1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226
|
// This file is part of VecGeom and is distributed under the
// conditions in the file LICENSE.txt in the top directory.
// For the full list of authors see CONTRIBUTORS.txt and `git log`.
/// @file source/UnplacedParallelepiped.cpp
/// @author Created by Johannes de Fine Licht
/// @author Modified and completed by Mihaela Gheata, Evgueni Tcherniaev
#include "VecGeom/volumes/UnplacedParallelepiped.h"
#include <stdio.h>
#include "VecGeom/management/VolumeFactory.h"
#include "VecGeom/volumes/SpecializedParallelepiped.h"
#include "VecGeom/volumes/utilities/GenerationUtilities.h"
#include "VecGeom/base/RNG.h"
namespace vecgeom {
inline namespace VECGEOM_IMPL_NAMESPACE {
#ifndef VECCORE_CUDA
SolidMesh *UnplacedParallelepiped::CreateMesh3D(Transformation3D const &trans, size_t nSegments) const
{
SolidMesh *sm = new SolidMesh();
sm->ResetMesh(8, 6);
Precision dx = fPara.fDimensions[0] * 2;
Precision dy = fPara.fDimensions[1] * 2;
Precision dz = fPara.fDimensions[2] * 2;
Precision gamma = fPara.fPhi;
Precision alpha = fPara.fTheta;
Precision beta = fPara.fAlpha;
Precision intermediate = (std::cos(alpha) - std::cos(beta) * std::cos(gamma)) / std::sin(gamma);
Vector3D<Precision> a = Vector3D<Precision>(dx, 0, 0);
Vector3D<Precision> b = Vector3D<Precision>(dy * std::cos(gamma), dy * std::sin(gamma), 0);
Vector3D<Precision> c =
Vector3D<Precision>(dz * std::cos(beta), dz * intermediate,
dz * std::sqrt(1 - std::cos(beta) * std::cos(beta) - intermediate * intermediate));
Utils3D::Vec_t vertices[] = {a, a + b, a + b + c, a + c, Vector3D<Precision>(), b, b + c, c};
// subtract to move the origin to center
Vector3D<Precision> origin = (a + b + c) * 0.5;
for (auto &vertex : vertices)
vertex -= origin;
sm->SetVertices(vertices, 8);
sm->TransformVertices(trans);
sm->AddPolygon(4, {0, 1, 2, 3}, true);
sm->AddPolygon(4, {4, 7, 6, 5}, true);
sm->AddPolygon(4, {0, 4, 5, 1}, true);
sm->AddPolygon(4, {1, 5, 6, 2}, true);
sm->AddPolygon(4, {2, 6, 7, 3}, true);
sm->AddPolygon(4, {3, 7, 4, 0}, true);
return sm;
}
#endif
//______________________________________________________________________________
VECCORE_ATT_HOST_DEVICE
void UnplacedParallelepiped::Print() const
{
printf("UnplacedParallelepiped {%.2f, %.2f, %.2f, %.2f, %.2f, %.2f}", GetX(), GetY(), GetZ(), GetTanAlpha(),
GetTanThetaCosPhi(), GetTanThetaSinPhi());
}
//______________________________________________________________________________
void UnplacedParallelepiped::Print(std::ostream &os) const
{
os << "UnplacedParallelepiped {" << GetX() << ", " << GetY() << ", " << GetZ() << ", " << GetTanAlpha() << ", "
<< GetTanThetaCosPhi() << ", " << GetTanThetaSinPhi();
}
//______________________________________________________________________________
VECCORE_ATT_HOST_DEVICE
void UnplacedParallelepiped::Extent(Vector3D<Precision> &aMin, Vector3D<Precision> &aMax) const
{
// Returns the full 3D cartesian extent of the solid.
Precision dx = fPara.fDimensions[0] + fPara.fDimensions[1] * Abs(fPara.fTanAlpha) +
fPara.fDimensions[2] * Abs(fPara.fTanThetaCosPhi);
Precision dy = fPara.fDimensions[1] + fPara.fDimensions[2] * Abs(fPara.fTanThetaSinPhi);
Precision dz = fPara.fDimensions[2];
aMin.Set(-dx, -dy, -dz);
aMax.Set(dx, dy, dz);
}
//______________________________________________________________________________
Vector3D<Precision> UnplacedParallelepiped::SamplePointOnSurface() const
{
// Set array for selection of facet
Precision surf[6];
surf[0] = fPara.fAreas[0];
surf[1] = surf[0] + fPara.fAreas[0];
surf[2] = surf[1] + fPara.fAreas[1];
surf[3] = surf[2] + fPara.fAreas[1];
surf[4] = surf[3] + fPara.fAreas[2];
surf[5] = surf[4] + fPara.fAreas[2];
// Select facet
Precision select = surf[5] * RNG::Instance().uniform();
int isurf = 5;
if (select <= surf[4]) isurf = 4;
if (select <= surf[3]) isurf = 3;
if (select <= surf[2]) isurf = 2;
if (select <= surf[1]) isurf = 1;
if (select <= surf[0]) isurf = 0;
// Set working variables
Precision Dx = fPara.fDimensions[0];
Precision Dy = fPara.fDimensions[1];
Precision Dz = fPara.fDimensions[2];
Precision DyTanAlpha = Dy * fPara.fTanAlpha;
Precision DzTanThetaCosPhi = Dz * fPara.fTanThetaCosPhi;
Precision DzTanThetaSinPhi = Dz * fPara.fTanThetaSinPhi;
// Sample random point
Vector3D<Precision> p0, p1, p2;
switch (isurf) {
case 0: // -x
p0.Set(-DzTanThetaCosPhi - DyTanAlpha - Dx, -DzTanThetaSinPhi - Dy, -Dz);
p1.Set(-DzTanThetaCosPhi + DyTanAlpha - Dx, -DzTanThetaSinPhi + Dy, -Dz);
p2.Set(DzTanThetaCosPhi - DyTanAlpha - Dx, DzTanThetaSinPhi - Dy, Dz);
break;
case 1: // +x
p0.Set(-DzTanThetaCosPhi - DyTanAlpha + Dx, -DzTanThetaSinPhi - Dy, -Dz);
p1.Set(DzTanThetaCosPhi - DyTanAlpha + Dx, DzTanThetaSinPhi - Dy, Dz);
p2.Set(-DzTanThetaCosPhi + DyTanAlpha + Dx, -DzTanThetaSinPhi + Dy, -Dz);
break;
case 2: // -y
p0.Set(-DzTanThetaCosPhi - DyTanAlpha - Dx, -DzTanThetaSinPhi - Dy, -Dz);
p1.Set(DzTanThetaCosPhi - DyTanAlpha - Dx, DzTanThetaSinPhi - Dy, Dz);
p2.Set(-DzTanThetaCosPhi - DyTanAlpha + Dx, -DzTanThetaSinPhi - Dy, -Dz);
break;
case 3: // +y
p0.Set(-DzTanThetaCosPhi + DyTanAlpha - Dx, -DzTanThetaSinPhi + Dy, -Dz);
p1.Set(-DzTanThetaCosPhi + DyTanAlpha + Dx, -DzTanThetaSinPhi + Dy, -Dz);
p2.Set(DzTanThetaCosPhi + DyTanAlpha - Dx, DzTanThetaSinPhi + Dy, Dz);
break;
case 4: // -z
p0.Set(-DzTanThetaCosPhi - DyTanAlpha - Dx, -DzTanThetaSinPhi - Dy, -Dz);
p1.Set(-DzTanThetaCosPhi - DyTanAlpha + Dx, -DzTanThetaSinPhi - Dy, -Dz);
p2.Set(-DzTanThetaCosPhi + DyTanAlpha - Dx, -DzTanThetaSinPhi + Dy, -Dz);
break;
case 5: // +z
p0.Set(DzTanThetaCosPhi - DyTanAlpha - Dx, DzTanThetaSinPhi - Dy, Dz);
p1.Set(DzTanThetaCosPhi + DyTanAlpha - Dx, DzTanThetaSinPhi + Dy, Dz);
p2.Set(DzTanThetaCosPhi - DyTanAlpha + Dx, DzTanThetaSinPhi - Dy, Dz);
break;
}
Precision u = RNG::Instance().uniform();
Precision v = RNG::Instance().uniform();
return p0 + u * (p1 - p0) + v * (p2 - p0);
}
//______________________________________________________________________________
template <TranslationCode transCodeT, RotationCode rotCodeT>
VECCORE_ATT_DEVICE
VPlacedVolume *UnplacedParallelepiped::Create(LogicalVolume const *const logical_volume,
Transformation3D const *const transformation,
#ifdef VECCORE_CUDA
const int id, const int copy_no, const int child_id,
#endif
VPlacedVolume *const placement)
{
return CreateSpecializedWithPlacement<SpecializedParallelepiped<transCodeT, rotCodeT>>(
#ifdef VECCORE_CUDA
logical_volume, transformation, id, copy_no, child_id, placement); // TODO: add bounding box?
#else
logical_volume, transformation, placement);
#endif
}
//______________________________________________________________________________
VECCORE_ATT_DEVICE
VPlacedVolume *UnplacedParallelepiped::SpecializedVolume(LogicalVolume const *const volume,
Transformation3D const *const transformation,
const TranslationCode trans_code, const RotationCode rot_code,
#ifdef VECCORE_CUDA
const int id, const int copy_no, const int child_id,
#endif
VPlacedVolume *const placement) const
{
return VolumeFactory::CreateByTransformation<UnplacedParallelepiped>(volume, transformation, trans_code, rot_code,
#ifdef VECCORE_CUDA
id, copy_no, child_id,
#endif
placement);
}
#ifdef VECGEOM_CUDA_INTERFACE
//______________________________________________________________________________
DevicePtr<cuda::VUnplacedVolume> UnplacedParallelepiped::CopyToGpu(
DevicePtr<cuda::VUnplacedVolume> const in_gpu_ptr) const
{
return CopyToGpuImpl<UnplacedParallelepiped>(in_gpu_ptr, GetX(), GetY(), GetZ(), GetAlpha(), GetTheta(), GetPhi());
}
//______________________________________________________________________________
DevicePtr<cuda::VUnplacedVolume> UnplacedParallelepiped::CopyToGpu() const
{
return CopyToGpuImpl<UnplacedParallelepiped>();
}
#endif // VECGEOM_CUDA_INTERFACE
} // namespace VECGEOM_IMPL_NAMESPACE
#ifdef VECCORE_CUDA
namespace cxx {
template size_t DevicePtr<cuda::UnplacedParallelepiped>::SizeOf();
template void DevicePtr<cuda::UnplacedParallelepiped>::Construct(const Precision x, const Precision y,
const Precision z, const Precision alpha,
const Precision theta, const Precision phi) const;
} // namespace cxx
#endif
} // namespace vecgeom
|