1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183
|
//
// File: shapeDebug.cpp
// Purpose: Similar to CompareDistances, user provide 6 floats at input:
// a point (x,y,z) and a direction (vx,vy,vz), and the shape, point and
// track is drawn using ROOT, from original point to next intersection with shape,
// and all distances and safeties are compared with ROOT.
// Note: ROOT is required for visualization.
// Geant4 is also used when available, but they are not mandatory.
//
#include "VecGeom/management/RootGeoManager.h"
#include "VecGeom/volumes/LogicalVolume.h"
#include "VecGeom/volumes/PlacedVolume.h"
#include "VecGeom/volumes/UnplacedBox.h"
#include "VecGeom/management/GeoManager.h"
#include "VecGeom/volumes/UnplacedBox.h"
#include "TGeoManager.h"
#include "TGeoVolume.h"
#include "TGeoBBox.h"
#include "TGeoTube.h"
#include "utilities/Visualizer.h"
#include <string>
#include <cmath>
#include <iostream>
#ifdef VECGEOM_GEANT4
#include "G4ThreeVector.hh"
#include "G4VSolid.hh"
#endif
using namespace vecgeom;
int main(int argc, char *argv[])
{
if (argc < 7) {
std::cerr << "Fixed shape in source code - user needs to give a local point + local dir\n";
std::cerr << "example: " << argv[0] << " 10.0 0.8 -3.5 1 0 0\n";
return 1;
}
double px = atof(argv[1]);
double py = atof(argv[2]);
double pz = atof(argv[3]);
double dirx = atof(argv[4]);
double diry = atof(argv[5]);
double dirz = atof(argv[6]);
TGeoShape *testShape = new TGeoBBox(10, 15, 20);
// TGeoShape *testShape = new TGeoTubeSeg(3, 6, 2, 0, 360. * 0.6);
// TGeoShape *testShape = new TGeoTrap(3, 6, 2, 0, 360. * 0.6);
testShape->InspectShape();
std::cerr << "volume capacity " << testShape->Capacity() << "\n";
// now get the VecGeom shape and benchmark it
if (testShape) {
LogicalVolume *converted = RootGeoManager::Instance().Convert(new TGeoVolume("testVolume", testShape));
VPlacedVolume *vecgeomplaced = converted->Place();
Vector3D<Precision> point(px, py, pz);
Vector3D<Precision> dir(dirx, diry, dirz);
// normalize direction vector
dir = dir.Unit();
SOA3D<Precision> pointcontainer(4);
pointcontainer.resize(4);
SOA3D<Precision> dircontainer(4);
dircontainer.resize(4);
Precision *output = new Precision[4];
Precision *steps = new Precision[4];
if (argc > 9) {
pointcontainer.set(0, point);
dircontainer.set(0, dir.x(), dir.y(), dir.z());
double px2 = atof(argv[7]);
double py2 = atof(argv[8]);
double pz2 = atof(argv[9]);
double dirx2 = atof(argv[10]);
double diry2 = atof(argv[11]);
double dirz2 = atof(argv[12]);
pointcontainer.set(1, px2, py2, pz2);
dircontainer.set(1, dirx2, diry2, dirz2);
pointcontainer.set(2, point);
dircontainer.set(2, dir.x(), dir.y(), dir.z());
pointcontainer.set(3, px2, py2, pz2);
dircontainer.set(3, dirx2, diry2, dirz2);
for (auto i = 0; i < 4; ++i) {
steps[i] = vecgeom::kInfLength;
}
} else {
for (auto i = 0; i < 4; ++i) {
pointcontainer.set(i, point);
dircontainer.set(i, dir.x(), dir.y(), dir.z());
steps[i] = vecgeom::kInfLength;
}
}
if (!dir.IsNormalized()) {
std::cerr << "** Attention: Direction is not normalized **\n";
std::cerr << "** Direction differs from 1 by "
<< std::sqrt(dir.x() * dir.x() + dir.y() * dir.y() + dir.z() * dir.z()) - 1. << "\n";
}
double dist;
std::cout << "VecGeom Capacity " << vecgeomplaced->Capacity() << "\n";
std::cout << "VecGeom CONTAINS " << vecgeomplaced->Contains(point) << "\n";
std::cout << "VecGeom INSIDE " << vecgeomplaced->Inside(point) << "\n";
dist = vecgeomplaced->DistanceToIn(point, dir);
std::cout << "VecGeom DI " << dist << "\n";
if (dist >= vecgeom::kTolerance && dist < vecgeom::kInfLength) {
std::cout << "VecGeom INSIDE(p=p+dist*dir) " << vecgeomplaced->Inside(point + dir * dist) << "\n";
if (vecgeomplaced->Inside(point + dir * dist) == vecgeom::kOutside)
std::cout << "VecGeom Distance seems to be too big DI(p=p+dist*dir,-dir) "
<< vecgeomplaced->DistanceToIn(point + dir * dist, -dir) << "\n";
if (vecgeomplaced->Inside(point + dir * dist) == vecgeom::kInside)
std::cout << "VecGeom Distance seems to be too small DO(p=p+dist*dir,dir) "
<< vecgeomplaced->DistanceToOut(point + dir * dist, dir) << "\n";
}
vecgeomplaced->DistanceToIn(pointcontainer, dircontainer, steps, output);
std::cout << "VecGeom DI-V " << output[0] << "\n";
std::cout << "VecGeom DO " << vecgeomplaced->DistanceToOut(point, dir) << "\n";
vecgeomplaced->DistanceToOut(pointcontainer, dircontainer, steps, output);
std::cout << "VecGeom DO-V " << output[0] << "\n";
std::cout << "VecGeom SI " << vecgeomplaced->SafetyToIn(point) << "\n";
std::cout << "VecGeom SO " << vecgeomplaced->SafetyToOut(point) << "\n";
std::cout << "ROOT Capacity " << testShape->Capacity() << "\n";
std::cout << "ROOT CONTAINS " << testShape->Contains(&Vector3D<double>(point)[0]) << "\n";
std::cout << "ROOT DI " << testShape->DistFromOutside(&Vector3D<double>(point)[0], &Vector3D<double>(dir)[0])
<< "\n";
std::cout << "ROOT DO " << testShape->DistFromInside(&Vector3D<double>(point)[0], &Vector3D<double>(dir)[0])
<< "\n";
std::cout << "ROOT SI " << testShape->Safety(&Vector3D<double>(point)[0], false) << "\n";
std::cout << "ROOT SO " << testShape->Safety(&Vector3D<double>(point)[0], true) << "\n";
TGeoShape const *rootback = vecgeomplaced->ConvertToRoot();
if (rootback) {
std::cout << "ROOTBACKCONV CONTAINS " << rootback->Contains(&Vector3D<double>(point)[0]) << "\n";
std::cout << "ROOTBACKCONV DI "
<< rootback->DistFromOutside(&Vector3D<double>(point)[0], &Vector3D<double>(dir)[0]) << "\n";
std::cout << "ROOTBACKCONV DO "
<< rootback->DistFromInside(&Vector3D<double>(point)[0], &Vector3D<double>(dir)[0]) << "\n";
std::cout << "ROOTBACKCONV SI " << rootback->Safety(&Vector3D<double>(point)[0], false) << "\n";
std::cout << "ROOTBACKCONV SO " << rootback->Safety(&Vector3D<double>(point)[0], true) << "\n";
} else {
std::cerr << "ROOT backconversion failed\n";
}
#ifdef VECGEOM_GEANT4
G4ThreeVector g4p(point.x(), point.y(), point.z());
G4ThreeVector g4d(dir.x(), dir.y(), dir.z());
G4VSolid const *g4solid = vecgeomplaced->ConvertToGeant4();
if (g4solid != NULL) {
std::cout << "G4 CONTAINS " << g4solid->Inside(g4p) << "\n";
std::cout << "G4 DI " << g4solid->DistanceToIn(g4p, g4d) << "\n";
std::cout << "G4 DO " << g4solid->DistanceToOut(g4p, g4d) << "\n";
std::cout << "G4 SI " << g4solid->DistanceToIn(g4p) << "\n";
std::cout << "G4 SO " << g4solid->DistanceToOut(g4p) << "\n";
} else {
std::cerr << "G4 conversion failed\n";
}
#endif
double step = 0;
// if( testShape->Contains( &point[0] ) ){
// step = testShape->DistFromInside( &point[0], &dir[0] );
// }
// else {
// step = testShape->DistFromOutside( &point[0], &dir[0] );
// }
// modified to show problem in DistanceToIn()
step = testShape->DistFromOutside(&Vector3D<double>(point)[0], &Vector3D<double>(dir)[0]);
Visualizer visualizer;
visualizer.AddVolume(*vecgeomplaced);
visualizer.AddPoint(point);
visualizer.AddLine(point, point + step * dir);
visualizer.Show();
} else {
std::cerr << " Error: problems constructing volume [" << testShape << "] ... EXITING\n";
return 1;
}
}
|