1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 300 301 302 303 304 305 306 307 308 309 310 311 312 313 314 315 316 317 318 319 320 321 322 323 324 325 326 327 328 329 330 331 332 333 334 335 336 337 338 339 340 341 342 343 344 345 346 347 348 349 350 351 352 353 354 355 356 357 358 359 360 361 362 363 364 365 366 367 368 369 370 371 372 373 374 375 376 377 378 379 380 381 382 383 384 385 386 387 388 389 390 391 392 393 394 395 396 397 398 399 400 401 402 403 404 405 406 407 408 409 410 411 412 413 414 415 416 417 418 419 420 421 422 423 424 425 426 427 428 429 430 431 432 433 434 435 436 437 438 439 440 441 442 443 444 445 446 447 448 449 450 451 452 453 454 455 456 457 458 459 460 461 462 463 464 465 466 467 468 469 470 471 472 473 474 475 476 477 478 479 480 481 482 483 484 485 486 487 488 489 490 491 492 493 494 495 496 497 498 499 500 501 502 503 504 505 506 507 508 509 510 511 512 513 514 515 516 517 518 519 520 521 522 523 524 525 526 527 528 529 530 531 532 533 534 535 536 537 538 539 540 541 542 543 544 545 546 547 548 549 550 551 552 553 554 555 556 557 558 559 560 561 562 563 564 565 566 567 568 569 570 571 572 573 574 575 576 577 578 579 580 581 582 583 584 585 586 587 588 589 590 591 592 593 594 595 596 597 598 599 600 601 602 603 604 605 606 607 608 609 610 611 612 613 614 615 616 617 618 619 620 621 622 623 624 625 626 627 628 629 630 631 632 633 634 635 636 637 638 639 640 641 642 643 644 645 646 647 648 649 650 651 652 653 654 655 656 657 658 659 660 661 662 663 664 665 666 667 668 669 670 671 672 673 674 675 676 677 678 679 680 681 682 683 684 685 686 687 688 689 690 691 692 693 694 695 696 697 698 699 700 701 702 703 704 705 706 707 708 709 710 711 712 713 714 715 716 717 718 719 720 721 722 723 724 725 726 727 728 729 730 731 732 733 734 735 736 737 738 739 740 741 742 743 744 745 746 747 748 749 750 751 752 753 754 755 756 757 758 759 760 761 762 763 764 765 766 767 768 769 770 771 772 773 774 775 776 777 778 779 780 781 782 783 784 785 786 787 788 789 790 791 792 793 794 795 796 797 798 799 800 801 802 803 804 805 806 807 808 809 810 811 812 813 814 815 816 817 818 819 820 821 822 823 824 825 826 827 828 829 830 831 832 833 834 835 836 837 838 839 840 841 842 843 844 845 846 847 848 849 850 851 852 853 854 855 856 857 858 859 860 861 862 863 864 865 866 867 868 869 870 871 872 873 874 875 876 877 878 879 880 881 882 883 884 885 886 887 888 889 890 891 892 893 894 895 896 897 898 899 900 901 902 903 904 905 906 907 908 909 910 911 912 913 914 915 916 917 918 919 920 921 922 923 924 925 926 927 928 929 930 931 932 933 934 935 936 937 938 939 940 941 942 943 944 945 946 947 948 949 950 951 952 953 954 955 956 957 958 959 960 961 962 963 964 965 966 967 968 969 970 971 972 973 974 975 976 977 978 979 980 981 982 983 984 985 986 987 988 989 990 991 992 993 994 995 996 997 998 999 1000 1001 1002 1003 1004 1005 1006 1007 1008 1009 1010 1011 1012 1013 1014 1015 1016 1017 1018 1019 1020 1021 1022 1023 1024 1025 1026 1027 1028 1029 1030 1031 1032 1033 1034 1035 1036 1037 1038 1039 1040 1041 1042 1043 1044 1045 1046 1047 1048 1049 1050 1051 1052 1053 1054 1055 1056 1057 1058 1059 1060 1061 1062 1063 1064 1065 1066 1067 1068 1069 1070 1071 1072 1073 1074 1075 1076 1077 1078 1079 1080 1081 1082 1083 1084 1085 1086 1087 1088 1089 1090 1091 1092 1093 1094 1095 1096 1097 1098 1099 1100 1101 1102 1103 1104 1105 1106 1107 1108 1109 1110 1111 1112 1113 1114 1115 1116 1117 1118 1119 1120 1121 1122 1123 1124 1125 1126 1127 1128 1129 1130 1131 1132 1133 1134 1135 1136 1137 1138 1139 1140 1141 1142 1143 1144 1145 1146 1147 1148 1149 1150 1151 1152 1153 1154 1155 1156 1157 1158 1159 1160 1161 1162 1163 1164 1165 1166 1167 1168 1169 1170 1171 1172 1173 1174 1175 1176 1177 1178 1179 1180 1181 1182 1183 1184 1185 1186 1187 1188 1189 1190 1191 1192 1193 1194 1195 1196 1197 1198 1199 1200 1201 1202 1203 1204 1205 1206 1207 1208 1209 1210 1211 1212 1213 1214 1215 1216 1217 1218 1219 1220 1221 1222 1223 1224 1225 1226 1227 1228 1229 1230 1231 1232 1233 1234 1235 1236 1237 1238 1239 1240 1241 1242 1243 1244 1245 1246 1247 1248 1249 1250 1251 1252 1253 1254 1255 1256 1257 1258 1259 1260 1261 1262 1263 1264 1265 1266 1267 1268 1269 1270 1271 1272 1273 1274 1275 1276 1277 1278 1279 1280 1281 1282 1283 1284 1285 1286 1287 1288 1289 1290 1291 1292 1293 1294 1295 1296 1297 1298 1299 1300 1301 1302 1303 1304 1305 1306 1307 1308 1309 1310 1311 1312 1313 1314 1315 1316 1317 1318 1319 1320 1321 1322 1323 1324 1325 1326 1327 1328 1329 1330 1331 1332 1333 1334 1335 1336 1337 1338 1339 1340 1341 1342 1343 1344 1345 1346 1347 1348 1349 1350 1351 1352 1353 1354 1355 1356 1357 1358 1359 1360 1361 1362 1363 1364 1365 1366 1367 1368 1369 1370 1371 1372 1373 1374 1375 1376 1377 1378 1379 1380 1381 1382 1383 1384 1385 1386 1387 1388 1389 1390 1391 1392 1393 1394 1395 1396 1397 1398 1399 1400 1401 1402 1403 1404 1405 1406 1407 1408 1409 1410 1411 1412 1413 1414 1415 1416 1417 1418 1419 1420 1421 1422 1423 1424 1425 1426 1427 1428 1429 1430 1431 1432 1433 1434 1435 1436 1437 1438 1439 1440 1441 1442 1443 1444 1445 1446 1447 1448 1449 1450 1451 1452 1453 1454 1455 1456 1457 1458 1459 1460 1461 1462 1463 1464 1465 1466 1467 1468 1469 1470 1471 1472 1473 1474 1475 1476 1477 1478 1479 1480 1481 1482 1483 1484 1485 1486 1487 1488 1489 1490 1491 1492 1493 1494 1495 1496 1497 1498 1499 1500 1501 1502 1503 1504 1505 1506 1507 1508 1509 1510 1511 1512 1513 1514 1515 1516 1517 1518 1519 1520 1521 1522 1523 1524 1525 1526 1527 1528 1529 1530 1531 1532 1533 1534 1535 1536 1537 1538 1539 1540 1541 1542 1543 1544 1545 1546 1547 1548 1549 1550 1551 1552 1553 1554 1555 1556 1557 1558 1559 1560 1561 1562 1563 1564 1565 1566 1567 1568 1569 1570 1571 1572 1573 1574 1575 1576 1577 1578 1579 1580 1581 1582 1583 1584 1585 1586 1587 1588 1589 1590 1591 1592 1593 1594 1595 1596 1597 1598 1599 1600 1601 1602 1603 1604 1605 1606 1607 1608 1609 1610 1611 1612 1613 1614 1615 1616 1617 1618 1619 1620 1621 1622 1623 1624 1625 1626 1627 1628 1629 1630 1631 1632 1633 1634 1635 1636 1637 1638 1639 1640 1641 1642 1643 1644 1645 1646 1647 1648 1649 1650 1651 1652 1653 1654 1655 1656 1657 1658 1659 1660 1661 1662 1663 1664 1665 1666 1667 1668 1669 1670 1671 1672 1673 1674 1675 1676 1677 1678 1679 1680 1681 1682 1683 1684 1685 1686 1687 1688 1689 1690 1691 1692 1693 1694 1695 1696 1697 1698 1699 1700 1701 1702 1703 1704 1705 1706 1707 1708 1709 1710 1711 1712 1713 1714 1715 1716 1717 1718 1719 1720 1721 1722 1723 1724 1725 1726 1727 1728 1729 1730 1731 1732 1733 1734 1735 1736 1737 1738 1739 1740 1741 1742 1743 1744 1745 1746 1747 1748 1749 1750 1751 1752 1753 1754 1755 1756 1757 1758 1759 1760 1761 1762 1763 1764 1765 1766 1767 1768 1769 1770 1771 1772 1773 1774 1775 1776 1777 1778 1779 1780 1781 1782 1783 1784 1785 1786 1787 1788 1789 1790 1791 1792 1793 1794 1795 1796 1797 1798 1799 1800 1801 1802 1803 1804 1805 1806 1807 1808 1809 1810 1811 1812 1813 1814 1815 1816 1817 1818 1819 1820 1821 1822 1823 1824 1825 1826 1827 1828 1829 1830 1831 1832 1833 1834 1835 1836 1837 1838 1839 1840 1841 1842 1843 1844 1845 1846 1847 1848 1849 1850 1851 1852 1853 1854 1855 1856 1857 1858 1859 1860 1861 1862 1863 1864 1865 1866 1867 1868 1869 1870 1871 1872 1873 1874 1875 1876 1877 1878 1879 1880 1881 1882 1883 1884 1885 1886 1887 1888 1889 1890 1891 1892 1893 1894 1895 1896 1897 1898 1899 1900 1901 1902 1903 1904 1905 1906 1907 1908 1909 1910 1911 1912 1913 1914 1915 1916 1917 1918 1919 1920 1921 1922 1923 1924 1925 1926 1927 1928 1929 1930 1931 1932 1933 1934 1935 1936 1937 1938 1939 1940 1941 1942 1943 1944 1945 1946 1947 1948 1949 1950 1951 1952 1953 1954 1955 1956 1957 1958 1959 1960 1961 1962 1963 1964 1965 1966 1967 1968 1969 1970 1971 1972 1973 1974 1975 1976 1977 1978 1979 1980 1981 1982 1983 1984 1985 1986 1987 1988 1989 1990 1991 1992 1993 1994 1995 1996 1997 1998 1999 2000 2001 2002 2003 2004 2005 2006 2007 2008 2009 2010 2011 2012 2013 2014 2015 2016 2017 2018 2019 2020 2021 2022 2023 2024 2025 2026 2027 2028 2029 2030 2031 2032 2033 2034 2035 2036 2037 2038 2039 2040 2041 2042 2043 2044 2045 2046 2047 2048 2049 2050 2051 2052 2053 2054 2055 2056 2057 2058 2059 2060 2061 2062 2063 2064 2065 2066 2067 2068 2069 2070 2071 2072 2073 2074 2075 2076 2077 2078 2079 2080 2081 2082 2083 2084 2085 2086 2087 2088 2089 2090 2091 2092 2093 2094 2095 2096 2097 2098 2099 2100 2101 2102 2103 2104 2105 2106 2107 2108 2109 2110 2111 2112 2113 2114 2115 2116 2117 2118 2119 2120 2121 2122 2123 2124 2125 2126 2127 2128 2129 2130 2131 2132 2133 2134 2135 2136 2137 2138 2139 2140 2141 2142 2143 2144 2145 2146 2147 2148 2149 2150 2151 2152 2153 2154 2155 2156 2157 2158 2159 2160 2161 2162 2163 2164 2165 2166 2167 2168 2169 2170 2171 2172 2173 2174 2175 2176 2177 2178 2179 2180 2181 2182 2183 2184 2185 2186 2187 2188 2189 2190 2191 2192 2193 2194 2195 2196 2197 2198 2199 2200 2201 2202 2203 2204 2205 2206 2207 2208 2209 2210 2211 2212 2213 2214 2215 2216 2217 2218 2219 2220 2221 2222 2223 2224 2225 2226 2227 2228 2229 2230 2231 2232 2233 2234 2235 2236 2237 2238 2239 2240 2241 2242 2243 2244 2245 2246 2247 2248 2249 2250 2251 2252 2253 2254 2255 2256 2257 2258 2259 2260 2261 2262 2263 2264 2265 2266 2267 2268 2269 2270 2271 2272 2273 2274 2275 2276 2277 2278 2279 2280 2281 2282 2283 2284 2285 2286 2287 2288 2289 2290 2291 2292 2293 2294 2295 2296 2297 2298 2299 2300 2301 2302 2303 2304 2305 2306 2307 2308 2309 2310 2311 2312 2313 2314 2315 2316 2317 2318 2319 2320 2321 2322 2323 2324 2325 2326 2327 2328 2329 2330 2331 2332 2333 2334 2335 2336 2337 2338 2339 2340 2341 2342
|
//
// Implementation of the batch solid test
//
#include "VecGeom/base/RNG.h"
#include <iomanip>
#include <sstream>
#include <ctime>
#include <vector>
#include <iostream>
#include <fstream>
#include "ShapeTester.h"
#include "VecGeom/volumes/PlacedVolume.h"
#include "VecGeom/base/Transformation3D.h"
#include "VecGeom/base/Vector3D.h"
#include "VecGeom/volumes/Box.h"
#ifdef VECGEOM_ROOT
#include "TGraph2D.h"
#include "TCanvas.h"
#include "TApplication.h"
#include "TGeoManager.h"
#include "TPolyMarker3D.h"
#include "TRandom3.h"
#include "TColor.h"
#include "TROOT.h"
#include "TAttMarker.h"
#include "TGraph.h"
#include "TLegend.h"
#include "TH1D.h"
#include "TH2F.h"
#include "TF1.h"
#include "TVirtualPad.h"
#include "TView3D.h"
#include "VecGeom/management/RootGeoManager.h"
#endif
using namespace std;
using namespace vecgeom;
/* The definitions of core ShapeTester functions are not modified,
* Only duplicate tests which are now implemented in Convention checker
* are removed. These are basically tests for wrong side points.
*
*/
template <typename ImplT>
ShapeTester<ImplT>::ShapeTester()
{
SetDefaults();
}
template <typename ImplT>
ShapeTester<ImplT>::~ShapeTester()
{
}
template <typename ImplT>
void ShapeTester<ImplT>::SetDefaults()
{
fNumDisp = 2;
fMaxPoints = 10000;
fVerbose = 1;
fInsidePercent = 100.0 / 3;
fOutsidePercent = 100.0 / 3;
fEdgePercent = 0;
fOutsideMaxRadiusMultiple = 10;
fOutsideRandomDirectionPercent = 50;
fIfSaveAllData = false;
fDefinedNormal = false;
fIfException = false;
fMethod = "all";
fVolume = NULL;
fGCapacitySampled = 0;
fGCapacityError = 0;
fGCapacityAnalytical = 0;
fGNumberOfScans = 15;
//
// Zero error list
//
fErrorList = 0;
fVisualize = false;
fSolidTolerance = vecgeom::kTolerance;
fSolidFarAway = vecgeom::kFarAway;
fStat = false;
fTestBoundaryErrors = false;
fDebug = false;
}
template <typename ImplT>
void ShapeTester<ImplT>::EnableDebugger(bool val)
{
fVisualize = val;
}
template <typename ImplT>
Vec_t ShapeTester<ImplT>::GetRandomDirection()
{
Precision phi = 2. * kPi * fRNG.uniform();
Precision theta = vecgeom::ACos(1. - 2. * fRNG.uniform());
Precision vx = std::sin(theta) * std::cos(phi);
Precision vy = std::sin(theta) * std::sin(phi);
Precision vz = std::cos(theta);
Vec_t vec(vx, vy, vz);
vec.Normalize();
return vec;
}
template <typename ImplT>
Vec_t ShapeTester<ImplT>::GetPointOnOrb(Precision r)
{
Precision phi = 2. * kPi * fRNG.uniform();
Precision theta = vecgeom::ACos(1. - 2. * fRNG.uniform());
Precision vx = std::sin(theta) * std::cos(phi);
Precision vy = std::sin(theta) * std::sin(phi);
Precision vz = std::cos(theta);
Vec_t vec(vx, vy, vz);
vec.Normalize();
vec = vec * r;
return vec;
}
// DONE: all set point Methods are performance equivalent
template <typename ImplT>
int ShapeTester<ImplT>::TestBoundaryPrecision(int mode)
{
// Testing of boundary precision.
// Supported modes:
// 0 - default mode computing a boundary tolerance standard deviation
// averaged on random directions and distances
int nsamples = 1000;
int errCode = 0;
int nError = 0;
constexpr int ndist = 8;
Precision dtest;
Precision maxerr;
Precision ndotvmin = 0.2; // avoid directions parallel to surface
std::cout << "# Testing boundary precision\n";
Precision x[ndist];
#ifdef VECGEOM_ROOT
Precision y[ndist];
TCanvas *cerrors = new TCanvas("cerrors", "Boundary precision", 1200, 800);
TLegend *legend = new TLegend(0.12, 0.75, 0.32, 0.87);
legend->SetLineColor(0);
#endif
// Generate several "move away" distances
dtest = 1.e-3;
for (int idist = 0; idist < ndist; ++idist) {
maxerr = 0.;
dtest *= 10.;
x[idist] = dtest;
for (int i = 0; i < fMaxPointsSurface + fMaxPointsEdge; ++i) {
// Initial point on surface.
Vec_t point = fPoints[fOffsetSurface + i];
// Make sure point is on surface
if (fVolume->Inside(point) != vecgeom::EInside::kSurface) {
// Do not report the error here - it is tested in TestSurfacePoint
continue;
}
// Compute normal to surface in this point
Vec_t norm, v;
bool valid = fVolume->Normal(point, norm);
if (!valid) continue;
// Test boundary tolerance when coming from outside from distance = 1.
for (int isample = 0; isample < nsamples; ++isample) {
// Generate a random direction outwards the solid, then
// move the point from boundary outwards with distance = 1, making sure
// that the new point lies outside.
Vec_t pout;
int ntries = 0;
while (1) {
if (ntries == 1000) {
errCode = 1; // do we have a rule coding the error number?
ReportError(&nError, point, norm, 1.,
"TBE: Cannot reach outside from surface when "
"propagating with unit distance after 1000 tries.");
return errCode;
}
ntries++;
// Random direction outwards
v = GetRandomDirection();
if (norm.Dot(v) < ndotvmin) continue;
// Move the point from boundary outwards with distance = dtest.
pout = point + dtest * v;
// Cross-check that the point is actually outside
if (fVolume->Inside(pout) == vecgeom::EInside::kOutside) break;
}
// Compute distance back to boundary.
Precision dunit = fVolume->DistanceToIn(pout, -v);
// Compute rounded boundary error (along normal)
Precision error = (dunit - dtest) * norm.Dot(v);
// Ignore large errors which can be due to missing the shape or by
// shooting from inner boundaries
if (Abs(error) < 1.e-1 && Abs(error) > maxerr) maxerr = Abs(error);
}
}
#ifdef VECGEOM_ROOT
y[idist] = maxerr;
#endif
std::cout << "== error[dist = " << x[idist] << "] = " << maxerr << std::endl;
}
#ifdef VECGEOM_ROOT
TGraph *grerrdist = new TGraph(ndist, x, y);
grerrdist->SetTitle("DistanceToIn error on boundary propagation");
grerrdist->GetXaxis()->SetTitle("distance (internal unit)");
grerrdist->GetYaxis()->SetTitle("Max sampled propagation error");
cerrors->SetGridy();
cerrors->SetLogx();
cerrors->SetLogy();
grerrdist->Draw("AL*");
grerrdist->SetMarkerColor(kRed);
grerrdist->SetMarkerSize(2);
grerrdist->SetMarkerStyle(20);
grerrdist->SetLineColor(kRed);
grerrdist->SetLineWidth(2);
// grerrdist->GetYaxis()->SetRangeUser(1.e-16,1.e-1);
// legend->AddEntry(grerrdist, fVolume->GetEntityType().c_str(), "lpe");
legend->Draw();
char name[100];
// sprintf(name, "%s_errors.gif", fVolume->GetEntityType().c_str());
cerrors->SaveAs(name);
// sprintf(name, "%s_errors.root", fVolume->GetEntityType().c_str());
cerrors->SaveAs(name);
#endif
return errCode;
}
template <typename ImplT>
int ShapeTester<ImplT>::TestConsistencySolids()
{
int errCode = 0;
std::cout << "% Performing CONSISTENCY TESTS: ConsistencyTests for Inside, Outside and Surface fPoints " << std::endl;
errCode += TestInsidePoint();
errCode += TestOutsidePoint();
errCode += TestSurfacePoint();
if (fIfSaveAllData) {
Vec_t point;
for (int i = 0; i < fMaxPoints; i++) {
point = fPoints[i];
Inside_t inside = fVolume->Inside(point);
fResultPrecision[i] = (Precision)inside;
}
SaveResultsToFile("Inside");
}
return errCode;
}
template <typename ImplT>
int ShapeTester<ImplT>::ShapeNormal()
{
int errCode = 0;
int nError = 0;
ClearErrors();
int i;
int numTrials = 1000;
#ifdef VECGEOM_ROOT
// Visualisation
TPolyMarker3D *pm2 = 0;
pm2 = new TPolyMarker3D();
pm2->SetMarkerSize(0.02);
pm2->SetMarkerColor(kBlue);
#endif
Vec_t minExtent, maxExtent;
fVolume->Extent(minExtent, maxExtent);
Precision maxX = std::max(std::fabs(maxExtent.x()), std::fabs(minExtent.x()));
Precision maxY = std::max(std::fabs(maxExtent.y()), std::fabs(minExtent.y()));
Precision maxZ = std::max(std::fabs(maxExtent.z()), std::fabs(minExtent.z()));
Precision maxXYZ = 2. * std::sqrt(maxX * maxX + maxY * maxY + maxZ * maxZ);
Precision step = maxXYZ * fSolidTolerance;
for (i = 0; i < fMaxPointsInside; i++) {
// Initial point is inside
Vec_t point = fPoints[i + fOffsetInside];
Vec_t dir = fDirections[i + fOffsetInside];
Vec_t norm = false;
bool convex = false;
Inside_t inside;
int count = 0;
Precision dist = CallDistanceToOut(fVolume, point, dir, norm, convex);
// Propagate on boundary
point = point + dist * dir;
for (int j = 0; j < numTrials; j++) {
Vec_t dir_new;
do {
// Generate a random direction from the point on boundary
dir_new = GetRandomDirection();
// We expect that if we propagate with the shape tolerance
// corrected by the shooting distance, at least on some directions
// the new point will be inside
inside = fVolume->Inside(point + dir_new * step);
count++;
} while ((inside != vecgeom::EInside::kInside) && (count < 1000));
if (count >= 1000) {
ReportError(&nError, point, dir_new, 0.,
"SN: Cannot reach inside solid "
"from point on boundary after propagation with tolerance after 1000 trials");
break;
}
count = 0;
// Propagate the point to new location close to boundary, but inside
point += dir_new * step;
// Now shoot along the direction that just crossed the surface and expect
// to find a distance bigger than the tolerance
dist = CallDistanceToOut(fVolume, point, dir_new, norm, convex);
if (dist < fSolidTolerance) {
ReportError(&nError, point, dir_new, dist,
"SN: DistanceToOut has to be bigger than tolerance for point Inside");
}
// Distance to exit should not be infinity
if (dist >= kInfLength) {
ReportError(&nError, point, dir_new, dist, "SN: DistanceToOut has to be finite number");
}
// The normal vector direction at the exit point has to point outwards
Precision dot = norm.Dot(dir_new);
if (dot < 0.) {
ReportError(&nError, point, dir_new, dot, "SN: Wrong direction of Normal calculated by DistanceToOut");
}
// Propagate the point to the exiting surface and compute normal vector
// using the Normal method
point = point + dist * dir_new;
if (fDefinedNormal) {
Vec_t normal;
bool valid = fVolume->Normal(point, normal);
if (!valid) ReportError(&nError, point, dir_new, 0., "SN: Normal has to be valid for point on the Surface");
dot = normal.Dot(dir_new);
// Normal has to point outwards
if (dot < 0.) {
ReportError(&nError, point, dir_new, dot, "SN: Wrong direction of Normal calculated by Normal");
}
}
#ifdef VECGEOM_ROOT
// visualisation
pm2->SetNextPoint(point.x(), point.y(), point.z());
#endif
// Check if exiting point is actually on surface
if (fVolume->Inside(point) == vecgeom::EInside::kOutside) {
ReportError(&nError, point, dir_new, 0., "SN: DistanceToOut is overshooting, new point must be on the Surface");
break;
}
if (fVolume->Inside(point) == vecgeom::EInside::kInside) {
ReportError(&nError, point, dir_new, 0.,
"SN: DistanceToOut is undershooting, new point must be on the Surface");
break;
}
// Compute safety from point on boundary - they should be no more than
// the solid tolerance
Precision safFromIn = fVolume->SafetyToOut(point);
Precision safFromOut = fVolume->SafetyToIn(point);
if (safFromIn > fSolidTolerance)
ReportError(&nError, point, dir_new, safFromIn, "SN: SafetyToOut must be less than tolerance on Surface ");
if (safFromOut > fSolidTolerance)
ReportError(&nError, point, dir_new, safFromOut,
"SN: SafetyFromOutside must be less than tolerance on Surface");
}
}
#ifdef VECGEOM_ROOT
// visualisation
if (fStat) {
new TCanvas("shape03", "ShapeNormals", 1000, 800);
pm2->Draw();
}
#endif
std::cout << "% " << std::endl;
std::cout << "% TestShapeNormal reported = " << CountErrors() << " errors" << std::endl;
std::cout << "% " << std::endl;
if (CountErrors()) errCode = 256; // errCode: 0001 0000 0000
return errCode;
}
template <typename ImplT>
int ShapeTester<ImplT>::ShapeDistances()
{
int errCode = 0;
int i;
int nError = 0;
ClearErrors();
Precision maxDifOut = 0, maxDifIn = 0., delta = 0., tolerance = fSolidTolerance;
bool convex = false, convex2 = false;
bool globalConvex = true;
if (dynamic_cast<VPlacedVolume const *>(fVolume)) {
globalConvex = static_cast<VPlacedVolume const *>(fVolume)->GetUnplacedVolume()->IsConvex();
std::cout << "globalConvex = " << globalConvex << std::endl;
}
Vec_t norm;
Vec_t minExtent, maxExtent;
fVolume->Extent(minExtent, maxExtent);
Precision maxX = std::max(std::fabs(maxExtent.x()), std::fabs(minExtent.x()));
Precision maxY = std::max(std::fabs(maxExtent.y()), std::fabs(minExtent.y()));
Precision maxZ = std::max(std::fabs(maxExtent.z()), std::fabs(minExtent.z()));
Precision maxXYZ = 2. * std::sqrt(maxX * maxX + maxY * maxY + maxZ * maxZ);
Precision dmove = maxXYZ;
#ifdef VECGEOM_ROOT
// Histograms
TH1D *hist1 = new TH1D("Residual", "Residual DistancetoIn/Out", 200, -20, 0);
hist1->GetXaxis()->SetTitle("delta[mm] - first bin=overflow");
hist1->GetYaxis()->SetTitle("count");
hist1->SetMarkerStyle(kFullCircle);
TH1D *hist2 = new TH1D("AccuracyIn", "Accuracy distanceToIn for Points near Surface", 200, -20, 0);
hist2->GetXaxis()->SetTitle("delta[mm] - first bin=overflow");
hist2->GetYaxis()->SetTitle("count");
hist2->SetMarkerStyle(kFullCircle);
TH1D *hist3 = new TH1D("AccuracyOut", "Accuracy distanceToOut for Points near Surface", 200, -20, 0);
hist3->GetXaxis()->SetTitle("delta[mm] - first bin=overflow");
hist3->GetYaxis()->SetTitle("count");
hist3->SetMarkerStyle(kFullCircle);
#endif
for (i = 0; i < fMaxPointsInside; i++) {
// Take initial point inside
Vec_t point = fPoints[i + fOffsetInside];
Vec_t dir = fDirections[i + fOffsetInside];
// Compute distance to outside
Precision DistanceOut2 = CallDistanceToOut(fVolume, point, dir, norm, convex2);
// Compute a new point before boundary
/*
Instead of creating new point like
point + dir * DistanceOut2 * (1. - 10 * tolerance);
better way is to take the point to surface and then move it back by
required distance, otherwise for some of the shapes like Hype and Cone
It will give "DistanceToOut is not precise", or "DistanceToIn is not precise"
error
*/
Vec_t pointSurf = point + dir * DistanceOut2;
Vec_t pointIn = pointSurf - dir * 10. * tolerance;
// Compute distance to outside from pointIn
Precision DistanceOut = CallDistanceToOut(fVolume, pointIn, dir, norm, convex);
// Compute a new point just after the boundary outside
Vec_t pointOut = pointSurf + dir * 10. * tolerance;
// Now shoot in the opposite direction and compute distance to inside
Precision DistanceIn = fVolume->DistanceToIn(pointOut, -dir);
// The distances to the boindary from points near boundary should be small
if (DistanceOut > 1000. * tolerance)
ReportError(&nError, pointIn, dir, DistanceOut, "SD: DistanceToOut is not precise");
if (DistanceIn > 1000. * tolerance)
ReportError(&nError, pointOut, dir, DistanceIn, "SD: DistanceToIn is not precise ");
// Calculate distances for convex or non-convex cases, from the point
// propagated on surface
Precision DistanceToInSurf = fVolume->DistanceToIn(point + dir * DistanceOut2, dir);
if (DistanceToInSurf >= kInfLength) {
// The solid is not crossed again, so it may be convex on this surface
// Aim to move the point outside, but not too far
dmove = maxXYZ;
if (globalConvex && !convex2) {
bool matchConvexity = false;
Vec_t pointSurf = point + dir * DistanceOut2;
// To cross-check convexity, shoot randomly in the attempt to cross
// again the solid. Note that this check may fail even if the solid is
// really non-convex on this surface (sampling to be increased)
for (int k = 0; k < 100; k++) {
Vec_t rndDir = GetRandomDirection();
Precision distTest = fVolume->DistanceToIn(pointSurf, rndDir);
if ((distTest <= kInfLength) && (distTest > fSolidTolerance)) {
matchConvexity = true;
break;
}
}
// #### Check disabled until the check of convexity from DistanceToOut gets
// activated ####
if (!matchConvexity)
ReportError(&nError, point, dir, DistanceToInSurf, "SD: Error in convexity, must be convex");
}
} else {
// Re-entering solid, it is not convex
if (globalConvex && convex2)
ReportError(&nError, point, dir, DistanceToInSurf, "SD: Error in convexity, must be NOT convex");
// Aim to move the point outside, but not re-enter
dmove = DistanceOut2 + DistanceToInSurf * 0.5;
}
// Shoot back to the solid from point moved outside
Precision DistanceToIn2 = fVolume->DistanceToIn(point + dir * dmove, -dir);
if (maxDifOut < DistanceOut) {
maxDifOut = DistanceOut;
}
if ((fVolume->Inside(pointOut - dir * DistanceIn) != vecgeom::EInside::kOutside) && (maxDifIn < DistanceIn)) {
maxDifIn = DistanceIn;
}
// dmove should be close to the sum between DistanceOut2 and DistanceIn2
Precision difDelta = dmove - DistanceOut2 - DistanceToIn2;
if (std::fabs(difDelta) > 10. * tolerance)
ReportError(&nError, point, dir, difDelta, "SD: Distances calculation is not precise");
if (difDelta > delta) delta = std::fabs(difDelta);
#ifdef VECGEOM_ROOT
// Histograms
if (std::fabs(difDelta) < 1E-20) difDelta = 1E-30;
if (std::fabs(DistanceIn) < 1E-20) difDelta = 1E-30;
if (std::fabs(DistanceOut) < 1E-20) difDelta = 1E-30;
hist1->Fill(std::max(0.5 * std::log(std::fabs(difDelta)), -20.));
hist2->Fill(std::max(0.5 * std::log(std::fabs(DistanceIn)), -20.));
hist3->Fill(std::max(0.5 * std::log(std::fabs(DistanceOut)), -20.));
#endif
}
if (fVerbose) {
std::cout << "% TestShapeDistances:: Accuracy max for DistanceToOut=" << maxDifOut
<< " from asked accuracy eps=" << 10 * tolerance << std::endl;
std::cout << "% TestShapeDistances:: Accuracy max for DistanceToIn=" << maxDifIn
<< " from asked accuracy eps=" << 10 * tolerance << std::endl;
std::cout << "% TestShapeDistances:: Accuracy max for Delta=" << delta << std::endl;
}
std::cout << "% " << std::endl;
std::cout << "% TestShapeDistances reported = " << CountErrors() << " errors" << std::endl;
std::cout << "% " << std::endl;
if (CountErrors()) errCode = 32; // errCode: 0000 0010 0000
#ifdef VECGEOM_ROOT
// Histograms
if (fStat) {
TCanvas *c4 = new TCanvas("c4", "Residuals DistancsToIn/Out", 800, 600);
c4->Update();
hist1->Draw();
TCanvas *c5 = new TCanvas("c5", "Residuals DistancsToIn", 800, 600);
c5->Update();
hist2->Draw();
TCanvas *c6 = new TCanvas("c6", "Residuals DistancsToOut", 800, 600);
c6->Update();
hist3->Draw();
}
#endif
return errCode;
}
template <typename ImplT>
int ShapeTester<ImplT>::TestNormalSolids()
{
// This saves the result of Normal method to file
int errCode = 0;
Vec_t point, normal;
for (int i = 0; i < fMaxPoints; i++) {
point = fPoints[i];
// bool valid = fVolume->Normal(point, normal);
if (fIfSaveAllData) {
fResultVector[i].Set(normal.x(), normal.y(), normal.z());
std::cout << " fResultsVU[ " << i << "] = " << fResultVector[i] << "\n";
fResultVector[i] = normal;
std::cout << " fResultsVU[ " << i << "] = " << fResultVector[i] << "\n";
}
}
SaveResultsToFile("Normal");
return errCode;
}
template <typename ImplT>
int ShapeTester<ImplT>::TestSafetyFromOutsideSolids()
{
// This saves the result of SafetyFromOutside method to file
int errCode = 0;
std::cout << "% Performing SAFETYFromOUTSIDE TESTS: ShapeSafetyFromOutside " << std::endl;
errCode += ShapeSafetyFromOutside(1000);
if (fIfSaveAllData) {
Vec_t point;
for (int i = 0; i < fMaxPoints; i++) {
point = fPoints[i];
Precision res = fVolume->SafetyToIn(point);
fResultPrecision[i] = res;
}
SaveResultsToFile("SafetyFromOutside");
}
return errCode;
}
template <typename ImplT>
int ShapeTester<ImplT>::TestSafetyFromInsideSolids()
{
// This saves the result of SafetyFromInside method to file
int errCode = 0;
std::cout << "% Performing SAFETYFromINSIDE TESTS: ShapeSafetyFromInside " << std::endl;
errCode += ShapeSafetyFromInside(1000);
if (fIfSaveAllData) {
Vec_t point;
for (int i = 0; i < fMaxPoints; i++) {
point = fPoints[i];
Precision res = fVolume->SafetyToOut(point);
fResultPrecision[i] = res;
}
SaveResultsToFile("SafetyFromInside");
}
return errCode;
}
template <typename ImplT>
void ShapeTester<ImplT>::PropagatedNormalU(const Vec_t &point, const Vec_t &direction, Precision distance,
Vec_t &normal)
{
// Compute surface point and correspondinf surface normal after computing
// the distance to the solid
normal.Set(0);
if (distance < kInfLength) {
Vec_t shift = distance * direction;
Vec_t surfacePoint = point + shift;
fVolume->Normal(surfacePoint, normal);
}
}
template <typename ImplT>
int ShapeTester<ImplT>::TestDistanceToInSolids()
{
// Combined test for DistanceToIn
int errCode = 0;
std::cout << "% Performing DISTANCEtoIn TESTS: ShapeDistances, TestsAccuracyDistanceToIn and TestFarAwayPoint "
<< std::endl;
errCode += ShapeDistances();
errCode += TestAccuracyDistanceToIn(1000.);
errCode += TestFarAwayPoint();
if (fIfSaveAllData) {
Vec_t point, direction;
for (int i = 0; i < fMaxPoints; i++) {
point = fPoints[i];
direction = fDirections[i];
Precision res = fVolume->DistanceToIn(point, direction);
fResultPrecision[i] = res;
Vec_t normal;
PropagatedNormalU(point, direction, res, normal);
fResultVector[i] = normal;
}
SaveResultsToFile("DistanceToIn");
}
return errCode;
}
template <typename ImplT>
int ShapeTester<ImplT>::TestDistanceToOutSolids()
{
// Combined test for DistanceToOut
int errCode = 0;
std::cout << "% Performing DISTANCEtoOUT TESTS: Shape Normals " << std::endl;
errCode += ShapeNormal();
if (fIfSaveAllData) {
Vec_t point, normal, direction;
bool convex = false;
for (int i = 0; i < fMaxPoints; i++) {
point = fPoints[i];
direction = fDirections[i];
normal.Set(0);
Precision res = CallDistanceToOut(fVolume, point, direction, normal, convex);
fResultPrecision[i] = res;
fResultVector[i] = normal;
}
}
SaveResultsToFile("DistanceToOut");
return errCode;
}
template <typename ImplT>
int ShapeTester<ImplT>::TestFarAwayPoint()
{
int errCode = 0;
Vec_t point, point1, vec, direction, normal, pointSurf, pointBB;
int icount = 0, icount1 = 0, nError = 0;
Precision distIn, distBB, diff, difMax = 0., maxDistIn = 0.;
Precision tolerance = fSolidTolerance;
ClearErrors();
// for ( int j=0; j<fMaxPointsSurface+fMaxPointsEdge; j++)
for (int j = 0; j < fMaxPointsInside; j++) {
// point = fPoints[j+fOffsetSurface];
// Initial point inside
point = fPoints[j + fOffsetInside];
vec = GetRandomDirection();
// The test below makes no sense: DistanceToIn from inside point should be
// negative, so the full test would be skipped
// if (fVolume->DistanceToIn(point, vec) < kInfLength)
// continue;
point1 = point;
// Move point far away
point1 = point1 + vec * fSolidFarAway;
// Shoot back to solid, then compute point on surface
Vec_t invdir = Vec_t(1./NonZero(vec.x()), 1./NonZero(vec.y()), 1./NonZero(vec.z()));
distBB = fVolume->GetUnplacedVolume()->ApproachSolid(point1, -invdir);
distBB -= 10. * tolerance;
pointBB = point1 - distBB * vec;
distIn = fVolume->DistanceToIn(pointBB, -vec);
pointSurf = pointBB - distIn * vec;
distIn += distBB;
if ((distIn < kInfLength) && (distIn > maxDistIn)) {
maxDistIn = distIn;
}
// Compute error and check against the solid tolerance
diff = std::fabs((point1 - pointSurf).Mag() - distIn);
if (diff > 100 * tolerance) // Note that moving to 10000 we have cut 4 digits, not just 2
icount++;
// If we do not hit back the solid report an error
if (distIn >= kInfLength) {
icount1++;
Vec_t temp = -vec;
ReportError(&nError, point1, temp, diff, "TFA: Point missed Solid (DistanceToIn = Infinity)");
} else {
if (diff > difMax) difMax = diff;
}
}
if (fVerbose) {
std::cout << "% TestFarAwayPoints:: number of Points with big difference (( DistanceToIn- Dist) ) > tolerance ="
<< icount << std::endl;
std::cout << "% Maxdif = " << difMax << " from MaxDist=" << maxDistIn
<< "\n% Number of fPoints missing Solid (DistanceToIn = Infinity) = " << icount1 << std::endl;
}
std::cout << "% " << std::endl;
std::cout << "% TestFarAwayPoints reported = " << CountErrors() << " errors" << std::endl;
std::cout << "% " << std::endl;
if (CountErrors()) errCode = 128; // errCode: 0000 1000 0000
return errCode;
}
template <typename ImplT>
int ShapeTester<ImplT>::TestSurfacePoint()
{
// Combined tests for surface points
int errCode = 0;
Vec_t point, pointSurf, vec, direction, normal;
bool convex = false;
int icount = 0, icount1 = 0;
Precision distIn, distOut;
int iIn = 0, iInNoSurf = 0, iOut = 0, iOutNoSurf = 0;
Precision tolerance = fSolidTolerance;
int nError = 0;
ClearErrors();
#ifdef VECGEOM_ROOT
// Visualisation
TPolyMarker3D *pm5 = 0;
pm5 = new TPolyMarker3D();
pm5->SetMarkerStyle(20);
pm5->SetMarkerSize(1);
pm5->SetMarkerColor(kRed);
#endif
(void)iIn;
(void)iInNoSurf;
(void)iOut;
(void)iOutNoSurf;
for (int i = 0; i < fMaxPointsSurface + fMaxPointsEdge; i++) { // test SamplePointOnSurface()
// Initial point on surface
point = fPoints[fOffsetSurface + i];
#ifdef VECGEOM_ROOT
// visualisation
pm5->SetNextPoint(point.x(), point.y(), point.z());
#endif
if (fVolume->Inside(point) != vecgeom::EInside::kSurface) {
icount++;
Vec_t v(0, 0, 0);
ReportError(&nError, point, v, 0., "TS: Point on not on the Surface");
}
// test if for point on Surface distIn and distOut are not 0 at the same time
Vec_t v = GetRandomDirection();
distIn = fVolume->DistanceToIn(point, v);
distOut = CallDistanceToOut(fVolume, point, v, normal, convex);
if (distIn == 0. && distOut == 0.) {
distIn = fVolume->DistanceToIn(point, v);
distOut = CallDistanceToOut(fVolume, point, v, normal, convex);
icount1++;
ReportError(&nError, point, v, 0., "TS: DistanceToIn=DistanceToOut=0 for point on Surface");
}
// test Accuracy distance for fPoints near Surface
// The point may be slightly outside or inside
// GL: use normal rather than an arbitrary vector v, to ensure new point is 10*tolerance away from surface
pointSurf = point + 10 * tolerance * (i % 2 ? normal : -normal);
Inside_t inside = fVolume->Inside(pointSurf);
if (inside != vecgeom::EInside::kSurface) {
if (inside == vecgeom::EInside::kOutside) {
// Shoot randomly from point slightly outside
for (int j = 0; j < 1000; j++) {
vec = GetRandomDirection();
distIn = fVolume->DistanceToIn(pointSurf, vec);
if (distIn < kInfLength) {
iIn++;
// If we hit, propagate on surface and check kSurface
Inside_t surfaceP = fVolume->Inside(pointSurf + distIn * vec);
if (surfaceP != vecgeom::EInside::kSurface) {
iInNoSurf++;
ReportError(&nError, pointSurf, vec, distIn,
"TS: Wrong DistToIn for point near Surface (final point not reported on surface)");
}
}
}
} else {
// Shoot randomly from point slightly inside
for (int j = 0; j < 1000; j++) {
iOut++;
vec = GetRandomDirection();
distOut = CallDistanceToOut(fVolume, pointSurf, vec, normal, convex);
// If we hit, propagate on surface and check kSurface
Inside_t surfaceP = fVolume->Inside(pointSurf + distOut * vec);
if (surfaceP != vecgeom::EInside::kSurface) {
iOutNoSurf++;
ReportError(&nError, pointSurf, vec, distOut,
"TS: Wrong DistToOut for point near Surface (final point not reported on surface)");
}
}
}
}
}
if (fVerbose) {
std::cout << "% TestSurfacePoints SamplePointOnSurface() for Solid " << fVolume->GetName() << " had " << icount
<< " errors" << std::endl;
std::cout << "% TestSurfacePoints both DistanceToIN and DistanceToOut ==0 for " << fVolume->GetName() << " had "
<< icount1 << " errors" << std::endl;
std::cout << "% TestSurfacePoints new moved point is not on Surface::iInNoSurf = " << iInNoSurf
<< "; iOutNoSurf = " << iOutNoSurf << std::endl;
}
#ifdef VECGEOM_ROOT
// visualisation
if (fStat) {
new TCanvas("shape05", "SamplePointOnSurface", 1000, 800);
pm5->Draw();
}
#endif
std::cout << "% " << std::endl;
std::cout << "% Test Surface Point reported = " << CountErrors() << " errors" << std::endl;
std::cout << "% " << std::endl;
if (CountErrors()) errCode = 4; // errCode: 0000 0000 0100
return errCode;
}
template <typename ImplT>
int ShapeTester<ImplT>::TestInsidePoint()
{
// Combined test for inside points
int errCode = 0;
int i, n = fMaxPointsOutside;
int nError = 0;
ClearErrors();
Vec_t minExtent, maxExtent;
fVolume->Extent(minExtent, maxExtent);
Precision maxX = std::max(std::fabs(maxExtent.x()), std::fabs(minExtent.x()));
Precision maxY = std::max(std::fabs(maxExtent.y()), std::fabs(minExtent.y()));
Precision maxZ = std::max(std::fabs(maxExtent.z()), std::fabs(minExtent.z()));
Precision maxXYZ = 2. * std::sqrt(maxX * maxX + maxY * maxY + maxZ * maxZ);
for (int j = 0; j < fMaxPointsInside; j++) {
// Check values of Safety
// Initial point inside
Vec_t point = fPoints[j + fOffsetInside];
Precision safeDistance = fVolume->SafetyToOut(point);
// Safety from inside should be positive
if (safeDistance <= 0.0) {
Vec_t zero(0);
ReportError(&nError, point, zero, safeDistance, "TI: SafetyToOut(p) <= 0");
if (CountErrors()) errCode = 1; // errCode: 0000 0000 0001
return errCode;
}
// Safety from wrong side should be negative
Precision safeDistanceFromOut = fVolume->SafetyToIn(point);
if (safeDistanceFromOut >= 0.0) {
std::string message("TI: SafetyFromOutside(p) should be Negative value (-1.) for Points Inside");
Vec_t zero(0);
ReportError(&nError, point, zero, safeDistanceFromOut, message.c_str());
continue;
}
// Check values of Extent
// Every point inside should be also within the extent
if (point.x() < minExtent.x() || point.x() > maxExtent.x() || point.y() < minExtent.y() ||
point.y() > maxExtent.y() || point.z() < minExtent.z() || point.z() > maxExtent.z()) {
Vec_t zero(0);
ReportError(&nError, point, zero, safeDistance, "TI: Point is outside Extent");
}
// Check values with fPoints and fDirections to outside fPoints
for (i = 0; i < n; i++) {
Vec_t vr = fPoints[i + fOffsetOutside] - point;
Vec_t v = vr.Unit();
bool valid = false, convex = false;
Vec_t norm;
// Shoot towards outside point and compute distance to out
Precision dist = CallDistanceToOut(fVolume, point, v, norm, convex);
Precision NormalDist;
NormalDist = fVolume->SafetyToOut(point);
// Distance to out has to be always smaller than the extent diagonal
if (dist > maxXYZ) {
ReportError(&nError, point, v, dist, "TI: DistanceToOut(p,v) > Solid's Extent dist = ");
continue;
}
// Distance to out has to be positive
if (dist <= 0) {
ReportError(&nError, point, v, NormalDist, "TI: DistanceToOut(p,v) <= 0 Normal Dist = ");
continue;
}
// Distance to out cannot be infinite
if (dist >= kInfLength) {
ReportError(&nError, point, v, safeDistance, "TI: DistanceToOut(p,v) == kInfLength");
continue;
}
// Distance to out from inside point should be bigger than the safety
if (dist < safeDistance - fSolidTolerance) {
ReportError(&nError, point, v, safeDistance, "TI: DistanceToOut(p,v) < DistanceToIn(p)");
continue;
}
if (valid) {
// Check outwards condition
if (norm.Dot(v) < 0) {
ReportError(&nError, point, v, safeDistance, "TI: Outgoing normal incorrect");
continue;
}
}
// DistanceToIn from point on wrong side has to be negative
Precision distIn = fVolume->DistanceToIn(point, v);
if (distIn >= 0.) {
std::string message("TI: DistanceToIn(p,v) has to be negative (-1) for Inside points.");
ReportError(&nError, point, v, distIn, message.c_str());
continue;
}
// Move to the boundary and check
Vec_t p = point + v * dist;
Inside_t insideOrNot = fVolume->Inside(p);
// Propagated point with DistanceToOut has to be on boundary
if (insideOrNot == vecgeom::EInside::kInside) {
ReportError(&nError, point, v, dist, "TI: DistanceToOut(p,v) undershoots");
continue;
}
if (insideOrNot == vecgeom::EInside::kOutside) {
ReportError(&nError, point, v, dist, "TI: DistanceToOut(p,v) overshoots");
continue;
}
Vec_t norm1;
valid = fVolume->Normal(p, norm1);
// Direction of motion should not be inward
if (norm1.Dot(v) < 0) {
if (fVolume->DistanceToIn(p, v) != 0) {
ReportError(&nError, p, v, safeDistance, "TI: SurfaceNormal is incorrect");
}
} // End Check fPoints and fDirections
}
}
std::cout << "% " << std::endl;
std::cout << "% TestInsidePoint reported = " << CountErrors() << " errors" << std::endl;
std::cout << "% " << std::endl;
if (CountErrors()) errCode = 1; // errCode: 0000 0000 0001
return errCode;
}
template <typename ImplT>
int ShapeTester<ImplT>::TestOutsidePoint()
{
// Combined test for outside points
int errCode = 0;
int i, n = fMaxPointsInside;
int nError = 0;
// A.G. Approaching to the bonding box risks stepping numerically on the solid boundary,
// so we need to subtract a small value. Also, the initial point may be in a hole, so
// inside the bounding box, in such case disBB being zero. In such case we don't subtract
// toleranceBB
Precision toleranceBB = 10. * fSolidTolerance;
ClearErrors();
for (int j = 0; j < fMaxPointsOutside; j++) {
// std::cout<<"ConsistencyOutside check"<<j<<std::endl;
// Initial point outside
Vec_t point = fPoints[j + fOffsetOutside];
Precision safeDistance = fVolume->SafetyToIn(point);
// Safety has to be positive
if (safeDistance <= 0.0) {
Vec_t zero(0);
ReportError(&nError, point, zero, safeDistance, "TO: SafetyFromOutside(p) <= 0");
if (CountErrors()) errCode = 2; // errCode: 0000 0000 0010
return errCode;
}
Precision safeDistanceFromInside = fVolume->SafetyToOut(point);
// Safety from wrong side point has to be negative
if (safeDistanceFromInside >= 0.0) {
std::string msg("TO: SafetyToOut(p) should be Negative value (-1.) for points Outside (VecGeom conv)");
Vec_t zero(0);
// disable this message as it is part of ConventionChecker
ReportError(&nError, point, zero, safeDistanceFromInside, msg.c_str());
}
for (i = 0; i < n; i++) {
// Connecting point inside
Vec_t vr = fPoints[i + fOffsetInside] - point;
Vec_t v = vr.Unit();
Vec_t invdir = Vec_t(1./NonZero(v.x()), 1./NonZero(v.y()), 1./NonZero(v.z()));
Precision distBB = fVolume->GetUnplacedVolume()->ApproachSolid(point, invdir);
// Avoid approaching to the boundary
distBB = (distBB > toleranceBB) ? distBB - toleranceBB : 0.;
Vec_t pointBB = point + distBB * v;
Precision distIn = fVolume->DistanceToIn(pointBB, v);
Precision dist = distIn + distBB;
// Distance to inside has to be positive
if (dist <= 0) {
ReportError(&nError, point, v, safeDistance, "TO: DistanceToIn(p,v) <= 0");
continue;
}
// Make sure we hit the solid
if (dist >= kInfLength) {
ReportError(&nError, point, v, safeDistance, "TO: DistanceToIn(p,v) == kInfLength");
continue;
}
// Make sure the distance is bigger than the safety
if (dist < safeDistance - fSolidTolerance) {
ReportError(&nError, point, v, safeDistance, "TO: DistanceToIn(p,v) < DistanceToIn(p)");
continue;
}
// Moving the point to the Surface
Vec_t p = pointBB + distIn * v;
Inside_t insideOrNot = fVolume->Inside(p);
// Propagated point has to be on surface
if (insideOrNot == vecgeom::EInside::kOutside) {
ReportError(&nError, point, v, dist, "TO: DistanceToIn(p,v) undershoots");
continue;
}
if (insideOrNot == vecgeom::EInside::kInside) {
ReportError(&nError, point, v, dist, "TO: DistanceToIn(p,v) overshoots");
continue;
}
safeDistance = fVolume->SafetyToIn(p);
// The safety from a boundary should not be bigger than the tolerance
if (safeDistance > fSolidTolerance) {
ReportError(&nError, p, v, safeDistance, "TO2: SafetyToIn(p) should be zero");
continue;
}
dist = fVolume->DistanceToIn(p, v);
safeDistance = fVolume->SafetyToIn(p);
//
// Beware! We might expect dist to be precisely zero, but this may not
// be true at corners due to roundoff of the calculation of p = point + dist*v.
// It should, however, *not* be infinity.
//
if (dist >= kInfLength) {
dist = fVolume->DistanceToIn(p, v);
ReportError(&nError, p, v, dist, "TO2: DistanceToIn(p,v) == kInfLength");
continue;
}
bool valid = false, convex = false;
Vec_t norm;
dist = CallDistanceToOut(fVolume, p, v, norm, convex);
// But distance can be infinity if it is a corner point. Needs to handled carefully.
// For the time being considering that those situation does not happens.
if (dist >= kInfLength) {
ReportError(&nError, p, v, dist, "TO2: DistanceToOut(p,v) == kInfLength");
continue;
} else if (dist < -fSolidTolerance) { // Not an error if distance is negative
ReportError(&nError, p, v, dist, "TO2: DistanceToOut(p,v) < 0");
continue;
}
// Check the exiting normal when going outwards
if (valid) {
if (norm.Dot(v) < 0) {
ReportError(&nError, p, v, dist, "TO2: Outgoing normal incorrect");
continue;
}
}
Vec_t norm1;
valid = fVolume->Normal(p, norm1);
// Check the entering normal when going inwards
// A.G The condition below may fail on corners where the normal is averaged. Disabling.
//if (norm1.Dot(v) > 0) {
// ReportError(&nError, p, v, dist, "TO2: Ingoing surfaceNormal is incorrect");
//}
Vec_t p2 = p + v * dist;
insideOrNot = fVolume->Inside(p2);
// Propagated point has to be on surface
if (insideOrNot == vecgeom::EInside::kInside) {
ReportError(&nError, p, v, dist, "TO2: DistanceToOut(p,v) undershoots");
continue;
}
if (insideOrNot == vecgeom::EInside::kOutside) {
ReportError(&nError, p, v, dist, "TO2: DistanceToOut(p,v) overshoots");
continue;
}
Vec_t norm2, norm3;
valid = fVolume->Normal(p2, norm2);
// Normal in exit point
// A.G. The normal in the exit point may oppose the direction if exiting through a corner
// where the normal is averaged. Disabling this check
//if (norm2.Dot(v) < 0) {
// if (fVolume->DistanceToIn(p2, v) != 0) {
// ReportError(&nError, p2, v, dist, "TO2: Outgoing surfaceNormal is incorrect");
// }
//}
// Check sign agreement on normals given by Normal and DistanceToOut
if (convex) {
if (norm.Dot(norm2) < 0.0) {
ReportError(&nError, p2, v, dist, "TO2: SurfaceNormal and DistanceToOut disagree on normal");
}
}
if (convex) {
dist = fVolume->DistanceToIn(p2, v);
if (dist == 0) {
//
// We may have grazed a corner, which is a problem of design.
// Check distance out
//
bool convex1 = false;
dist = CallDistanceToOut(fVolume, p2, v, norm3, convex1);
if (dist != 0) {
ReportError(&nError, p, v, dist,
"TO2: DistanceToOut incorrectly returns validNorm==true (line of sight)(c)");
if (nError <= 3) std::cout << "Point on opposite surface: p2=" << p2 << "\n";
continue;
}
} else if (dist != kInfLength) {
// ReportError( &nError, p, v, safeDistance, "TO2: DistanceToOut incorrectly returns validNorm==true (line of
// sight)" );
continue;
}
int k;
for (k = 0; k < n; k++) {
// for (k = 0; k < 10; k++) {
Vec_t p2top = fPoints[k + fOffsetInside] - p2;
if (p2top.Dot(norm) > 0) {
ReportError(&nError, p, v, safeDistance,
"TO2: DistanceToOut incorrectly returns validNorm==true (horizon)");
continue;
}
}
} // if valid normal
} // Loop over inside fPoints
n = fMaxPointsOutside;
// ### The test below seems to be a duplicate - check this ####
for (int l = 0; l < n; l++) {
Vec_t vr = fPoints[l + fOffsetOutside] - point;
if (vr.Mag2() < DBL_MIN) continue;
Vec_t v = vr.Unit();
Vec_t invdir = Vec_t(1./NonZero(v.x()), 1./NonZero(v.y()), 1./NonZero(v.z()));
Precision distBB = fVolume->GetUnplacedVolume()->ApproachSolid(point, invdir);
// Avoid approaching to the boundary
distBB = (distBB > toleranceBB) ? distBB - toleranceBB : 0.;
Vec_t pointBB = point + distBB * v;
Precision distIn = fVolume->DistanceToIn(pointBB, v);
Precision dist = distIn + distBB;
if (dist <= 0) {
ReportError(&nError, point, v, dist, "TO3: DistanceToIn(p,v) <= 0");
continue;
}
if (dist >= kInfLength) {
// G4cout << "dist == kInfLength" << G4endl ;
continue;
}
if (dist < safeDistance - 1E-10) {
ReportError(&nError, point, v, safeDistance, "TO3: DistanceToIn(p,v) < DistanceToIn(p)");
continue;
}
Vec_t p = pointBB + distIn * v;
Inside_t insideOrNot = fVolume->Inside(p);
if (insideOrNot == vecgeom::EInside::kOutside) {
ReportError(&nError, point, v, dist, "TO3: DistanceToIn(p,v) undershoots");
continue;
}
if (insideOrNot == vecgeom::EInside::kInside) {
ReportError(&nError, point, v, dist, "TO3: DistanceToIn(p,v) overshoots");
continue;
}
} // Loop over outside fPoints
}
std::cout << "% " << std::endl;
std::cout << "% TestOutsidePoint reported = " << CountErrors() << " errors" << std::endl;
std::cout << "% " << std::endl;
if (CountErrors()) errCode = 2; // errCode: 0000 0000 0010
return errCode;
}
//
// Surface Checker
//
template <typename ImplT>
int ShapeTester<ImplT>::TestAccuracyDistanceToIn(Precision dist)
{
// Test accuracy of DistanceToIn method against required one
int errCode = 0;
Vec_t point, pointSurf, pointIn, pointBB, v, direction, normal;
bool convex = false;
Precision distIn, distOut, distBB;
Precision maxDistIn = 0., diff = 0., difMax = 0.;
int nError = 0;
ClearErrors();
int iIn = 0, iInNoSurf = 0, iOut = 0, iOutNoSurf = 0;
int iInInf = 0, iInZero = 0;
Precision tolerance = fSolidTolerance;
Precision toleranceBB = 10. * fSolidTolerance;
(void)iInInf;
(void)iInZero;
(void)iOut;
#ifdef VECGEOM_ROOT
// Histograms
TH1D *hist10 = new TH1D("AccuracySurf", "Accuracy DistancetoIn", 200, -20, 0);
hist10->GetXaxis()->SetTitle("delta[mm] - first bin=overflow");
hist10->GetYaxis()->SetTitle("count");
hist10->SetMarkerStyle(kFullCircle);
#endif
// test Accuracy distance
for (int i = 0; i < fMaxPointsSurface + fMaxPointsEdge; i++) {
// test SamplePointOnSurface
pointSurf = fPoints[i + fOffsetSurface];
Vec_t vec = GetRandomDirection();
point = pointSurf + vec * dist;
Inside_t inside = fVolume->Inside(point);
if (inside != vecgeom::EInside::kSurface) {
if (inside == vecgeom::EInside::kOutside) {
distIn = fVolume->DistanceToIn(pointSurf, vec);
if (distIn >= kInfLength) {
// Accuracy Test for convex part
distIn = fVolume->DistanceToIn(point, -vec);
if (maxDistIn < distIn) maxDistIn = distIn;
diff = ((pointSurf - point).Mag() - distIn);
if (diff > difMax) difMax = diff;
if (std::fabs(diff) < 1E-20) diff = 1E-30;
#ifdef VECGEOM_ROOT
hist10->Fill(std::max(0.5 * std::log(std::fabs(diff)), -20.));
#endif
}
// Test for consistency for fPoints situated Outside
for (int j = 0; j < 1000; j++) {
vec = GetRandomDirection();
Vec_t invdir = Vec_t(1./NonZero(v.x()), 1./NonZero(v.y()), 1./NonZero(v.z()));
distBB = fVolume->GetUnplacedVolume()->ApproachSolid(point, invdir);
distBB = (distBB > toleranceBB) ? distBB - toleranceBB : 0.;
pointBB = point + distBB * vec;
distIn = fVolume->DistanceToIn(pointBB, vec) + distBB;
distOut = CallDistanceToOut(fVolume, point, vec, normal, convex);
// Test for consistency for fPoints situated Inside
pointIn = pointSurf + vec * 1000. * tolerance;
if (fVolume->Inside(pointIn) == vecgeom::EInside::kInside) {
Precision distOut1 = CallDistanceToOut(fVolume, pointIn, vec, normal, convex);
Inside_t surfaceP = fVolume->Inside(pointIn + distOut1 * vec);
if (distOut1 >= kInfLength) {
iInInf++;
ReportError(&nError, pointIn, vec, distOut1, "TAD1: Distance ToOut is Infinity for point Inside");
}
if (std::fabs(distOut1) < tolerance) {
iInZero++;
ReportError(&nError, pointIn, vec, distOut1, "TAD1: Distance ToOut < tolerance for point Inside");
}
iIn++;
if (surfaceP != vecgeom::EInside::kSurface) {
iOutNoSurf++;
ReportError(&nError, pointIn, vec, distOut1, "TAD: Moved to Surface point is not on Surface");
}
}
// Test for consistency for fPoints situated on Surface
if (distIn < kInfLength) {
iIn++;
// Surface Test
Inside_t surfaceP = fVolume->Inside(point + distIn * vec);
if (surfaceP != vecgeom::EInside::kSurface) {
iInNoSurf++;
ReportError(&nError, point, vec, distIn, "TAD: Moved to Solid point is not on Surface");
}
}
}
} else // here for point Inside
{
for (int j = 0; j < 1000; j++) {
iOut++;
vec = GetRandomDirection();
distOut = CallDistanceToOut(fVolume, point, vec, normal, convex);
Inside_t surfaceP = fVolume->Inside(point + distOut * vec);
// iWrongSideIn++;
if (distOut >= kInfLength) {
iInInf++;
ReportError(&nError, point, vec, distOut, "TAD2: Distance ToOut is Infinity for point Inside");
}
if (std::fabs(distOut) < tolerance) {
iInZero++;
ReportError(&nError, point, vec, distOut, "TAD2: Distance ToOut < tolerance for point Inside");
}
if (surfaceP != vecgeom::EInside::kSurface) {
iOutNoSurf++;
ReportError(&nError, point, vec, distOut, "TAD2: Moved to Surface point is not on Surface");
}
}
}
}
}
if (fVerbose) {
// Surface
std::cout << "TestAccuracyDistanceToIn::Errors for moved point is not on Surface ::iInNoSurf = " << iInNoSurf
<< "; iOutNoSurf = " << iOutNoSurf << std::endl;
std::cout << "TestAccuracyDistanceToIn::Errors Solid ::From total number of Points = " << iIn << std::endl;
}
#ifdef VECGEOM_ROOT
if (fStat) {
TCanvas *c7 = new TCanvas("c7", "Accuracy DistancsToIn", 800, 600);
c7->Update();
hist10->Draw();
}
#endif
std::cout << "% " << std::endl;
std::cout << "% TestAccuracyDistanceToIn reported = " << CountErrors() << " errors" << std::endl;
std::cout << "% " << std::endl;
if (CountErrors()) errCode = 64; // errCode: 0000 0100 0000
return errCode;
}
template <typename ImplT>
int ShapeTester<ImplT>::ShapeSafetyFromInside(int max)
{
int errCode = 0;
Vec_t point, dir, pointSphere, norm;
bool convex = false;
int count = 0, count1 = 0;
int nError = 0;
ClearErrors();
#ifdef VECGEOM_ROOT
// visualisation
TPolyMarker3D *pm3 = 0;
pm3 = new TPolyMarker3D();
pm3->SetMarkerSize(0.2);
pm3->SetMarkerColor(kBlue);
#endif
if (max > fMaxPointsInside) max = fMaxPointsInside;
for (int i = 0; i < max; i++) {
point = fPoints[i];
Precision res = fVolume->SafetyToOut(point);
for (int j = 0; j < 1000; j++) {
dir = GetRandomDirection();
pointSphere = point + res * dir;
#ifdef VECGEOM_ROOT
// visualisation
pm3->SetNextPoint(pointSphere.x(), pointSphere.y(), pointSphere.z());
#endif
Precision distOut = CallDistanceToOut(fVolume, point, dir, norm, convex);
if (distOut < res) {
count1++;
ReportError(&nError, pointSphere, dir, distOut, "SSFI: DistanceToOut is underestimated, less that Safety");
}
if (fVolume->Inside(pointSphere) == vecgeom::EInside::kOutside) {
ReportError(&nError, pointSphere, dir, res, "SSFI: Safety is not safe, point on the SafetySphere is Outside");
Precision error = fVolume->DistanceToIn(pointSphere, -dir);
if (error > 100 * kTolerance) {
count++;
}
}
}
}
if (fVerbose) {
std::cout << "% " << std::endl;
std::cout << "% ShapeSafetyFromInside :: number of Points Outside Safety=" << count
<< " number of Points with distance smaller that safety=" << count1 << std::endl;
std::cout << "% " << std::endl;
}
#ifdef VECGEOM_ROOT
// visualisation
if (fStat) {
new TCanvas("shape", "ShapeSafetyFromInside", 1000, 800);
pm3->Draw();
}
#endif
std::cout << "% " << std::endl;
std::cout << "% TestShapeSafetyFromInside reported = " << CountErrors() << " errors" << std::endl;
std::cout << "% " << std::endl;
if (CountErrors()) errCode = 8; // errCode: 0000 0000 1000
return errCode;
}
template <typename ImplT>
int ShapeTester<ImplT>::ShapeSafetyFromOutside(int max)
{
int errCode = 0;
Vec_t point, temp, dir, pointSphere, normal;
Precision res, error;
int count = 0, count1 = 0;
int nError;
ClearErrors();
#ifdef VECGEOM_ROOT
// visualisation
TPolyMarker3D *pm4 = 0;
pm4 = new TPolyMarker3D();
pm4->SetMarkerSize(0.2);
pm4->SetMarkerColor(kBlue);
#endif
Vec_t minExtent, maxExtent;
fVolume->Extent(minExtent, maxExtent);
if (max > fMaxPointsOutside) max = fMaxPointsOutside;
for (int i = 0; i < max; i++) {
point = fPoints[i + fOffsetOutside];
res = fVolume->SafetyToIn(point);
if (res > 0) { // Safety Sphere test
bool convex = false;
int numTrials = 1000;
for (int j = 0; j < numTrials; j++) {
dir = GetRandomDirection();
Precision distIn = fVolume->DistanceToIn(point, dir);
if (distIn < res) {
count1++;
ReportError(&nError, point, dir, distIn, "SSFO: DistanceToIn is underestimated, less that Safety");
}
pointSphere = point + res * dir;
// std::cout<<"SFO "<<pointSphere<<std::endl;
#ifdef VECGEOM_ROOT
// visualisation
pm4->SetNextPoint(pointSphere.x(), pointSphere.y(), pointSphere.z());
#endif
if (fVolume->Inside(pointSphere) == vecgeom::EInside::kInside) {
ReportError(&nError, pointSphere, dir, res, "SSFO: Safety is not safe, point on the SafetySphere is Inside");
error = CallDistanceToOut(fVolume, pointSphere, -dir, normal, convex);
if (error > 100 * kTolerance) {
count++;
}
}
}
}
}
if (fVerbose) {
std::cout << "% " << std::endl;
std::cout << "% TestShapeSafetyFromOutside:: number of Points Inside Safety Sphere =" << count
<< " number of fPoints with Distance smaller that Safety=" << count1 << std::endl;
std::cout << "% " << std::endl;
}
#ifdef VECGEOM_ROOT
// visualisation
if (fStat) {
new TCanvas("shapeTest", "ShapeSafetyFromOutside", 1000, 800);
pm4->Draw();
}
#endif
std::cout << "% " << std::endl;
std::cout << "% TestShapeSafetyFromOutside reported = " << CountErrors() << " errors" << std::endl;
std::cout << "% " << std::endl;
if (CountErrors()) errCode = 16; // errCode: 0000 0001 0000
return errCode;
}
/////////////////////////////////////////////////////////////////////////////
template <typename ImplT>
int ShapeTester<ImplT>::TestXRayProfile()
{
int errCode = 0;
std::cout << "% Performing XRayPROFILE number of scans =" << fGNumberOfScans << std::endl;
std::cout << "% \n" << std::endl;
if (fGNumberOfScans == 1) {
errCode += Integration(0, 45, 200, true);
} // 1-theta,2-phi
else {
errCode += XRayProfile(0, fGNumberOfScans, 1000);
}
return errCode;
}
/////////////////////////////////////////////////////////////////////////////
template <typename ImplT>
int ShapeTester<ImplT>::XRayProfile(double theta, int nphi, int ngrid, bool useeps)
{
int errCode = 0;
#ifdef VECGEOM_ROOT
int nError = 0;
ClearErrors();
std::string volname(fVolume->GetName());
TH1F *hxprofile = new TH1F(
"xprof", Form("X-ray capacity profile of shape %s for theta=%g degrees", volname.c_str(), theta), nphi, 0, 360);
if (fStat) {
new TCanvas("c8", "X-ray capacity profile");
}
double dphi = 360. / nphi;
double phi = 0;
double phi0 = 5;
double maxerr = 0;
for (int i = 0; i < nphi; i++) {
phi = phi0 + (i + 0.5) * dphi;
// graphic option
if (nphi == 1) {
Integration(theta, phi, ngrid, useeps);
} else {
Integration(theta, phi, ngrid, useeps, 1, false);
}
hxprofile->SetBinContent(i + 1, fGCapacitySampled);
hxprofile->SetBinError(i + 1, fGCapacityError);
if (fGCapacityError > maxerr) maxerr = fGCapacityError;
if ((fGCapacitySampled - fGCapacityAnalytical) > 10 * fGCapacityError) {
nError++;
std::cout << "capacity analytical: " << fGCapacityAnalytical << " sampled: " << fGCapacitySampled << "+/- "
<< fGCapacityError << std::endl;
}
}
double minval = hxprofile->GetBinContent(hxprofile->GetMinimumBin()) - 2 * maxerr;
double maxval = hxprofile->GetBinContent(hxprofile->GetMaximumBin()) + 2 * maxerr;
hxprofile->GetXaxis()->SetTitle("phi [deg]");
hxprofile->GetYaxis()->SetTitle("Sampled capacity");
hxprofile->GetYaxis()->SetRangeUser(minval, maxval);
hxprofile->SetMarkerStyle(4);
hxprofile->SetStats(kFALSE);
if (fStat) {
hxprofile->Draw();
}
TF1 *lin = new TF1("linear", Form("%f", fGCapacityAnalytical), 0, 360);
lin->SetLineColor(kRed);
lin->SetLineStyle(kDotted);
lin->Draw("SAME");
std::cout << "% " << std::endl;
std::cout << "% TestShapeRayProfile reported = " << nError << " errors" << std::endl;
std::cout << "% " << std::endl;
if (nError) errCode = 1024; // errCode: 0100 0000 0000
#endif
return errCode;
}
/////////////////////////////////////////////////////////////////////////////
template <typename ImplT>
int ShapeTester<ImplT>::Integration(double theta, double phi, int ngrid, bool useeps, int npercell, bool graphics)
{
// integrate shape capacity by sampling rays
int errCode = 0;
int nError = 0;
Vec_t minExtent, maxExtent;
fVolume->Extent(minExtent, maxExtent);
Precision maxX = 2. * std::max(std::fabs(maxExtent.x()), std::fabs(minExtent.x()));
Precision maxY = 2. * std::max(std::fabs(maxExtent.y()), std::fabs(minExtent.y()));
Precision maxZ = 2. * std::max(std::fabs(maxExtent.z()), std::fabs(minExtent.z()));
Precision extent = std::sqrt(maxX * maxX + maxY * maxY + maxZ * maxZ);
Precision cell = 2. * extent / ngrid;
std::vector<Vec_t> grid_fPoints; // new double[3*ngrid*ngrid*npercell];
grid_fPoints.resize(ngrid * ngrid * npercell);
Vec_t point;
Vec_t dir;
Precision xmin, ymin;
dir.x() = std::sin(theta * kDegToRad) * std::cos(phi * kDegToRad);
dir.y() = std::sin(theta * kDegToRad) * std::sin(phi * kDegToRad);
dir.z() = std::cos(theta * kDegToRad);
#ifdef VECGEOM_ROOT
int nfPoints = ngrid * ngrid * npercell;
TPolyMarker3D *pmx = 0;
TH2F *xprof = 0;
if (graphics) {
pmx = new TPolyMarker3D(nfPoints);
pmx->SetMarkerColor(kRed);
pmx->SetMarkerStyle(4);
pmx->SetMarkerSize(0.2);
std::string volname(fVolume->GetName());
xprof = new TH2F("x-ray", Form("X-ray profile from theta=%g phi=%g of shape %s", theta, phi, volname.c_str()),
ngrid, -extent, extent, ngrid, -extent, extent);
}
#endif
Transformation3D *matrix = new Transformation3D(0, 0, 0, phi, theta, 0.);
Vec_t origin = Vec_t(extent * dir.x(), extent * dir.y(), extent * dir.z());
dir = -dir;
if ((fVerbose) && (graphics)) printf("=> x-ray direction:( %f, %f, %f)\n", dir.x(), dir.y(), dir.z());
// loop cells
int ip = 0;
for (int i = 0; i < ngrid; i++) {
for (int j = 0; j < ngrid; j++) {
xmin = -extent + i * cell;
ymin = -extent + j * cell;
if (npercell == 1) {
point.x() = xmin + 0.5 * cell;
point.y() = ymin + 0.5 * cell;
point.z() = 0;
grid_fPoints[ip] = matrix->InverseTransform(point) + origin;
#ifdef VECGEOM_ROOT
if (graphics) pmx->SetNextPoint(grid_fPoints[ip].x(), grid_fPoints[ip].y(), grid_fPoints[ip].z());
#endif
ip++;
} else {
for (int k = 0; k < npercell; k++) {
point.x() = xmin + cell * vecgeom::RNG::Instance().uniform();
point.y() = ymin + cell * vecgeom::RNG::Instance().uniform();
point.z() = 0;
grid_fPoints[ip] = matrix->InverseTransform(point) + origin;
#ifdef VECGEOM_ROOT
if (graphics) pmx->SetNextPoint(grid_fPoints[ip].x(), grid_fPoints[ip].y(), grid_fPoints[ip].z());
#endif
ip++;
}
}
}
}
Precision sum = 0;
Precision sumerr = 0;
Precision dist, lastdist;
int nhit = 0;
int ntransitions = 0;
bool last = false;
(void)ntransitions;
for (int i = 0; i < ip; i++) {
dist = CrossedLength(grid_fPoints[i], dir, useeps);
sum += dist;
if (dist > 0) {
lastdist = dist;
nhit++;
if (!last) {
ntransitions++;
sumerr += lastdist;
}
last = true;
point = matrix->Transform(grid_fPoints[i]) + origin;
#ifdef VECGEOM_ROOT
if (graphics) {
xprof->Fill(point.x(), point.y(), dist);
}
#endif
} else {
if (last) {
ntransitions++;
sumerr += lastdist;
}
last = false;
}
}
fGCapacitySampled = sum * cell * cell / npercell;
fGCapacityError = sumerr * cell * cell / npercell;
fGCapacityAnalytical = const_cast<ImplT *>(fVolume)->Capacity();
if ((fVerbose) && (graphics)) {
printf("th=%g phi=%g: analytical: %f -------- sampled: %f +/- %f\n", theta, phi, fGCapacityAnalytical,
fGCapacitySampled, fGCapacityError);
printf("Hit ratio: %f\n", Precision(nhit) / ip);
if (nhit > 0) printf("Average crossed length: %f\n", sum / nhit);
}
if ((fGCapacitySampled - fGCapacityAnalytical) > 10 * fGCapacityError) nError++;
#ifdef VECGEOM_ROOT
if (graphics) {
if (fStat) {
new TCanvas("c11", "X-ray scan");
xprof->DrawCopy("LEGO1");
}
}
#endif
if (nError) errCode = 512; // errCode: 0010 0000 0000
return errCode;
}
//////////////////////////////////////////////////////////////////////////////
template <typename ImplT>
Precision ShapeTester<ImplT>::CrossedLength(const Vec_t &point, const Vec_t &dir, bool useeps)
{
// Return crossed length of the shape for the given ray, taking into account possible multiple crossings
Precision eps = 0;
if (useeps) eps = 1.E-9;
Precision len = 0;
Precision dist = fVolume->DistanceToIn(point, dir);
if (dist > 1E10) return len;
// Propagate from starting point with the found distance (on the numerical boundary)
Vec_t pt(point), norm;
bool convex = false;
while (dist < 1E10) {
pt = pt + (dist + eps) * dir; // ray entering
// Compute distance from inside
dist = CallDistanceToOut(fVolume, pt, dir, norm, convex);
len += dist;
pt = pt + (dist + eps) * dir; // ray exiting
dist = fVolume->DistanceToIn(pt, dir);
}
return len;
}
////////////////////////////////////////////////////////////////////////////
template <typename ImplT>
void ShapeTester<ImplT>::FlushSS(stringstream &ss)
{
string s = ss.str();
cout << s;
*fLog << s;
ss.str("");
}
template <typename ImplT>
void ShapeTester<ImplT>::Flush(const string &s)
{
cout << s;
*fLog << s;
}
template <typename ImplT>
void ShapeTester<ImplT>::CreatePointsAndDirectionsSurface()
{
Vec_t norm, point;
for (int i = 0; i < fMaxPointsSurface; i++) {
Vec_t pointU;
#if 0
int retry = 100;
do
{ bool surfaceExist=true;
if(surfaceExist) {
pointU = fVolume->GetUnplacedVolume()->SamplePointOnSurface();
}
else {
Vec_t dir = GetRandomDirection(), norm;
bool convex=false;
Precision random = fRNG.uniform();
int index = (int)fMaxPointsInside*random;
Precision dist = CallDistanceToOut(fVolume, fPoints[index],dir,norm,convex);
pointU = fPoints[index]+dir*dist ;
}
if (retry-- == 0) break;
}
while (fVolume->Inside(pointU) != vecgeom::EInside::kSurface);
#endif
int retry = 100;
do {
pointU = fVolume->GetUnplacedVolume()->SamplePointOnSurface();
Vec_t vec = GetRandomDirection();
fDirections[i + fOffsetSurface] = vec;
point.Set(pointU.x(), pointU.y(), pointU.z());
fPoints[i + fOffsetSurface] = point;
if (retry-- == 0) {
std::cout << "Couldn't find point on surface in 100 trials, so skipping this point." << std::endl;
break;
}
} while (fVolume->Inside(pointU) != vecgeom::EInside::kSurface);
}
}
/*
template <typename ImplT>
void ShapeTester<ImplT>::CreatePointsAndDirectionsEdge()
{
Vec_t norm, point;
for (int i = 0; i < fMaxPointsEdge; i++) {
Vec_t pointU;
int retry = 100;
do {
fVolume->SamplePointsOnEdge(1, &pointU);
if (retry-- == 0) break;
} while (fVolume->Inside(pointU) != vecgeom::EInside::kSurface);
Vec_t vec = GetRandomDirection();
fDirections[i] = vec;
point.Set(pointU.x(), pointU.y(), pointU.z());
fPoints[i + fOffsetEdge] = point;
}
}
*/
template <typename ImplT>
void ShapeTester<ImplT>::CreatePointsAndDirectionsOutside()
{
Vec_t minExtent, maxExtent;
fVolume->Extent(minExtent, maxExtent);
Precision maxX = std::max(std::fabs(maxExtent.x()), std::fabs(minExtent.x()));
Precision maxY = std::max(std::fabs(maxExtent.y()), std::fabs(minExtent.y()));
Precision maxZ = std::max(std::fabs(maxExtent.z()), std::fabs(minExtent.z()));
Precision rOut = std::sqrt(maxX * maxX + maxY * maxY + maxZ * maxZ);
for (int i = 0; i < fMaxPointsOutside; i++) {
Vec_t vec, point;
do {
point.x() = -1 + 2 * fRNG.uniform();
point.y() = -1 + 2 * fRNG.uniform();
point.z() = -1 + 2 * fRNG.uniform();
point *= rOut * fOutsideMaxRadiusMultiple;
} while (fVolume->Inside(point) != vecgeom::EInside::kOutside);
Precision random = fRNG.uniform();
if (random <= fOutsideRandomDirectionPercent / 100.) {
vec = GetRandomDirection();
} else {
Vec_t pointSurface = fVolume->GetUnplacedVolume()->SamplePointOnSurface();
vec = pointSurface - point;
vec.Normalize();
}
fPoints[i + fOffsetOutside] = point;
fDirections[i + fOffsetOutside] = vec;
}
}
// DONE: inside fPoints generation uses random fPoints inside bounding box
template <typename ImplT>
void ShapeTester<ImplT>::CreatePointsAndDirectionsInside()
{
Vec_t minExtent, maxExtent;
fVolume->Extent(minExtent, maxExtent);
int i = 0;
while (i < fMaxPointsInside) {
Precision x = RandomRange(minExtent.x(), maxExtent.x());
Precision y = RandomRange(minExtent.y(), maxExtent.y());
if (minExtent.y() == maxExtent.y()) y = RandomRange(-1000, +1000);
Precision z = RandomRange(minExtent.z(), maxExtent.z());
Vec_t point0(x, y, z);
if (fVolume->Inside(point0) == vecgeom::EInside::kInside) {
Vec_t point(x, y, z);
Vec_t vec = GetRandomDirection();
fPoints[i + fOffsetInside] = point;
fDirections[i + fOffsetInside] = vec;
i++;
}
}
}
template <typename ImplT>
void ShapeTester<ImplT>::CreatePointsAndDirections()
{
if (fMethod != "XRayProfile") {
fMaxPointsInside = (int)(fMaxPoints * (fInsidePercent / 100));
fMaxPointsOutside = (int)(fMaxPoints * (fOutsidePercent / 100));
fMaxPointsEdge = (int)(fMaxPoints * (fEdgePercent / 100));
fMaxPointsSurface = fMaxPoints - fMaxPointsInside - fMaxPointsOutside - fMaxPointsEdge;
fOffsetInside = 0;
fOffsetSurface = fMaxPointsInside;
fOffsetEdge = fOffsetSurface + fMaxPointsSurface;
fOffsetOutside = fOffsetEdge + fMaxPointsEdge;
fPoints.resize(fMaxPoints);
fDirections.resize(fMaxPoints);
fResultPrecision.resize(fMaxPoints);
fResultVector.resize(fMaxPoints);
CreatePointsAndDirectionsOutside();
CreatePointsAndDirectionsInside();
CreatePointsAndDirectionsSurface();
}
}
#include <sys/types.h> // For stat().
#include <sys/stat.h> // For stat().
int directoryExists(string s)
{
{
struct stat status;
stat(s.c_str(), &status);
return (status.st_mode & S_IFDIR);
}
return false;
}
template <typename ImplT>
void ShapeTester<ImplT>::PrintCoordinates(stringstream &ss, const Vec_t &vec, const string &delimiter, int precision)
{
ss.precision(precision);
ss << "(" << vec.x() << delimiter << vec.y() << delimiter << vec.z() << ")";
}
template <typename ImplT>
string ShapeTester<ImplT>::PrintCoordinates(const Vec_t &vec, const string &delimiter, int precision)
{
static stringstream ss;
PrintCoordinates(ss, vec, delimiter, precision);
string res(ss.str());
ss.str("");
return res;
}
template <typename ImplT>
string ShapeTester<ImplT>::PrintCoordinates(const Vec_t &vec, const char *delimiter, int precision)
{
string d(delimiter);
return PrintCoordinates(vec, d, precision);
}
template <typename ImplT>
void ShapeTester<ImplT>::PrintCoordinates(stringstream &ss, const Vec_t &vec, const char *delimiter, int precision)
{
string d(delimiter);
return PrintCoordinates(ss, vec, d, precision);
}
// NEW: output values precision setprecision (16)
// NEW: for each fMethod, one file
// NEW: print also different point coordinates
template <typename ImplT>
void ShapeTester<ImplT>::VectorToDouble(const vector<Vec_t> &vectorUVector, vector<double> &vectorDouble)
{
Vec_t vec;
int size = vectorUVector.size();
for (int i = 0; i < size; i++) {
vec = vectorUVector[i];
double mag = vec.Mag();
if (mag > 1.1) mag = 1;
vectorDouble[i] = mag;
}
}
template <typename ImplT>
void ShapeTester<ImplT>::BoolToDouble(const std::vector<bool> &vectorBool, std::vector<double> &vectorDouble)
{
int size = vectorBool.size();
for (int i = 0; i < size; i++)
vectorDouble[i] = (double)vectorBool[i];
}
template <typename ImplT>
int ShapeTester<ImplT>::SaveResultsToFile(const string &fMethod1)
{
string name = fVolume->GetName();
string fFilename1(fFolder + name + "_" + fMethod1 + ".dat");
std::cout << "Saving all results to " << fFilename1 << std::endl;
ofstream file(fFilename1.c_str());
bool saveVectors = (fMethod1 == "Normal");
int prec = 16;
if (file.is_open()) {
file.precision(prec);
file << fVolumeString << "\n";
string spacer("; ");
for (int i = 0; i < fMaxPoints; i++) {
file << "p=" << PrintCoordinates(fPoints[i], spacer, prec)
<< "\t v=" << PrintCoordinates(fDirections[i], spacer, prec) << "\t";
if (saveVectors)
file << "Norm=" << PrintCoordinates(fResultVector[i], spacer, prec) << "\n";
else
file << fResultPrecision[i] << "\n";
}
return 0;
}
std::cout << "Unable to create file " << fFilename1 << std::endl;
return 1;
}
template <typename ImplT>
int ShapeTester<ImplT>::TestMethod(int (ShapeTester::*funcPtr)())
{
int errCode = 0;
std::cout << "========================================================= " << std::endl;
if (fMethod != "XRayProfile") {
std::cout << "% Creating " << fMaxPoints << " Points and Directions for Method =" << fMethod << std::endl;
CreatePointsAndDirections();
cout.precision(20);
std::cout << "% Statistics: Points=" << fMaxPoints << ",\n";
std::cout << "% ";
std::cout << "surface=" << fMaxPointsSurface << ", inside=" << fMaxPointsInside << ", outside=" << fMaxPointsOutside
<< "\n";
}
std::cout << "% " << std::endl;
errCode += (*this.*funcPtr)();
std::cout << "========================================================= " << std::endl;
return errCode;
}
// will run all tests. in this case, one file stream will be used
template <typename ImplT>
int ShapeTester<ImplT>::TestMethodAll()
{
int errCode = 0;
if (fTestBoundaryErrors) {
fMethod = "BoundaryPrecision";
TestBoundaryPrecision(0);
}
fMethod = "Consistency";
errCode += TestMethod(&ShapeTester::TestConsistencySolids);
if (fDefinedNormal) TestMethod(&ShapeTester::TestNormalSolids);
fMethod = "SafetyFromInside";
errCode += TestMethod(&ShapeTester::TestSafetyFromInsideSolids);
fMethod = "SafetyFromOutside";
errCode += TestMethod(&ShapeTester::TestSafetyFromOutsideSolids);
fMethod = "DistanceToIn";
errCode += TestMethod(&ShapeTester::TestDistanceToInSolids);
fMethod = "DistanceToOut";
errCode += TestMethod(&ShapeTester::TestDistanceToOutSolids);
fMethod = "XRayProfile";
errCode += TestMethod(&ShapeTester::TestXRayProfile);
fMethod = "all";
return errCode;
}
template <typename ImplT>
void ShapeTester<ImplT>::SetFolder(const string &newFolder)
{
cout << "Checking for existence of " << newFolder << endl;
if (!directoryExists(newFolder)) {
string command;
#ifdef WIN32
_mkdir(newFolder.c_str());
#else
std::cout << "try to create dir for " << std::endl;
mkdir(newFolder.c_str(), 0777);
#endif
if (!directoryExists(newFolder)) {
cout << "Directory " + newFolder + " does not exist, it must be created first\n";
exit(1);
}
}
fFolder = newFolder + "/";
}
template <typename ImplT>
void ShapeTester<ImplT>::Run(ImplT const *testVolume, const char *type)
{
if (strcmp(type, "stat") == 0) {
this->setStat(true);
}
if (strcmp(type, "debug") == 0) {
this->setDebug(true);
}
this->Run(testVolume);
#ifdef VECGEOM_ROOT
if (fStat) fVisualizer.GetTApp()->Run();
#endif
}
template <typename ImplT>
int ShapeTester<ImplT>::Run(ImplT const *testVolume)
{
// debug mode requires VecGeom shapes
if (fDebug) {
const vecgeom::VPlacedVolume *vgvol = dynamic_cast<vecgeom::VPlacedVolume const *>(testVolume);
if (!vgvol) {
assert(false);
std::cout << "\n\n==========================================================\n";
std::cout << "***** ShapeTester WARNING: debug mode does not work with a non-VecGeom shape!!\n";
std::cout << " Try to use shapeDebug binary to visualize this shape.\n";
std::cout << "***** Resetting fDebug to false...\n";
std::cout << "==========================================================\n\n\n";
this->setDebug(false);
}
}
if (testVolume) fVolume = testVolume;
// Running Convention first before running any ShapeTester tests
RunConventionChecker(testVolume);
fNumDisp = 5;
int errCode = 0;
stringstream ss;
int (ShapeTester::*funcPtr)() = NULL;
std::ofstream fLogger("/Log/box");
fLog = &fLogger;
SetFolder("Log");
#ifdef VECGEOM_ROOT
// serialize the ROOT solid for later debugging
// check if this is a VecGeom class
if (VPlacedVolume const *p = dynamic_cast<VPlacedVolume const *>(fVolume)) {
// propagate label to logical volume (to be addressable in CompareDistance tool)
const_cast<LogicalVolume *>(p->GetLogicalVolume())->SetLabel(p->GetName());
RootGeoManager::Instance().ExportToROOTGeometry(p, "Log/ShapeTesterGeom.root");
}
#endif
if (fMethod == "") fMethod = "all";
string name = testVolume->GetName();
std::cout << "\n\n";
std::cout << "===============================================================================\n";
std::cout << "Invoking test for Method " << fMethod << " on " << name << " ..."
<< "\nFolder is " << fFolder << std::endl;
std::cout << "===============================================================================\n";
std::cout << "\n";
if (fMethod == "Consistency") funcPtr = &ShapeTester::TestConsistencySolids;
if (fMethod == "Normal") funcPtr = &ShapeTester::TestNormalSolids;
if (fMethod == "SafetyFromInside") funcPtr = &ShapeTester::TestSafetyFromInsideSolids;
if (fMethod == "SafetyFromOutside") funcPtr = &ShapeTester::TestSafetyFromOutsideSolids;
if (fMethod == "DistanceToIn") funcPtr = &ShapeTester::TestDistanceToInSolids;
if (fMethod == "DistanceToOut") funcPtr = &ShapeTester::TestDistanceToOutSolids;
if (fMethod == "XRayProfile") funcPtr = &ShapeTester::TestXRayProfile;
if (fMethod == "all")
errCode += TestMethodAll();
else if (funcPtr)
errCode += TestMethod(funcPtr);
else
std::cout << "Method " << fMethod << " is not supported" << std::endl;
ClearErrors();
fMethod = "all";
errCode += fScore;
if (errCode) {
std::cout << "--------------------------------------------------------------------------------------" << std::endl;
std::cout << "--- Either Shape Conventions not followed or some of the ShapeTester's test failed ---" << std::endl;
std::cout << "--------------------------------------------------------------------------------------" << std::endl;
std::cout << "----------------- Generated Overall Error Code : " << errCode << " -------------------" << std::endl;
std::cout << "--------------------------------------------------------------------------------------" << std::endl;
}
return errCode;
}
template <typename ImplT>
int ShapeTester<ImplT>::RunMethod(ImplT const *testVolume, std::string fMethod1)
{
int errCode = 0;
stringstream ss;
int (ShapeTester::*funcPtr)() = NULL;
fVolume = testVolume;
std::ofstream fLogger("/Log/box");
fLog = &fLogger;
SetFolder("Log");
fMethod = fMethod1;
if (fMethod == "") fMethod = "all";
string name = testVolume->GetName();
std::cout << "\n\n";
std::cout << "===============================================================================\n";
std::cout << "Invoking test for Method " << fMethod << " on " << name << " ..."
<< "\nFolder is " << fFolder << std::endl;
std::cout << "===============================================================================\n";
std::cout << "\n";
if (fMethod == "Consistency") funcPtr = &ShapeTester::TestConsistencySolids;
if (fMethod == "Normal") funcPtr = &ShapeTester::TestNormalSolids;
if (fMethod == "SafetyFromInside") funcPtr = &ShapeTester::TestSafetyFromInsideSolids;
if (fMethod == "SafetyFromOutside") funcPtr = &ShapeTester::TestSafetyFromOutsideSolids;
if (fMethod == "DistanceToIn") funcPtr = &ShapeTester::TestDistanceToInSolids;
if (fMethod == "DistanceToOut") funcPtr = &ShapeTester::TestDistanceToOutSolids;
if (fMethod == "XRayProfile") funcPtr = &ShapeTester::TestXRayProfile;
if (fMethod == "all")
errCode += TestMethodAll();
else if (funcPtr)
errCode += TestMethod(funcPtr);
else
std::cout << "Method " << fMethod << " is not supported" << std::endl;
ClearErrors();
fMethod = "all";
return errCode;
}
//
// ReportError
//
// Report the specified error fMessage, but only if it has not been reported a zillion
// times already.
//
template <typename ImplT>
void ShapeTester<ImplT>::ReportError(int *nError, Vec_t &p, Vec_t &v, Precision distance,
std::string comment) //, std::ostream &fLogger )
{
ShapeTesterErrorList *last = 0, *errors = fErrorList;
while (errors) {
if (errors->fMessage == comment) {
if (++errors->fNUsed > fNumDisp) return;
break;
}
last = errors;
errors = errors->fNext;
}
if (errors == 0) {
//
// New error: add it the end of our list
//
errors = new ShapeTesterErrorList;
errors->fMessage = comment;
errors->fNUsed = 1;
errors->fNext = 0;
if (fErrorList)
last->fNext = errors;
else
fErrorList = errors;
}
//
// Output the fMessage
//
std::cout << "% " << comment;
if (errors->fNUsed == fNumDisp) std::cout << " (any further such errors suppressed)";
std::cout << " Distance = " << distance;
std::cout << std::endl;
std::cout << std::setprecision(25) << ++(*nError) << " : [point] : [direction] :: " << p << " : " << v << std::endl;
#ifdef VECGEOM_ROOT
if (fDebug) {
fVisualizer.AddVolume(*dynamic_cast<vecgeom::VPlacedVolume const *>(fVolume));
fVisualizer.AddPoint(p);
fVisualizer.AddLine(p, (p + 10000. * v));
fVisualizer.Show();
}
#endif
//
// if debugging mode we have to exit now
//
if (fIfException) {
std::ostringstream text;
text << "Aborting due to Debugging mode in solid: " << fVolume->GetName();
throw std::runtime_error("***EEE*** ShapeTester[UFatalErrorInArguments]: " + text.str());
}
}
//
// ClearErrors
// Reset list of errors (and clear memory)
//
template <typename ImplT>
void ShapeTester<ImplT>::ClearErrors()
{
ShapeTesterErrorList *here, *sNext;
here = fErrorList;
while (here) {
sNext = here->fNext;
delete here;
here = sNext;
}
fErrorList = 0;
}
//
// CountErrors
//
template <typename ImplT>
int ShapeTester<ImplT>::CountErrors() const
{
ShapeTesterErrorList *here;
int answer = 0;
here = fErrorList;
while (here) {
answer += here->fNUsed;
here = here->fNext;
}
return answer;
}
template <>
Precision ShapeTester<VPlacedVolume>::CallDistanceToOut(const VPlacedVolume *vol, const Vec_t &point, const Vec_t &dir,
Vec_t &normal, bool convex) const
{
Precision dist = vol->DistanceToOut(point, dir);
Vector3D<Precision> hitpoint = point + dist * dir;
vol->Normal(hitpoint, normal);
convex = vol->GetUnplacedVolume()->IsConvex();
return dist;
}
////// force template instantiation before vecgeom library is built
#include "ConventionChecker.cpp"
#include "VecGeom/volumes/PlacedVolume.h"
template class ShapeTester<VPlacedVolume>;
|