1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222
|
/// @file UnplacedTessellated.cpp
/// @author Mihaela Gheata (mihaela.gheata@cern.ch)
#include "VecGeom/volumes/UnplacedTessellated.h"
#include "VecGeom/volumes/SpecializedTessellated.h"
#include "VecGeom/volumes/utilities/GenerationUtilities.h"
#include "VecGeom/base/RNG.h"
#include "VecGeom/management/VolumeFactory.h"
namespace vecgeom {
inline namespace VECGEOM_IMPL_NAMESPACE {
void UnplacedTessellated::Print() const
{
printf("UnplacedTessellated {%zu facets}", fTessellated.fFacets.size());
}
void UnplacedTessellated::Print(std::ostream &os) const
{
os << "UnplacedTessellated {" << fTessellated.fFacets.size() << " facets " << std::endl;
}
Precision UnplacedTessellated::Capacity() const
{
if (fTessellated.fCubicVolume != 0.) return fTessellated.fCubicVolume;
// For explanation of the following algorithm see:
// https://en.wikipedia.org/wiki/Polyhedron#Volume
// http://wwwf.imperial.ac.uk/~rn/centroid.pdf
int size = fTessellated.fFacets.size();
for (int i = 0; i < size; ++i) {
TriangleFacet<Precision> &facet = *fTessellated.fFacets[i];
Precision area = facet.fSurfaceArea;
fTessellated.fCubicVolume += area * (facet.fVertices[0].Dot(facet.fNormal));
}
fTessellated.fCubicVolume /= 3.;
return fTessellated.fCubicVolume;
}
Precision UnplacedTessellated::SurfaceArea() const
{
if (fTessellated.fSurfaceArea != 0.) return fTessellated.fSurfaceArea;
int size = fTessellated.fFacets.size();
for (int i = 0; i < size; ++i) {
TriangleFacet<Precision> *facet = fTessellated.fFacets[i];
fTessellated.fSurfaceArea += facet->fSurfaceArea;
}
return fTessellated.fSurfaceArea;
}
int UnplacedTessellated::ChooseSurface() const
{
int choice = 0; // 0 = zm, 1 = zp, 2 = ym, 3 = yp, 4 = xm, 5 = xp
Precision Stotal = SurfaceArea();
// random value to choose surface to place the point
Precision rand = RNG::Instance().uniform() * Stotal;
while (rand > fTessellated.fFacets[choice]->fSurfaceArea)
rand -= fTessellated.fFacets[choice]->fSurfaceArea, choice++;
return choice;
}
Vector3D<Precision> UnplacedTessellated::SamplePointOnSurface() const
{
int surface = ChooseSurface();
Precision r1 = RNG::Instance().uniform(0.0, 1.0);
Precision r2 = RNG::Instance().uniform(0.0, 1.0);
if (r1 + r2 > 1.) {
r1 = 1. - r1;
r2 = 1. - r2;
}
auto facet = fTessellated.fFacets[surface];
return (facet->fVertices[0] + r1 * (facet->fVertices[1] - facet->fVertices[0]) +
r2 * (facet->fVertices[2] - facet->fVertices[0]));
}
bool UnplacedTessellated::Normal(Vector3D<Precision> const &point, Vector3D<Precision> &norm) const
{
// Redirect to normal implementation
bool valid = false;
norm = TessellatedImplementation::NormalKernel<Precision>(fTessellated, point, valid);
return valid;
}
#ifdef VECCORE_CUDA
template <TranslationCode transCodeT, RotationCode rotCodeT>
VECCORE_ATT_DEVICE
VPlacedVolume *UnplacedTessellated::Create(LogicalVolume const *const logical_volume,
Transformation3D const *const transformation, const int id,
VPlacedVolume *const placement)
{
if (placement) {
new (placement) SpecializedTessellated<transCodeT, rotCodeT>(logical_volume, transformation, id);
return placement;
}
return new SpecializedTessellated<transCodeT, rotCodeT>(logical_volume, transformation, id);
}
#else
template <TranslationCode transCodeT, RotationCode rotCodeT>
VPlacedVolume *UnplacedTessellated::Create(LogicalVolume const *const logical_volume,
Transformation3D const *const transformation, VPlacedVolume *const placement)
{
if (placement) {
new (placement) SpecializedTessellated<transCodeT, rotCodeT>(logical_volume, transformation);
return placement;
}
return new SpecializedTessellated<transCodeT, rotCodeT>(logical_volume, transformation);
}
#endif
VECCORE_ATT_DEVICE
VPlacedVolume *UnplacedTessellated::SpecializedVolume(LogicalVolume const *const volume,
Transformation3D const *const transformation,
const TranslationCode trans_code, const RotationCode rot_code,
#ifdef VECCORE_CUDA
const int id,
#endif
VPlacedVolume *const placement) const
{
return VolumeFactory::CreateByTransformation<UnplacedTessellated>(volume, transformation, trans_code, rot_code,
#ifdef VECCORE_CUDA
id,
#endif
placement);
}
std::ostream &UnplacedTessellated::StreamInfo(std::ostream &os) const
{
int oldprc = os.precision(16);
os << "-----------------------------------------------------------\n"
<< " *** Dump for solid - " << GetEntityType() << " ***\n"
<< " ===================================================\n"
<< " Solid type: Trd\n"
<< " Parameters: \n"
<< "-----------------------------------------------------------\n";
os.precision(oldprc);
return os;
}
#ifdef VECGEOM_CUDA_INTERFACE
DevicePtr<cuda::VUnplacedVolume> UnplacedTessellated::CopyToGpu(DevicePtr<cuda::VUnplacedVolume> const in_gpu_ptr) const
{
#ifdef HYBRID_NAVIGATOR_PORTED_TO_CUDA
return CopyToGpuImpl<UnplacedTessellated>(in_gpu_ptr);
#else
assert(0 && "Attempted to copy UnplacedTessellated to GPU. This is not yet supported.");
return DevicePtr<cuda::VUnplacedVolume>(nullptr);
#endif
}
DevicePtr<cuda::VUnplacedVolume> UnplacedTessellated::CopyToGpu() const
{
#ifdef HYBRID_NAVIGATOR_PORTED_TO_CUDA
return CopyToGpuImpl<UnplacedTessellated>();
#else
assert(0 && "Attempted to copy UnplacedTessellated to GPU. This is not yet supported.");
return DevicePtr<cuda::VUnplacedVolume>(nullptr);
#endif
}
#ifndef HYBRID_NAVIGATOR_PORTED_TO_CUDA
template <>
size_t DevicePtr<vecgeom::cuda::LoopSpecializedVolImplHelper<vecgeom::cuda::TessellatedImplementation,
translation::kGeneric, rotation::kGeneric>>::SizeOf()
{
return 0;
}
template <>
template <>
void DevicePtr<
cuda::LoopSpecializedVolImplHelper<cuda::TessellatedImplementation, translation::kGeneric, rotation::kGeneric>>::
Construct(DevicePtr<vecgeom::cuda::LogicalVolume>, DevicePtr<vecgeom::cuda::Transformation3D>, unsigned int, int,
int) const
{
return;
}
template <>
void ConstructManyOnGpu<
cuda::LoopSpecializedVolImplHelper<cuda::TessellatedImplementation, translation::kGeneric, rotation::kGeneric>
/*, ... inferred from arguments */>(std::size_t nElement, DevicePtr<cuda::VPlacedVolume> const * gpu_ptrs,
DevicePtr<cuda::LogicalVolume> const * logical,
DevicePtr<cuda::Transformation3D> const * trafo,
decltype(std::declval<VPlacedVolume>().id()) const * ids,
decltype(std::declval<VPlacedVolume>().GetCopyNo()) const * copyNos,
decltype(std::declval<VPlacedVolume>().GetChildId()) const * childIds)
{
}
#endif
#endif // VECGEOM_CUDA_INTERFACE
} // namespace VECGEOM_IMPL_NAMESPACE
#ifdef VECCORE_CUDA
namespace cxx {
template size_t DevicePtr<cuda::UnplacedTessellated>::SizeOf();
template void DevicePtr<cuda::UnplacedTessellated>::Construct() const;
template void ConstructManyOnGpu<cuda::UnplacedTessellated /*, ... inferred from arguments */>(
std::size_t nElement, DevicePtr<cuda::VPlacedVolume> const * gpu_ptrs,
DevicePtr<cuda::LogicalVolume> const * logical, DevicePtr<cuda::Transformation3D> const * trafo,
decltype(std::declval<VPlacedVolume>().id()) const * ids,
decltype(std::declval<VPlacedVolume>().GetCopyNo()) const * copyNos,
decltype(std::declval<VPlacedVolume>().GetChildId()) const * childIds);
} // namespace cxx
#endif
} // namespace vecgeom
|