, k++, l++) {
sm->AddPolygon(4, {l + 1, k + 1, k, l}, true);
}
}
return sm;
}
#endif
#ifdef VECGEOM_CUDA_INTERFACE
DevicePtr<cuda::VUnplacedVolume> UnplacedHype::CopyToGpu(DevicePtr<cuda::VUnplacedVolume> const in_gpu_ptr) const
{
return CopyToGpuImpl<SUnplacedHype<HypeTypes::UniversalHype>>(in_gpu_ptr, fHype.fRmin, fHype.fRmax, fHype.fStIn,
fHype.fStOut, fHype.fDz);
}
DevicePtr<cuda::VUnplacedVolume> UnplacedHype::CopyToGpu() const
{
return CopyToGpuImpl<SUnplacedHype<HypeTypes::UniversalHype>>();
}
#endif // VECGEOM_CUDA_INTERFACE
} // namespace VECGEOM_IMPL_NAMESPACE
#ifdef VECCORE_CUDA
namespace cxx {
template size_t DevicePtr<cuda::SUnplacedHype<cuda::HypeTypes::UniversalHype>>::SizeOf();
template void DevicePtr<cuda::SUnplacedHype<cuda::HypeTypes::UniversalHype>>::Construct(
const Precision rmin, const Precision rmax, const Precision stIn, const Precision stOut, const Precision z) const;
} // namespace cxx
#endif
} // namespace vecgeom
|