1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 300 301 302 303 304 305 306 307 308 309 310 311 312 313 314 315 316 317 318 319 320 321 322 323 324 325 326 327 328 329 330 331 332 333 334 335 336 337 338 339 340 341 342 343 344 345 346 347 348 349 350 351 352 353 354 355 356 357 358 359 360 361 362 363 364 365 366 367 368 369 370 371 372 373 374 375 376 377 378 379 380 381 382 383 384 385 386 387 388 389 390 391 392 393 394 395 396 397 398 399 400 401 402 403 404 405 406 407 408 409 410 411 412 413 414 415 416 417 418 419 420 421 422 423 424 425 426 427 428 429 430 431 432 433 434 435 436 437 438 439 440 441 442 443 444 445 446 447 448 449 450 451 452 453 454 455 456 457 458 459 460 461 462 463 464 465 466 467 468 469 470 471 472 473 474 475 476 477 478 479 480 481 482 483 484 485 486 487 488 489 490 491 492 493 494 495 496 497 498 499 500 501 502 503 504 505 506 507 508 509 510 511 512 513 514 515 516 517 518 519 520 521 522 523 524 525 526 527 528 529 530 531 532 533 534 535 536 537 538 539 540 541 542 543 544 545 546 547 548 549 550 551 552 553 554 555 556 557 558 559 560 561 562 563 564 565 566 567 568 569 570 571 572 573 574 575 576 577 578 579 580 581 582 583 584 585 586 587 588 589 590 591 592 593 594 595 596 597 598 599 600 601 602 603 604 605 606 607 608 609 610 611 612 613 614 615 616 617 618 619 620 621 622 623 624 625 626 627 628 629 630 631 632 633 634 635 636 637 638 639 640 641 642 643 644 645 646 647 648 649 650 651 652 653 654 655 656 657 658 659 660 661 662 663 664 665 666 667 668 669 670 671 672 673 674 675 676 677 678 679 680 681 682 683 684 685 686 687 688 689 690 691 692 693 694 695 696 697 698 699 700 701 702 703 704 705 706 707 708 709 710 711 712 713 714 715 716 717 718 719 720 721 722 723 724 725 726 727 728 729 730 731 732 733 734 735 736 737 738 739 740 741 742 743 744 745 746 747 748 749 750 751 752 753 754 755 756 757 758 759 760 761 762 763 764 765 766 767 768 769 770 771 772 773 774 775 776 777 778 779 780 781 782 783 784 785 786 787 788 789 790 791 792 793 794 795 796 797 798 799 800 801 802 803 804 805 806 807 808 809 810 811 812 813 814 815 816 817 818 819 820 821 822 823 824 825 826 827 828 829 830 831 832 833 834 835 836 837 838 839 840 841 842 843 844 845 846 847 848 849 850 851 852 853 854 855 856 857 858 859 860 861 862 863 864 865 866 867 868 869 870 871 872 873 874 875 876 877 878 879 880 881 882 883 884 885 886 887 888 889 890 891 892 893 894 895 896 897 898 899 900 901 902 903 904 905 906 907 908 909 910 911 912 913 914 915 916 917 918 919 920 921 922 923 924 925 926 927 928 929 930 931 932 933 934 935 936 937 938 939 940 941 942 943 944 945 946 947 948 949 950 951 952 953 954 955 956 957 958 959 960 961 962 963 964 965 966 967 968 969 970 971 972 973 974 975 976 977 978 979 980 981 982 983 984 985 986 987 988 989 990 991 992 993 994 995 996 997 998 999 1000 1001 1002 1003 1004 1005 1006 1007 1008 1009 1010 1011 1012 1013 1014 1015 1016 1017 1018 1019 1020 1021 1022 1023 1024 1025 1026 1027 1028 1029 1030 1031 1032 1033 1034 1035 1036 1037 1038 1039 1040 1041 1042 1043 1044 1045 1046 1047 1048 1049 1050 1051 1052 1053 1054 1055 1056
|
/*
* UnplacedPolycone.cpp
*
* Created on: Dec 8, 2014
* Author: swenzel
*/
#include "VecGeom/management/GeoManager.h"
#include "VecGeom/volumes/UnplacedPolycone.h"
#include "VecGeom/volumes/UnplacedCone.h"
#include "VecGeom/volumes/UnplacedTube.h"
#include "VecGeom/volumes/PlacedPolycone.h"
#include "VecGeom/volumes/PlacedCone.h"
#include "VecGeom/volumes/SpecializedPolycone.h"
#include "VecGeom/management/VolumeFactory.h"
#include "VecGeom/volumes/utilities/GenerationUtilities.h"
#ifndef VECCORE_CUDA
#include "VecGeom/base/RNG.h"
#include "VecGeom/volumes/UnplacedImplAs.h"
#endif
#ifdef VECGEOM_ROOT
#include "TGeoPcon.h"
#endif
#ifdef VECGEOM_GEANT4
#include "G4Polycone.hh"
#endif
#include <iostream>
#include <cstdio>
#include <vector>
#include "VecGeom/base/Vector.h"
#include "VecGeom/management/GeoManager.h"
#include "VecGeom/volumes/ReducedPolycone.h"
namespace vecgeom {
inline namespace VECGEOM_IMPL_NAMESPACE {
template <>
UnplacedPolycone *Maker<UnplacedPolycone>::MakeInstance(Precision phistart, Precision deltaphi, int Nz,
Precision const *z, Precision const *rmin,
Precision const *rmax)
{
/*
* NOTE : Since Polycone is internally using Cone, So for specializaton
* we are using ConeTypes as PolyconeTypes
*/
#ifndef VECGEOM_NO_SPECIALIZATION
if (Nz == 2) {
Precision dz = std::fabs(z[1] - z[0]) / 2.;
std::cerr << "*****************************************************************************" << std::endl
<< "****** WARNING :: Trying to create Polycone with only one section... ********" << std::endl
<< "***************** This would Result in reduced performance ******************" << std::endl
<< "@@@@@@@@@@@@@ Suggestion : Create CONE instead of Polycone @@@@@@@@@@@@@@@@@@" << std::endl
<< "*****************************************************************************" << std::endl;
return new SUnplacedImplAs<SUnplacedPolycone<ConeTypes::UniversalCone>, SUnplacedCone<ConeTypes::UniversalCone>>(
rmin[0], rmax[0], rmin[1], rmax[1], dz, phistart, deltaphi);
}
/* Considering following cases for specialization of Polycon */
// 1) When the polycone is Completely NonHollow Polycone
bool isCompletelyNonHollow = false;
for (int i = 0; i < Nz; i++) {
if (i == 0) {
isCompletelyNonHollow = rmin[i] <= 0.;
} else {
isCompletelyNonHollow &= rmin[i] <= 0.;
}
}
if (isCompletelyNonHollow) {
if (deltaphi >= 2 * M_PI) {
return new SUnplacedPolycone<ConeTypes::NonHollowCone>(phistart, 2 * M_PI, Nz, z, rmin, rmax);
}
if (deltaphi == M_PI) {
return new SUnplacedPolycone<ConeTypes::NonHollowConeWithPiSector>(phistart, deltaphi, Nz, z, rmin, rmax);
}
}
// 2) When the polycone is Completely Hollow Polycone
bool isCompletelyHollow = false;
for (int i = 0; i < Nz; i++) {
if (i == 0) {
isCompletelyHollow = rmin[i] > 0.;
} else {
isCompletelyHollow &= rmin[i] > 0.;
}
}
if (isCompletelyHollow) {
if (deltaphi >= 2 * M_PI) {
return new SUnplacedPolycone<ConeTypes::HollowCone>(phistart, 2 * M_PI, Nz, z, rmin, rmax);
}
if (deltaphi == M_PI) {
return new SUnplacedPolycone<ConeTypes::HollowConeWithPiSector>(phistart, deltaphi, Nz, z, rmin, rmax);
}
}
/*
* In case the polycone is the combination of Hollow and NonHollow Sections, then
* we will pass it on to most general case ie. Universal.
*/
return new SUnplacedPolycone<ConeTypes::UniversalCone>(phistart, deltaphi, Nz, z, rmin, rmax);
#else
return new SUnplacedPolycone<ConeTypes::UniversalCone>(phistart, deltaphi, Nz, z, rmin, rmax);
#endif
}
template <>
UnplacedPolycone *Maker<UnplacedPolycone>::MakeInstance(Precision phistart, Precision deltaphi, int Nz,
Precision const *r, Precision const *z)
{
return new SUnplacedPolycone<ConeTypes::UniversalCone>(phistart, deltaphi, Nz, r, z);
}
#ifndef VECCORE_CUDA
#ifdef VECGEOM_ROOT
TGeoShape const *UnplacedPolycone::ConvertToRoot(char const *label) const
{
// UnplacedPolycone const *unplaced = GetUnplacedVolume();
std::vector<Precision> rmin;
std::vector<Precision> rmax;
std::vector<Precision> z;
auto original_param = fPolycone.fOriginal_parameters;
if (original_param) {
for (unsigned int i = 0; i < fPolycone.fNz; ++i) {
z.push_back(original_param->fHZ_values[i]);
rmin.push_back(original_param->fHRmin[i]);
rmax.push_back(original_param->fHRmax[i]);
}
} else {
ReconstructSectionArrays(z, rmin, rmax);
}
TGeoPcon *rootshape = new TGeoPcon(fPolycone.fStartPhi * kRadToDeg, fPolycone.fDeltaPhi * kRadToDeg, z.size());
if (fPolycone.fNz != z.size()) std::cout << "WARNING: Inconsistency in number of polycone sections\n";
for (unsigned int i = 0; i < fPolycone.fNz; ++i)
rootshape->DefineSection(i, z[i], rmin[i], rmax[i]);
return rootshape;
}
#endif
#ifdef VECGEOM_GEANT4
G4VSolid const *UnplacedPolycone::ConvertToGeant4(char const *label) const
{
// UnplacedPolycone const *unplaced = GetUnplacedVolume();
std::vector<Precision> rmin;
std::vector<Precision> rmax;
std::vector<Precision> z;
// unplaced->
ReconstructSectionArrays(z, rmin, rmax);
G4Polycone *g4shape =
new G4Polycone("", fPolycone.fStartPhi, fPolycone.fDeltaPhi, z.size(), &z[0], &rmin[0], &rmax[0]);
return g4shape;
}
#endif
#endif
VECCORE_ATT_HOST_DEVICE
void UnplacedPolycone::Reset()
{
Precision phiStart = fPolycone.fOriginal_parameters->fHStart_angle;
Precision *Z, *R1, *R2;
int num = fPolycone.fOriginal_parameters->fHNum_z_planes; // fOriginalParameters-> NumZPlanes;
Z = new Precision[num];
R1 = new Precision[num];
R2 = new Precision[num];
for (int i = 0; i < num; i++) {
Z[i] = fPolycone.fOriginal_parameters->fHZ_values[i]; // fOriginalParameters->fZValues[i];
R1[i] = fPolycone.fOriginal_parameters->fHRmin[i]; // fOriginalParameters->Rmin[i];
R2[i] = fPolycone.fOriginal_parameters->fHRmax[i]; // fOriginalParameters->Rmax[i];
}
fPolycone.Init(phiStart, fPolycone.fOriginal_parameters->fHOpening_angle, num, Z, R1, R2);
delete[] R1;
delete[] Z;
delete[] R2;
}
// Alternative constructor, required for integration with Geant4.
/*
* The modified definition make use of ReducedPolycone class, and provide more flexibility to
* user to create Polycone by specifying RZ corners.
*
* User has to provide a valid contour formed by RZ corners.
*/
VECCORE_ATT_HOST_DEVICE
UnplacedPolycone::UnplacedPolycone(Precision phiStart, // initial phi starting angle
Precision phiTotal, // total phi angle
int numRZ, // number corners in r,z space (must be an even number)
Precision const *r, // r coordinate of these corners
Precision const *z) // z coordinate of these corners
{
fPolycone.fStartPhi = phiStart;
fPolycone.fDeltaPhi = phiStart + phiTotal;
Vector<Vector2D<Precision>> rzVect;
Vector<Precision> rMinVect;
Vector<Precision> rMaxVect;
Vector<Precision> zVect;
// Some safety check before trying to create standard polycone
if (r[0] == r[numRZ - 1] && z[0] == z[numRZ - 1]) {
numRZ--;
}
for (int i = 0; i < numRZ; i++) {
if (i > 0) {
if (r[i - 1] == r[i] && z[i - 1] == z[i]) {
continue;
}
}
rzVect.push_back(Vector2D<Precision>(r[i], z[i]));
}
ReducedPolycone p(rzVect);
p.GetPolyconeParameters(rMinVect, rMaxVect, zVect);
fPolycone.fNz = zVect.size();
Precision *rmin = new Precision[rMinVect.size()];
Precision *rmax = new Precision[rMaxVect.size()];
Precision *zarg = new Precision[zVect.size()];
for (unsigned int i = 0; i < rMinVect.size(); i++) {
rmin[i] = rMinVect[i];
rmax[i] = rMaxVect[i];
zarg[i] = zVect[i];
}
fPolycone.Init(phiStart, phiTotal, fPolycone.fNz, zarg, rmin, rmax);
ComputeBBox();
delete[] rmin;
delete[] rmax;
delete[] zarg;
}
VECCORE_ATT_HOST_DEVICE
void UnplacedPolycone::Print() const
{
printf("UnplacedPolycone {%.2f, %.2f, %d}\n", fPolycone.fStartPhi, fPolycone.fDeltaPhi, fPolycone.fNz);
printf("have %zu size Z\n", fPolycone.fZs.size());
printf("------- z planes follow ---------\n");
for (size_t p = 0; p < fPolycone.fZs.size(); ++p) {
printf(" plane %zu at z pos %lf\n", p, fPolycone.fZs[p]);
}
printf("have %zu size fSections\n", fPolycone.fSections.size());
printf("------ sections follow ----------\n");
for (int s = 0; s < fPolycone.GetNSections(); ++s) {
printf("## section %d, shift %lf\n", s, fPolycone.fSections[s].fShift);
fPolycone.fSections[s].fSolid->Print();
printf("\n");
}
}
// VECCORE_ATT_HOST_DEVICE
void UnplacedPolycone::Print(std::ostream &os) const
{
os << "UnplacedPolycone output to string not implemented -- calling Print() instead:\n";
Print();
}
#ifndef VECCORE_CUDA
SolidMesh *UnplacedPolycone::CreateMesh3D(Transformation3D const &trans, size_t nSegments) const
{
typedef Vector3D<Precision> Vec_t;
SolidMesh *sm = new SolidMesh();
size_t nPlanes = GetNz();
// copy each plane to revert values to their originals
Precision *z = new Precision[nPlanes];
Precision *rmin = new Precision[nPlanes];
Precision *rmax = new Precision[nPlanes];
for (size_t i = 0; i < nPlanes; i++) {
z[i] = GetZAtPlane(i);
rmin[i] = GetRminAtPlane(i);
rmax[i] = GetRmaxAtPlane(i) - GetRminAtPlane(i) <= kConeTolerance
? GetRminAtPlane(i)
: GetRmaxAtPlane(i); // rmin==rmax results in rmax+=1e-7, revert
}
sm->ResetMesh(2 * nPlanes * (nSegments + 1), 2 * (nPlanes - 1) * nSegments + 2 * nSegments + 2 * (nPlanes - 1));
// fill vertex array
Vec_t *vertices = new Vec_t[2 * nPlanes * (nSegments + 1)];
Precision phi = GetStartPhi();
Precision phi_step = GetDeltaPhi() / nSegments;
size_t idx = 0;
size_t idx2 = nPlanes * (nSegments + 1);
for (size_t i = 0; i < nPlanes; i++, phi = GetStartPhi()) {
for (size_t j = 0; j <= nSegments; j++, phi += phi_step) {
vertices[idx++] = Vec_t(rmin[i] * std::cos(phi), rmin[i] * std::sin(phi), z[i]);
vertices[idx2++] = Vec_t(rmax[i] * std::cos(phi), rmax[i] * std::sin(phi), z[i]);
}
}
delete[] z, delete[] rmin, delete[] rmax;
sm->SetVertices(vertices, 2 * nPlanes * (nSegments + 1));
delete[] vertices;
sm->TransformVertices(trans);
// add polygons
for (size_t i = 0, k = 0, l = k + nSegments + 1; i < nPlanes - 1; i++, k++, l++) {
for (size_t j = 0; j < nSegments; j++, k++, l++) {
sm->AddPolygon(4, {k, l, l + 1, k + 1}, true); // inner
}
}
size_t offset = nPlanes * (nSegments + 1);
for (size_t i = 0, k = offset, l = k + nSegments + 1; i < nPlanes - 1; i++, k++, l++) {
for (size_t j = 0; j < nSegments; j++, k++, l++) {
sm->AddPolygon(4, {k, k + 1, l + 1, l}, true); // outer
}
}
for (size_t j = 0, k = j + offset; j < nSegments; j++, k++) {
sm->AddPolygon(4, {j, j + 1, k + 1, k}, true); // lower
}
for (size_t j = 0, k = (nPlanes - 1) * (nSegments + 1), l = k + offset; j < nSegments; j++, k++, l++) {
sm->AddPolygon(4, {k, l, l + 1, k + 1}, true); // upper
}
if (GetDeltaPhi() != kTwoPi) {
for (size_t j = 0, k = 0, l = k + nSegments + 1; j < nPlanes - 1; j++, k += nSegments + 1, l += nSegments + 1) {
sm->AddPolygon(4, {k, k + offset, l + offset, l}, true); // lat at sPhi
}
for (size_t j = 0, k = nSegments, l = k + nSegments + 1; j < nPlanes - 1;
j++, k += nSegments + 1, l += nSegments + 1) {
sm->AddPolygon(4, {k, l, l + offset, k + offset}, true); // lat at sPhi + dPhi
}
}
return sm;
}
#endif
std::ostream &UnplacedPolycone::StreamInfo(std::ostream &os) const
{
int oldprc = os.precision(16);
os << "-----------------------------------------------------------\n"
<< " *** Dump for solid - " << GetEntityType() << " ***\n"
<< " ===================================================\n"
<< " Solid type: Polycone\n"
<< " Parameters: \n"
<< " N = number of Z-sections: " << fPolycone.fSections.size() << ", # Z-coords=" << fPolycone.fZs.size()
<< "\n"
<< " z-coordinates:\n";
uint nz = fPolycone.fZs.size();
for (uint j = 0; j < (nz - 1) / 5 + 1; ++j) {
os << " [ ";
for (uint i = 0; i < 5; ++i) {
uint ind = 5 * j + i;
if (ind < fPolycone.fNz) os << fPolycone.fZs[ind] << "; ";
}
os << " ]\n";
}
if (fPolycone.fDeltaPhi < kTwoPi) {
os << " Wedge starting angles: fSphi=" << fPolycone.fStartPhi * kRadToDeg << "deg, "
<< ", fDphi=" << fPolycone.fDeltaPhi * kRadToDeg << "deg\n";
}
size_t nsections = fPolycone.fSections.size();
os << "\n # cone sections: " << nsections << "\n";
for (size_t i = 0; i < nsections; ++i) {
ConeStruct<Precision> *subcone = fPolycone.fSections[i].fSolid;
os << " cone #" << i << " Rmin1=" << subcone->fRmin1 << " Rmax1=" << subcone->fRmax1
<< " Rmin2=" << subcone->fRmin2 << " Rmax2=" << subcone->fRmax2 << " HalfZ=" << subcone->fDz
<< " from z=" << fPolycone.fZs[i] << " to z=" << fPolycone.fZs[i + 1] << "mm\n";
}
os << "-----------------------------------------------------------\n";
os.precision(oldprc);
return os;
}
#ifdef VECGEOM_CUDA_INTERFACE
DevicePtr<cuda::VUnplacedVolume> UnplacedPolycone::CopyToGpu() const
{
return CopyToGpuImpl<SUnplacedPolycone<ConeTypes::UniversalCone>>();
}
DevicePtr<cuda::VUnplacedVolume> UnplacedPolycone::CopyToGpu(DevicePtr<cuda::VUnplacedVolume> const gpu_ptr) const
{
// idea: reconstruct defining arrays: copy them to GPU; then construct the UnplacedPolycon object from scratch
// on the GPU
std::vector<Precision> rmin, z, rmax;
ReconstructSectionArrays(z, rmin, rmax);
Precision *z_gpu_ptr = AllocateOnGpu<Precision>(z.size() * sizeof(Precision));
Precision *rmin_gpu_ptr = AllocateOnGpu<Precision>(rmin.size() * sizeof(Precision));
Precision *rmax_gpu_ptr = AllocateOnGpu<Precision>(rmax.size() * sizeof(Precision));
vecgeom::CopyToGpu(&z[0], z_gpu_ptr, sizeof(Precision) * z.size());
vecgeom::CopyToGpu(&rmin[0], rmin_gpu_ptr, sizeof(Precision) * rmin.size());
vecgeom::CopyToGpu(&rmax[0], rmax_gpu_ptr, sizeof(Precision) * rmax.size());
int s = z.size();
// attention here z.size() might be different than fNz due to compactification during Reconstruction
DevicePtr<cuda::VUnplacedVolume> gpupolycon = CopyToGpuImpl<SUnplacedPolycone<ConeTypes::UniversalCone>>(
gpu_ptr, fPolycone.fStartPhi, fPolycone.fDeltaPhi, s, z_gpu_ptr, rmin_gpu_ptr, rmax_gpu_ptr);
// remove temporary space from GPU
FreeFromGpu(z_gpu_ptr);
FreeFromGpu(rmin_gpu_ptr);
FreeFromGpu(rmax_gpu_ptr);
return gpupolycon;
}
void UnplacedPolycone::CopyToGpu(std::vector<VUnplacedVolume const *> const & volumes,
std::vector<DevicePtr<cuda::VUnplacedVolume>> const & devicePointers)
{
const auto size = volumes.size();
std::vector<Precision> startPhi, deltaPhi;
std::vector<int> argumentSize;
startPhi.reserve(size);
deltaPhi.reserve(size);
argumentSize.reserve(size);
struct VarLengthData {
std::vector<std::size_t> offsets;
std::vector<Precision> z, rmin, rmax;
} vld;
struct RAIIDevPtr {
DevicePtr<Precision> devPtr;
RAIIDevPtr(std::size_t size) : devPtr()
{
devPtr.Allocate(size);
}
RAIIDevPtr(const RAIIDevPtr&) = delete;
~RAIIDevPtr() { devPtr.Deallocate(); }
};
for (unsigned int i = 0; i < size; ++i) {
UnplacedPolycone const & polycone = static_cast<UnplacedPolycone const &>(*volumes[i]);
assert(dynamic_cast<UnplacedPolycone const *>(volumes[i]));
startPhi.push_back(polycone.fPolycone.fStartPhi);
deltaPhi.push_back(polycone.fPolycone.fDeltaPhi);
vld.offsets.push_back(vld.z.size());
polycone.ReconstructSectionArrays(vld.z, vld.rmin, vld.rmax);
argumentSize.push_back(vld.z.size()-vld.offsets.back());
}
// Assert that it's correct to have only one offset array for all variable-length arguments
assert(vld.z.size() == vld.rmin.size()
&& vld.z.size() == vld.rmax.size()
&& vld.offsets.back() < vld.z.size());
assert(startPhi.size() == size
&& deltaPhi.size() == size
&& argumentSize.size() == size);
RAIIDevPtr zGPU{vld.z.size()}, rminGPU{vld.rmin.size()}, rmaxGPU{vld.rmax.size()};
zGPU.devPtr.ToDevice(vld.z.data(), vld.z.size());
rminGPU.devPtr.ToDevice(vld.rmin.data(), vld.rmin.size());
rmaxGPU.devPtr.ToDevice(vld.rmax.data(), vld.rmax.size());
std::vector<Precision const *> zGPUPtrs{size}, rminGPUPtrs{size}, rmaxGPUPtrs{size};
std::transform(vld.offsets.begin(), vld.offsets.end(), zGPUPtrs.begin(),
[&zGPU](std::size_t offset){ return zGPU.devPtr.GetPtr() + offset; });
std::transform(vld.offsets.begin(), vld.offsets.end(), rminGPUPtrs.begin(),
[&rminGPU](std::size_t offset){ return rminGPU.devPtr.GetPtr() + offset; });
std::transform(vld.offsets.begin(), vld.offsets.end(), rmaxGPUPtrs.begin(),
[&rmaxGPU](std::size_t offset){ return rmaxGPU.devPtr.GetPtr() + offset; });
/* Constructor we are targeting:
UnplacedPolycone(Precision phistart, Precision deltaphi, int Nz, Precision const *z, Precision const *rmin,
Precision const *rmax)
*/
ConstructManyOnGpu<cuda::SUnplacedPolycone<cuda::ConeTypes::UniversalCone>>(size, devicePointers.data(),
startPhi.data(), deltaPhi.data(), argumentSize.data(), zGPUPtrs.data(), rminGPUPtrs.data(), rmaxGPUPtrs.data());
}
#endif // VECGEOM_CUDA_INTERFACE
Precision UnplacedPolycone::SurfaceArea() const
{
const int numPlanes = GetNSections();
PolyconeSection const &sec0 = GetSection(0);
Precision totArea = (kPi * (sec0.fSolid->fRmax1 * sec0.fSolid->fRmax1 - sec0.fSolid->fRmin1 * sec0.fSolid->fRmin1));
for (int i = 0; i < numPlanes; i++) {
PolyconeSection const &sec = GetSection(i);
Precision sectionArea =
(sec.fSolid->fRmin1 + sec.fSolid->fRmin2) *
std::sqrt((sec.fSolid->fRmin1 - sec.fSolid->fRmin2) * (sec.fSolid->fRmin1 - sec.fSolid->fRmin2) +
4. * sec.fSolid->fDz * sec.fSolid->fDz);
sectionArea += (sec.fSolid->fRmax1 + sec.fSolid->fRmax2) *
std::sqrt((sec.fSolid->fRmax1 - sec.fSolid->fRmax2) * (sec.fSolid->fRmax1 - sec.fSolid->fRmax2) +
4. * sec.fSolid->fDz * sec.fSolid->fDz);
sectionArea *= 0.5 * GetDeltaPhi();
if (GetDeltaPhi() < kTwoPi) {
sectionArea += std::fabs(2 * sec.fSolid->fDz) *
(sec.fSolid->fRmax1 + sec.fSolid->fRmax2 - sec.fSolid->fRmin1 - sec.fSolid->fRmin2);
}
totArea += sectionArea;
}
PolyconeSection const &secn = GetSection(numPlanes - 1);
const auto last = kPi * (secn.fSolid->fRmax2 * secn.fSolid->fRmax2 - secn.fSolid->fRmin2 * secn.fSolid->fRmin2);
totArea += last;
return totArea;
}
#ifndef VECCORE_CUDA
/////////////////////////////////////////////////////////////////////////
//
// SamplePointOnSurface
//
// GetPointOnCone
//
// Auxiliary method for Get Point On Surface
//
Vector3D<Precision> UnplacedPolycone::GetPointOnCone(Precision fRmin1, Precision fRmax1, Precision fRmin2,
Precision fRmax2, Precision zOne, Precision zTwo,
Precision &totArea) const
{
#if (1)
// declare working variables
//
Precision Aone, Atwo, Afive, phi, zRand, fDPhi, cosu, sinu;
Precision rRand1, rmin, rmax, chose, rone, rtwo, qone, qtwo;
Precision fDz = (zTwo - zOne) / 2., afDz = std::fabs(fDz);
Vector3D<Precision> point, offset = Vector3D<Precision>(0., 0., 0.5 * (zTwo + zOne));
fDPhi = GetDeltaPhi();
rone = (fRmax1 - fRmax2) / (2. * fDz);
rtwo = (fRmin1 - fRmin2) / (2. * fDz);
if (fRmax1 == fRmax2) {
qone = 0.;
} else {
qone = fDz * (fRmax1 + fRmax2) / (fRmax1 - fRmax2);
}
if (fRmin1 == fRmin2) {
qtwo = 0.;
} else {
qtwo = fDz * (fRmin1 + fRmin2) / (fRmin1 - fRmin2);
}
Aone = 0.5 * fDPhi * (fRmax2 + fRmax1) * ((fRmin1 - fRmin2) * (fRmin1 - fRmin2) + (zTwo - zOne) * (zTwo - zOne));
Atwo = 0.5 * fDPhi * (fRmin2 + fRmin1) * ((fRmax1 - fRmax2) * (fRmax1 - fRmax2) + (zTwo - zOne) * (zTwo - zOne));
Afive = fDz * (fRmax1 - fRmin1 + fRmax2 - fRmin2);
totArea = Aone + Atwo + 2. * Afive;
phi = RNG::Instance().uniform(GetStartPhi(), GetEndPhi());
cosu = std::cos(phi);
sinu = std::sin(phi);
if (GetDeltaPhi() >= kTwoPi) {
Afive = 0;
}
chose = RNG::Instance().uniform(0., Aone + Atwo + 2. * Afive);
if ((chose >= 0) && (chose < Aone)) {
if (fRmax1 != fRmax2) {
zRand = RNG::Instance().uniform(-1. * afDz, afDz);
point = Vector3D<Precision>(rone * cosu * (qone - zRand), rone * sinu * (qone - zRand), zRand);
} else {
point = Vector3D<Precision>(fRmax1 * cosu, fRmax1 * sinu, RNG::Instance().uniform(-1. * afDz, afDz));
}
} else if (chose >= Aone && chose < Aone + Atwo) {
if (fRmin1 != fRmin2) {
zRand = RNG::Instance().uniform(-1. * afDz, afDz);
point = Vector3D<Precision>(rtwo * cosu * (qtwo - zRand), rtwo * sinu * (qtwo - zRand), zRand);
} else {
point = Vector3D<Precision>(fRmin1 * cosu, fRmin1 * sinu, RNG::Instance().uniform(-1. * afDz, afDz));
}
} else if ((chose >= Aone + Atwo + Afive) && (chose < Aone + Atwo + 2. * Afive)) {
zRand = RNG::Instance().uniform(-afDz, afDz);
rmin = fRmin2 - ((zRand - fDz) / (2. * fDz)) * (fRmin1 - fRmin2);
rmax = fRmax2 - ((zRand - fDz) / (2. * fDz)) * (fRmax1 - fRmax2);
rRand1 = std::sqrt(RNG::Instance().uniform(0., 1.) * (rmax * rmax - rmin * rmin) + rmin * rmin);
point = Vector3D<Precision>(rRand1 * std::cos(GetStartPhi()), rRand1 * std::sin(GetStartPhi()), zRand);
} else {
zRand = RNG::Instance().uniform(-1. * afDz, afDz);
rmin = fRmin2 - ((zRand - fDz) / (2. * fDz)) * (fRmin1 - fRmin2);
rmax = fRmax2 - ((zRand - fDz) / (2. * fDz)) * (fRmax1 - fRmax2);
rRand1 = std::sqrt(RNG::Instance().uniform(0., 1.) * (rmax * rmax - rmin * rmin) + rmin * rmin);
point = Vector3D<Precision>(rRand1 * std::cos(GetEndPhi()), rRand1 * std::sin(GetEndPhi()), zRand);
}
return point + offset;
#endif
}
//
// GetPointOnTubs
//
// Auxiliary method for GetPoint On Surface
//
Vector3D<Precision> UnplacedPolycone::GetPointOnTubs(Precision fRMin, Precision fRMax, Precision zOne, Precision zTwo,
Precision &totArea) const
{
Precision xRand, yRand, zRand, phi, cosphi, sinphi, chose, aOne, aTwo, aFou, rRand, fDz, fSPhi, fDPhi;
fDz = std::fabs(0.5 * (zTwo - zOne));
fSPhi = GetStartPhi();
fDPhi = GetDeltaPhi();
aOne = 2. * fDz * fDPhi * fRMax;
aTwo = 2. * fDz * fDPhi * fRMin;
aFou = 2. * fDz * (fRMax - fRMin);
totArea = aOne + aTwo + 2. * aFou;
phi = RNG::Instance().uniform(GetStartPhi(), GetEndPhi());
cosphi = std::cos(phi);
sinphi = std::sin(phi);
rRand = fRMin + (fRMax - fRMin) * std::sqrt(RNG::Instance().uniform(0., 1.));
if (GetDeltaPhi() >= 2 * kPi) aFou = 0;
chose = RNG::Instance().uniform(0., aOne + aTwo + 2. * aFou);
if ((chose >= 0) && (chose < aOne)) {
xRand = fRMax * cosphi;
yRand = fRMax * sinphi;
zRand = RNG::Instance().uniform(-1. * fDz, fDz);
return Vector3D<Precision>(xRand, yRand, zRand + 0.5 * (zTwo + zOne));
} else if ((chose >= aOne) && (chose < aOne + aTwo)) {
xRand = fRMin * cosphi;
yRand = fRMin * sinphi;
zRand = RNG::Instance().uniform(-1. * fDz, fDz);
return Vector3D<Precision>(xRand, yRand, zRand + 0.5 * (zTwo + zOne));
} else if ((chose >= aOne + aTwo) && (chose < aOne + aTwo + aFou)) {
xRand = rRand * std::cos(fSPhi + fDPhi);
yRand = rRand * std::sin(fSPhi + fDPhi);
zRand = RNG::Instance().uniform(-1. * fDz, fDz);
return Vector3D<Precision>(xRand, yRand, zRand + 0.5 * (zTwo + zOne));
}
// else
xRand = rRand * std::cos(fSPhi + fDPhi);
yRand = rRand * std::sin(fSPhi + fDPhi);
zRand = RNG::Instance().uniform(-1. * fDz, fDz);
return Vector3D<Precision>(xRand, yRand, zRand + 0.5 * (zTwo + zOne));
}
//
// GetPointOnRing
//
// Auxiliary method for GetPoint On Surface
//
Vector3D<Precision> UnplacedPolycone::GetPointOnRing(Precision fRMin1, Precision fRMax1, Precision fRMin2,
Precision fRMax2, Precision zOne) const
{
Precision xRand, yRand, phi, cosphi, sinphi, rRand1, rRand2, A1, Atot, rCh;
phi = RNG::Instance().uniform(GetStartPhi(), GetEndPhi());
cosphi = std::cos(phi);
sinphi = std::sin(phi);
if (fRMin1 == fRMin2) {
rRand1 = fRMin1;
A1 = 0.;
} else {
rRand1 = RNG::Instance().uniform(fRMin1, fRMin2);
A1 = std::fabs(fRMin2 * fRMin2 - fRMin1 * fRMin1);
}
if (fRMax1 == fRMax2) {
rRand2 = fRMax1;
Atot = A1;
} else {
rRand2 = RNG::Instance().uniform(fRMax1, fRMax2);
Atot = A1 + std::fabs(fRMax2 * fRMax2 - fRMax1 * fRMax1);
}
rCh = RNG::Instance().uniform(0., Atot);
if (rCh > A1) {
rRand1 = rRand2;
}
xRand = rRand1 * cosphi;
yRand = rRand1 * sinphi;
return Vector3D<Precision>(xRand, yRand, zOne);
}
//
// GetPointOnCut
//
// Auxiliary method for Get Point On Surface
//
Vector3D<Precision> UnplacedPolycone::GetPointOnCut(Precision fRMin1, Precision fRMax1, Precision fRMin2,
Precision fRMax2, Precision zOne, Precision zTwo,
Precision &totArea) const
{
if (zOne == zTwo) {
return GetPointOnRing(fRMin1, fRMax1, fRMin2, fRMax2, zOne);
}
if ((fRMin1 == fRMin2) && (fRMax1 == fRMax2)) {
return GetPointOnTubs(fRMin1, fRMax1, zOne, zTwo, totArea);
}
return GetPointOnCone(fRMin1, fRMax1, fRMin2, fRMax2, zOne, zTwo, totArea);
}
//
// SamplePointOnSurface
//
Vector3D<Precision> UnplacedPolycone::SamplePointOnSurface() const
{
Precision Area = 0, totArea = 0, Achose1 = 0, Achose2 = 0, phi, cosphi, sinphi, rRand;
int i = 0;
int numPlanes = GetNSections();
phi = RNG::Instance().uniform(GetStartPhi(), GetEndPhi());
cosphi = std::cos(phi);
sinphi = std::sin(phi);
std::vector<Precision> areas;
PolyconeSection const &sec0 = GetSection(0);
areas.push_back(kPi * (sec0.fSolid->fRmax1 * sec0.fSolid->fRmax1 - sec0.fSolid->fRmin1 * sec0.fSolid->fRmin1));
rRand =
sec0.fSolid->fRmin1 + ((sec0.fSolid->fRmax1 - sec0.fSolid->fRmin1) * std::sqrt(RNG::Instance().uniform(0., 1.)));
areas.push_back(kPi * (sec0.fSolid->fRmax1 * sec0.fSolid->fRmax1 - sec0.fSolid->fRmin1 * sec0.fSolid->fRmin1));
for (i = 0; i < numPlanes; i++) {
PolyconeSection const &sec = GetSection(i);
Area = (sec.fSolid->fRmin1 + sec.fSolid->fRmin2) *
std::sqrt((sec.fSolid->fRmin1 - sec.fSolid->fRmin2) * (sec.fSolid->fRmin1 - sec.fSolid->fRmin2) +
4. * sec.fSolid->fDz * sec.fSolid->fDz);
Area += (sec.fSolid->fRmax1 + sec.fSolid->fRmax2) *
std::sqrt((sec.fSolid->fRmax1 - sec.fSolid->fRmax2) * (sec.fSolid->fRmax1 - sec.fSolid->fRmax2) +
4. * sec.fSolid->fDz * sec.fSolid->fDz);
Area *= 0.5 * GetDeltaPhi();
if (GetDeltaPhi() < kTwoPi) {
Area += std::fabs(2 * sec.fSolid->fDz) *
(sec.fSolid->fRmax1 + sec.fSolid->fRmax2 - sec.fSolid->fRmin1 - sec.fSolid->fRmin2);
}
areas.push_back(Area);
totArea += Area;
}
PolyconeSection const &secn = GetSection(numPlanes - 1);
areas.push_back(kPi * (secn.fSolid->fRmax2 * secn.fSolid->fRmax2 - secn.fSolid->fRmin2 * secn.fSolid->fRmin2));
totArea += (areas[0] + areas[numPlanes + 1]);
Precision chose = RNG::Instance().uniform(0., totArea);
if ((chose >= 0.) && (chose < areas[0])) {
return Vector3D<Precision>(rRand * cosphi, rRand * sinphi, fPolycone.fZs[0]);
}
for (i = 0; i < numPlanes; i++) {
Achose1 += areas[i];
Achose2 = (Achose1 + areas[i + 1]);
if (chose >= Achose1 && chose < Achose2) {
PolyconeSection const &sec = GetSection(i);
return GetPointOnCut(sec.fSolid->fRmin1, sec.fSolid->fRmax1, sec.fSolid->fRmin2, sec.fSolid->fRmax2,
fPolycone.fZs[i], fPolycone.fZs[i + 1], Area);
}
}
rRand =
secn.fSolid->fRmin2 + ((secn.fSolid->fRmax2 - secn.fSolid->fRmin2) * std::sqrt(RNG::Instance().uniform(0., 1.)));
return Vector3D<Precision>(rRand * cosphi, rRand * sinphi, fPolycone.fZs[numPlanes]);
}
bool UnplacedPolycone::Normal(Vector3D<Precision> const &point, Vector3D<Precision> &norm) const
{
bool valid = true;
int index = GetSectionIndex(point.z() - kTolerance);
if (index < 0) {
valid = false;
if (index == -1) norm = Vector3D<Precision>(0., 0., -1.);
if (index == -2) norm = Vector3D<Precision>(0., 0., 1.);
return valid;
}
PolyconeSection const &sec = GetSection(index);
valid = sec.fSolid->Normal(point - Vector3D<Precision>(0, 0, sec.fShift), norm);
// if point is within tolerance of a Z-plane between 2 sections, get normal from other section too
if (size_t(index + 1) < fPolycone.fSections.size() && std::abs(point.z() - fPolycone.fZs[index + 1]) < kTolerance) {
PolyconeSection const &sec2 = GetSection(index + 1);
bool valid2 = false;
Vector3D<Precision> norm2;
valid2 = sec2.fSolid->Normal(point - Vector3D<Precision>(0, 0, sec2.fShift), norm2);
if (!valid && valid2) {
norm = norm2;
valid = valid2;
}
// if both valid && valid2 true, norm and norm2 should be added...
if (valid && valid2) {
// discover exiting direction by moving point a bit (it would be good to have track direction here)
// if(sec.fSolid->Contains(point + kTolerance*10*norm - Vector3D<Precision>(0, 0, sec.fShift))){
//}
bool c2;
using CI = ConeImplementation<ConeTypes::UniversalCone>;
// CI::Contains<Precision,false>(*sec2.fSolid,
// point + kTolerance * 10 * norm2 - Vector3D<Precision>(0, 0, sec2.fShift), c2);
CI::Contains(*sec2.fSolid, point + kTolerance * 10 * norm2 - Vector3D<Precision>(0, 0, sec2.fShift), c2);
if (c2) {
norm = norm2;
} else {
norm = norm + norm2;
// but we might be in the interior of the polycone, and norm2=(0,0,-1) and norm1=(0,0,1) --> norm=(0,0,0)
// quick fix: set a normal pointing to the input point, but setting its z=0 (radial)
if (norm.Mag2() < kTolerance) norm = Vector3D<Precision>(point.x(), point.y(), 0);
}
}
}
if (valid) norm /= norm.Mag();
return valid;
}
#if (0)
// Simplest Extent defintion that does not take PHI into consideration
void UnplacedPolycone::Extent(Vector3D<Precision> &aMin, Vector3D<Precision> &aMax) const
{
int i = 0;
Precision maxR = 0;
for (i = 0; i < GetNSections(); i++) {
PolyconeSection const &sec = GetSection(i);
if (maxR < sec.fSolid->fRmax1) maxR = sec.fSolid->fRmax1;
if (maxR < sec.fSolid->fRmax2) maxR = sec.fSolid->fRmax2;
}
aMin.x() = -maxR;
aMin.y() = -maxR;
// aMin.z() = fZs[0];
aMax.x() = maxR;
aMax.y() = maxR;
if (fZs[0] > fZs[GetNSections()]) {
aMax.z() = fZs[0];
aMin.z() = fZs[GetNSections()];
} else {
aMin.z() = fZs[0];
aMax.z() = fZs[GetNSections()];
}
}
#endif
#if (1)
// Improved Extent definition that also takes PHI into consideration
void UnplacedPolycone::Extent(Vector3D<Precision> &aMin, Vector3D<Precision> &aMax) const
{
/* Algorithm:
* 1. Get the Extent in Z direction and set
* aMax.z and aMin.z
*
* 2. For X and Y direction use Extent of Cone
* and set aMax.x aMax.y, aMin.x and aMin.y
*
*/
Precision maxR = 0, minR = kInfLength;
Precision fSPhi = fPolycone.fStartPhi;
Precision fDPhi = fPolycone.fDeltaPhi;
for (int i = 0; i < GetNSections(); i++) {
PolyconeSection const &sec = GetSection(i);
maxR = Max(maxR, Max(sec.fSolid->_frmax1, sec.fSolid->_frmax2));
minR = Min(minR, Min(sec.fSolid->_frmin1, sec.fSolid->_frmin2));
}
if (fPolycone.fZs[0] > fPolycone.fZs[GetNSections()]) {
aMax.z() = fPolycone.fZs[0];
aMin.z() = fPolycone.fZs[GetNSections()];
} else {
aMin.z() = fPolycone.fZs[0];
aMax.z() = fPolycone.fZs[GetNSections()];
}
// Using Cone to get Extent in X and Y Direction
Precision minz = aMin.z();
Precision maxz = aMax.z();
SUnplacedCone<ConeTypes::UniversalCone> tempCone(minR, maxR, minR, maxR, 1, fSPhi, fDPhi);
tempCone.BaseType_t::Extent(aMin, aMax);
aMin.z() = minz;
aMax.z() = maxz;
return;
}
#endif
#endif // !VECCORE_CUDA
#if (0)
bool UnplacedPolycone::CheckContinuityInRmax(const Vector<Precision> &rOuter)
{
bool continuous = true;
unsigned int len = rOuter.size();
if (len > 2) {
for (unsigned int j = 1; j < len;) {
if (j != (len - 1)) continuous &= (rOuter[j] == rOuter[j + 1]);
j = j + 2;
}
}
return continuous;
}
bool UnplacedPolycone::CheckContinuity(const Precision rOuter[], const Precision rInner[], const Precision zPlane[],
Vector<Precision> &newROuter, Vector<Precision> &newRInner,
Vector<Precision> &newZPlane)
{
Vector<Precision> rOut, rIn;
Vector<Precision> zPl;
rOut.push_back(rOuter[0]);
rIn.push_back(rInner[0]);
zPl.push_back(zPlane[0]);
for (unsigned int j = 1; j < fNz; j++) {
if (j == fNz - 1) {
rOut.push_back(rOuter[j]);
rIn.push_back(rInner[j]);
zPl.push_back(zPlane[j]);
} else {
if ((zPlane[j] != zPlane[j + 1]) || (rOuter[j] != rOuter[j + 1])) {
rOut.push_back(rOuter[j]);
rOut.push_back(rOuter[j]);
zPl.push_back(zPlane[j]);
zPl.push_back(zPlane[j]);
rIn.push_back(rInner[j]);
rIn.push_back(rInner[j]);
} else {
rOut.push_back(rOuter[j]);
zPl.push_back(zPlane[j]);
rIn.push_back(rInner[j]);
}
}
}
if (rOut.size() % 2 != 0) {
// fNz is odd, the adding of the last item did not happen in the loop.
rOut.push_back(rOut[rOut.size() - 1]);
rIn.push_back(rIn[rIn.size() - 1]);
zPl.push_back(zPl[zPl.size() - 1]);
}
/* Creating a new temporary Reduced polycone with desired data elements,
* which makes sure that denominator will never be zero (hence avoiding FPE(division by zero)),
* while calculating slope.
*
* This will be the minimum polycone,i.e. no extra section which
* affect its shape
*/
for (size_t j = 0; j < rOut.size();) {
if (zPl[j] != zPl[j + 1]) {
newZPlane.push_back(zPl[j]);
newZPlane.push_back(zPl[j + 1]);
newROuter.push_back(rOut[j]);
newROuter.push_back(rOut[j + 1]);
newRInner.push_back(rIn[j]);
newRInner.push_back(rIn[j + 1]);
}
j = j + 2;
}
// Minimum polycone construction over
// Checking Slope continuity and Rmax Continuity
bool contRmax = CheckContinuityInRmax(newROuter);
bool contSlope = CheckContinuityInSlope(newROuter, newZPlane);
// If both are true then the polycone can be convex
// but still final convexity depends on Inner Radius also.
return (contRmax && contSlope);
}
/* Cleaner CheckContinuityInSlope.
* Because of new design, it will not get the case of FPE exception
* (division by zero)
*/
bool UnplacedPolycone::CheckContinuityInSlope(const Vector<Precision> &rOuter, const Vector<Precision> &zPlane)
{
bool continuous = true;
Precision startSlope = kInfLength;
// Doing the actual slope calculation here, and checking continuity,
for (size_t j = 0; j < rOuter.size(); j = j + 2) {
Precision currentSlope = (rOuter[j + 1] - rOuter[j]) / (zPlane[j + 1] - zPlane[j]);
continuous &= (currentSlope <= startSlope);
startSlope = currentSlope;
}
return continuous;
}
#endif
VECCORE_ATT_HOST_DEVICE
void UnplacedPolycone::DetectConvexity()
{
// Default safe convexity value
fGlobalConvexity = false;
if (fPolycone.fConvexityPossible) {
if (fPolycone.fEqualRmax && (fPolycone.fDeltaPhi <= kPi || fPolycone.fDeltaPhi == kTwoPi))
// In this case, Polycone become solid Cylinder, No need to check anything else, 100% convex
fGlobalConvexity = true;
else {
if (fPolycone.fDeltaPhi <= kPi || fPolycone.fDeltaPhi == kTwoPi) {
fGlobalConvexity = fPolycone.fContinuityOverAll;
}
}
}
// return convexity;
}
} // namespace VECGEOM_IMPL_NAMESPACE
#ifdef VECCORE_CUDA
namespace cxx {
template size_t DevicePtr<cuda::SUnplacedPolycone<ConeTypes::UniversalCone>>::SizeOf();
template void DevicePtr<cuda::SUnplacedPolycone<ConeTypes::UniversalCone>>::Construct(Precision, Precision, int,
Precision *, Precision *,
Precision *) const;
template void vecgeom::cxx::ConstructManyOnGpu<SUnplacedPolycone<cuda::ConeTypes::UniversalCone>>(
std::size_t nElement, DevicePtr<cuda::VUnplacedVolume> const * gpu_ptrs,
Precision const * startPhi, Precision const * deltaPhi, int const * sizes,
Precision const * const * zGPUPtrs, Precision const * const * rminGPUPtrs, Precision const * const * rmaxGPUPtrs);
} // namespace cxx
#endif
} // namespace vecgeom
|