1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297
|
/// \file UnplacedTube.cpp
/// \author Georgios Bitzes (georgios.bitzes@cern.ch)
#include "VecGeom/volumes/UnplacedTube.h"
#include "VecGeom/volumes/SpecializedTube.h"
#include "VecGeom/base/RNG.h"
#ifndef VECCORE_CUDA
#include <cmath>
#include <iostream>
#endif
#include "VecGeom/volumes/utilities/GenerationUtilities.h"
#include "VecGeom/management/VolumeFactory.h"
#include "VecGeom/volumes/UnplacedEllipticalTube.h"
namespace vecgeom {
inline namespace VECGEOM_IMPL_NAMESPACE {
VECCORE_ATT_HOST_DEVICE
void UnplacedTube::Print() const
{
printf("UnplacedTube {%.2f, %.2f, %.2f, %.2f, %.2f}", rmin(), rmax(), z(), sphi(), dphi());
}
void UnplacedTube::Print(std::ostream &os) const
{
os << "UnplacedTube {" << rmin() << ", " << rmax() << ", " << z() << ", " << sphi() << ", " << dphi() << "}\n";
}
#ifndef VECCORE_CUDA
SolidMesh *UnplacedTube::CreateMesh3D(Transformation3D const &trans, size_t nSegments) const
{
typedef Vector3D<Precision> Vec_t;
SolidMesh *sm = new SolidMesh();
sm->ResetMesh(4 * (nSegments + 1), 4 * nSegments + 2);
// fill vertex array
Vec_t *vertices = new Vec_t[4 * (nSegments + 1)];
size_t idx = 0;
size_t idx1 = (nSegments + 1);
size_t idx2 = 2 * (nSegments + 1);
size_t idx3 = 3 * (nSegments + 1);
Precision phi = sphi();
Precision phi_step = dphi() / nSegments;
Precision x, y;
for (size_t i = 0; i <= nSegments; i++, phi += phi_step) {
x = rmax() * std::cos(phi);
y = rmax() * std::sin(phi);
vertices[idx++] = Vec_t(x, y, z()); // top outer
vertices[idx1++] = Vec_t(x, y, -z()); // bottom outer
x = rmin() * std::cos(phi);
y = rmin() * std::sin(phi);
vertices[idx2++] = Vec_t(x, y, z()); // top inner
vertices[idx3++] = Vec_t(x, y, -z()); // bottom inner
}
sm->SetVertices(vertices, 4 * (nSegments + 1));
delete[] vertices;
sm->TransformVertices(trans);
for (size_t i = 0, j = nSegments + 1; i < nSegments; i++, j++) {
sm->AddPolygon(4, {i, j, j + 1, i + 1}, true); // OUTER
}
for (size_t i = 0, j = 2 * (nSegments + 1), k = j + nSegments + 1; i < nSegments; i++, j++, k++) {
sm->AddPolygon(4, {j, j + 1, k + 1, k}, true); // inner
}
for (size_t i = 0, j = (nSegments + 1), k = j + 2 * (nSegments + 1); i < nSegments; i++, j++, k++) {
sm->AddPolygon(4, {j, k, k + 1, j + 1}, true); // lower
}
for (size_t i = 0, j = 0, k = j + 2 * (nSegments + 1); i < nSegments; i++, j++, k++) {
sm->AddPolygon(4, {j, j + 1, k + 1, k}, true); // Upper
}
if (dphi() != kTwoPi) {
sm->AddPolygon(4, {0, 2 * (nSegments + 1), 3 * (nSegments + 1), nSegments + 1}, true);
sm->AddPolygon(
4, {nSegments, nSegments + nSegments + 1, nSegments + 3 * (nSegments + 1), nSegments + 2 * (nSegments + 1)},
true);
}
return sm;
}
#endif
template <>
UnplacedTube *Maker<UnplacedTube>::MakeInstance(const Precision &rmin, const Precision &rmax, const Precision &z,
const Precision &sphi, const Precision &dphi)
{
#ifndef VECGEOM_NO_SPECIALIZATION
if (rmin <= 0) {
if (dphi >= 2 * M_PI) return new SUnplacedTube<TubeTypes::NonHollowTube>(rmin, rmax, z, sphi, 2*M_PI);
if (dphi == M_PI) return new SUnplacedTube<TubeTypes::NonHollowTubeWithPiSector>(rmin, rmax, z, sphi, dphi);
if (dphi < M_PI)
return new SUnplacedTube<TubeTypes::NonHollowTubeWithSmallerThanPiSector>(rmin, rmax, z, sphi, dphi);
if (dphi > M_PI)
return new SUnplacedTube<TubeTypes::NonHollowTubeWithBiggerThanPiSector>(rmin, rmax, z, sphi, dphi);
} else if (rmin > 0) {
if (dphi >= 2 * M_PI) return new SUnplacedTube<TubeTypes::HollowTube>(rmin, rmax, z, sphi, 2*M_PI);
if (dphi == M_PI) return new SUnplacedTube<TubeTypes::HollowTubeWithPiSector>(rmin, rmax, z, sphi, dphi);
if (dphi < M_PI) return new SUnplacedTube<TubeTypes::HollowTubeWithSmallerThanPiSector>(rmin, rmax, z, sphi, dphi);
if (dphi > M_PI) return new SUnplacedTube<TubeTypes::HollowTubeWithBiggerThanPiSector>(rmin, rmax, z, sphi, dphi);
}
// just here to trigger symbol creation (because it might be used explicitly elsewhere)
return new SUnplacedTube<TubeTypes::UniversalTube>(rmin, rmax, z, sphi, dphi);
#else
// if nothing matches return the most general case
// in principle this should never happen
return new SUnplacedTube<TubeTypes::UniversalTube>(rmin, rmax, z, sphi, dphi);
#endif
}
int UnplacedTube::ChooseSurface() const
{
int choice = 0; // 0 = rTop, 1 = rBot, 2 = phiLeft, 3 = phiRight, 4 = zIn, 5 = zOut
Precision S[6], Stotal = 0.0;
S[0] = S[1] = 0.5 * GetTopArea(); // 50% divide into top and bottom
S[2] = S[3] = 0.5 * GetLateralPhiArea(); // 50% divide into left and right
S[4] = GetLateralRInArea(); // inner tube surface area
S[5] = GetLateralROutArea(); // outer tube surface area
for (int i = 0; i < 6; ++i)
Stotal += S[i];
/* random value to choose surface to place the point */
Precision rand = RNG::Instance().uniform() * Stotal;
while (rand > S[choice])
rand -= S[choice], choice++;
assert(choice < 6);
return choice;
}
Vector3D<Precision> UnplacedTube::SamplePointOnSurface() const
{
int surface = ChooseSurface();
Precision rVal = RNG::Instance().uniform(rmin(), rmax());
Precision phiVal = RNG::Instance().uniform(sphi(), sphi() + dphi());
Precision zVal = RNG::Instance().uniform() * 2.0 * z() - z();
switch (surface) {
case 0:
rVal = sqrt(RNG::Instance().uniform(rmin()*rmin(), rmax()*rmax()));
zVal = z();
break;
case 1:
rVal = sqrt(RNG::Instance().uniform(rmin()*rmin(), rmax()*rmax()));
zVal = -z();
break;
case 2:
phiVal = sphi();
break;
case 3:
phiVal = sphi() + dphi();
break;
case 4:
rVal = rmin();
break;
case 5:
rVal = rmax();
break;
}
Precision xVal = rVal * cos(phiVal);
Precision yVal = rVal * sin(phiVal);
return Vector3D<Precision>(xVal, yVal, zVal);
}
VECCORE_ATT_HOST_DEVICE
bool UnplacedTube::Normal(Vector3D<Precision> const &point, Vector3D<Precision> &norm) const
{
bool valid = true;
TubeImplementation<TubeTypes::UniversalTube>::NormalKernel<Precision, bool>(fTube, point, norm, valid);
return valid;
}
/*
VECCORE_ATT_HOST_DEVICE
Precision UnplacedTube::SurfaceArea () const {
Precision area = fDphi * (rmin() + rmax()) * (2 * fZ + rmax() - rmin());
if (fDphi<kTwoPi) {
area += 4 * fZ * (rmax() - rmin());
}
return area;
}
*/
VECCORE_ATT_HOST_DEVICE
void UnplacedTube::DetectConvexity()
{
// Default safe convexity value
fGlobalConvexity = false;
// Logic to calculate the convexity
if (rmin() == 0.) {
if (dphi() <= kPi || dphi() == kTwoPi) fGlobalConvexity = true;
}
}
VECCORE_ATT_HOST_DEVICE
void UnplacedTube::Extent(Vector3D<Precision> &aMin, Vector3D<Precision> &aMax) const
{
// most general case
aMin = Vector3D<Precision>(-rmax(), -rmax(), -z());
aMax = Vector3D<Precision>(rmax(), rmax(), z());
if (dphi() == kTwoPi) return;
// check how many of phi=90, 180, 270, 360deg are outside this tube
auto Rin = 0.5 * (rmax() + rmin());
bool phi0out = !GetWedge().Contains(Vector3D<Precision>(Rin, 0, 0));
bool phi90out = !GetWedge().Contains(Vector3D<Precision>(0, Rin, 0));
bool phi180out = !GetWedge().Contains(Vector3D<Precision>(-Rin, 0, 0));
bool phi270out = !GetWedge().Contains(Vector3D<Precision>(0, -Rin, 0));
// if none of those 4 phis is outside, largest box still required
if (!(phi0out || phi90out || phi180out || phi270out)) return;
// some extent(s) of box will be reduced
// --> think of 4 points A,B,C,D such that A,B are at Rmin, C,D at Rmax
// and A,C at startPhi (fSphi), B,D at endPhi (fSphi+fDphi)
auto Cx = rmax() * cos(sphi());
auto Dx = rmax() * cos(sphi() + dphi());
auto Cy = rmax() * sin(sphi());
auto Dy = rmax() * sin(sphi() + dphi());
// then rewrite box sides whenever each one of those phis are not contained in the tube section
if (phi0out) aMax.x() = Max(Cx, Dx);
if (phi90out) aMax.y() = Max(Cy, Dy);
if (phi180out) aMin.x() = Min(Cx, Dx);
if (phi270out) aMin.y() = Min(Cy, Dy);
if (dphi() >= kPi) return;
auto Ax = rmin() * cos(sphi());
auto Bx = rmin() * cos(sphi() + dphi());
auto Ay = rmin() * sin(sphi());
auto By = rmin() * sin(sphi() + dphi());
Precision temp;
temp = Max(Ax, Bx);
aMax.x() = temp > aMax.x() ? temp : aMax.x();
temp = Max(Ay, By);
aMax.y() = temp > aMax.y() ? temp : aMax.y();
temp = Min(Ax, Bx);
aMin.x() = temp < aMin.x() ? temp : aMin.x();
temp = Min(Ay, By);
aMin.y() = temp < aMin.y() ? temp : aMin.y();
return;
}
#ifdef VECGEOM_CUDA_INTERFACE
DevicePtr<cuda::VUnplacedVolume> UnplacedTube::CopyToGpu(DevicePtr<cuda::VUnplacedVolume> const in_gpu_ptr) const
{
return CopyToGpuImpl<SUnplacedTube<TubeTypes::UniversalTube>>(in_gpu_ptr, rmin(), rmax(), z(), sphi(), dphi());
}
DevicePtr<cuda::VUnplacedVolume> UnplacedTube::CopyToGpu() const
{
return CopyToGpuImpl<SUnplacedTube<TubeTypes::UniversalTube>>();
}
#endif // VECGEOM_CUDA_INTERFACE
} // namespace VECGEOM_IMPL_NAMESPACE
#ifdef VECCORE_CUDA
namespace cxx {
template size_t DevicePtr<cuda::SUnplacedTube<cuda::TubeTypes::UniversalTube>>::SizeOf();
template void DevicePtr<cuda::SUnplacedTube<cuda::TubeTypes::UniversalTube>>::Construct(
const Precision rmin, const Precision rmax, const Precision z, const Precision sphi, const Precision dphi) const;
} // namespace cxx
#endif
} // namespace vecgeom
|