1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252
|
/*
* ABBoxManager.cpp
*
* Created on: 24.04.2015
* Author: swenzel
*/
#include "VecGeom/management/ABBoxManager.h"
#include "VecGeom/volumes/UnplacedBox.h"
namespace vecgeom {
inline namespace cxx {
/** Splitted Aligned bounding boxes
*
* This function will calculate the "numOfSlices" num of aligned bounding
* boxes of "numOfSlices" divisions of Bounding box of Placed Volume
*
* input : 1. *pvol : A pointer to the Placed Volume.
* 2. numOfSlices : that user want
*
* output : lowerc : A STL vector containing the lower extent of the newly
* calculated "numOfSlices" num of Aligned Bounding boxes
*
* upperc : A STL vector containing the upper extent of the newly
* calculated "numOfSlices" num of Aligned Bounding boxes
*
*/
void ABBoxManager::ComputeSplittedABBox(VPlacedVolume const *pvol, std::vector<ABBox_s> &lowerc,
std::vector<ABBox_s> &upperc, int numOfSlices)
{
// idea: Split the Placed Bounding Box of volume into the numOfSlices.
// Then pass each placed slice to the ComputABBox function,
// Get the coordinates of lower and upper corner of splittedABBox,
// store these coordinates into the vector of coordinates provided
// by the calling function.
Vector3D<Precision> tmpLower, tmpUpper;
pvol->GetUnplacedVolume()->Extent(tmpLower, tmpUpper);
Vector3D<Precision> delta = tmpUpper - tmpLower;
// chose the largest dimension for splitting
int dim = 0; // 0 for x, 1 for y, 2 for z //default considering X is largest
if (delta.y() > delta.x() && delta.y() > delta.z()) // if y is largest
dim = 1;
if (delta.z() > delta.x() && delta.z() > delta.y()) // if z is largest
dim = 2;
Precision splitDx = 0., splitDy = 0., splitDz = 0.;
splitDx = delta.x();
splitDy = delta.y();
splitDz = delta.z();
// Only one will execute, considering slicing only in one dimension
Precision val = 0.;
if (dim == 0) {
splitDx = delta.x() / numOfSlices;
val = -delta.x() / 2 + splitDx / 2;
}
if (dim == 1) {
splitDy = delta.y() / numOfSlices;
val = -delta.y() / 2 + splitDy / 2;
}
if (dim == 2) {
splitDz = delta.z() / numOfSlices;
val = -delta.z() / 2 + splitDz / 2;
}
// Precision minx, miny, minz, maxx, maxy, maxz;
Transformation3D const *transf = pvol->GetTransformation();
// Actual Stuff of slicing
for (int i = 0; i < numOfSlices; i++) {
// TODO : Try to create sliced placed box.
// Needs to modifiy translation parameters, without touching rotation
// parameters
Transformation3D transf2;
Vector3D<Precision> transVec(0., 0., 0.);
if (dim == 0) {
transVec = transf->InverseTransform(Vector3D<Precision>(val, 0., 0.));
val += splitDx;
}
if (dim == 1) {
transVec = transf->InverseTransform(Vector3D<Precision>(0., val, 0.));
val += splitDy;
}
if (dim == 2) {
transVec = transf->InverseTransform(Vector3D<Precision>(0., 0., val));
val += splitDz;
}
transf2.SetTranslation(transVec);
transf2.SetRotation(transf->Rotation()[0], transf->Rotation()[1], transf->Rotation()[2], transf->Rotation()[3],
transf->Rotation()[4], transf->Rotation()[5], transf->Rotation()[6], transf->Rotation()[7],
transf->Rotation()[8]);
transf2.SetProperties();
Vector3D<Precision> lower1(0., 0., 0.), upper1(0., 0., 0.);
UnplacedBox newBox2(splitDx / 2., splitDy / 2., splitDz / 2.);
VPlacedVolume const *newBoxPlaced2 = LogicalVolume("", &newBox2).Place(&transf2);
ABBoxManager::Instance().ComputeABBox(newBoxPlaced2, &lower1, &upper1);
lowerc.push_back(lower1);
upperc.push_back(upper1);
}
}
void ABBoxManager::ComputeABBox(VPlacedVolume const *pvol, ABBox_s *lowerc, ABBox_s *upperc)
{
// idea: take the 8 corners of the bounding box in the reference frame of pvol
// transform those corners and keep track of minimum and maximum extent
// TODO: could make this code shorter with a more complex Vector3D class
Vector3D<Precision> lower, upper;
pvol->GetUnplacedVolume()->Extent(lower, upper);
Vector3D<Precision> delta = upper - lower;
Precision minx, miny, minz, maxx, maxy, maxz;
minx = kInfLength;
miny = kInfLength;
minz = kInfLength;
maxx = -kInfLength;
maxy = -kInfLength;
maxz = -kInfLength;
Transformation3D const *transf = pvol->GetTransformation();
for (int x = 0; x <= 1; ++x)
for (int y = 0; y <= 1; ++y)
for (int z = 0; z <= 1; ++z) {
Vector3D<Precision> corner;
corner.x() = lower.x() + x * delta.x();
corner.y() = lower.y() + y * delta.y();
corner.z() = lower.z() + z * delta.z();
Vector3D<Precision> transformedcorner = transf->InverseTransform(corner);
minx = std::min(minx, transformedcorner.x());
miny = std::min(miny, transformedcorner.y());
minz = std::min(minz, transformedcorner.z());
maxx = std::max(maxx, transformedcorner.x());
maxy = std::max(maxy, transformedcorner.y());
maxz = std::max(maxz, transformedcorner.z());
}
// put some margin around these boxes
*lowerc = Vector3D<Precision>(minx - 1E-3, miny - 1E-3, minz - 1E-3);
*upperc = Vector3D<Precision>(maxx + 1E-3, maxy + 1E-3, maxz + 1E-3);
#ifdef CHECK
// do some tests on this stuff
delta = (*upperc - *lowerc) / 2.;
Vector3D<Precision> boxtranslation = (*lowerc + *upperc) / 2.;
UnplacedBox box(delta);
Transformation3D tr(boxtranslation.x(), boxtranslation.y(), boxtranslation.z());
VPlacedVolume const *boxplaced = LogicalVolume("", &box).Place(&tr);
// no point on the surface of the aligned box should be inside the volume
std::cerr << "lower " << *lowerc;
std::cerr << "upper " << *upperc;
int contains = 0;
for (int i = 0; i < 10000; ++i) {
Vector3D<Precision> p = box.SamplePointOnSurface() + boxtranslation;
std::cerr << *lowerc << " " << *upperc << " " << p << "\n";
if (pvol->Contains(p)) contains++;
}
if (contains > 10) {
Visualizer visualizer;
visualizer.AddVolume(*pvol, *pvol->GetTransformation());
visualizer.AddVolume(*boxplaced, tr);
visualizer.Show();
}
std::cerr << "## wrong points " << contains << "\n";
#endif
}
void ABBoxManager::InitABBoxes(LogicalVolume const *lvol)
{
if (fVolToABBoxesMap[lvol->id()] != nullptr) {
// remove old boxes first
RemoveABBoxes(lvol);
}
uint ndaughters = lvol->GetDaughtersp()->size();
ABBox_s *boxes = new ABBox_s[2 * ndaughters];
fVolToABBoxesMap[lvol->id()] = boxes;
// same for the vector part
int extra = (ndaughters % vecCore::VectorSize<Float_v>() > 0) ? 1 : 0;
int size = 2 * (ndaughters / vecCore::VectorSize<Float_v>() + extra);
ABBox_v *vectorboxes = new ABBox_v[size];
fVolToABBoxesMap_v[lvol->id()] = vectorboxes;
// calculate boxes by iterating over daughters
for (uint d = 0; d < ndaughters; ++d) {
auto pvol = lvol->GetDaughtersp()->operator[](d);
ComputeABBox(pvol, &boxes[2 * d], &boxes[2 * d + 1]);
#ifdef CHECK
// do some tests on this stuff
Vector3D<Precision> lower = boxes[2 * d];
Vector3D<Precision> upper = boxes[2 * d + 1];
Vector3D<Precision> delta = (upper - lower) / 2.;
Vector3D<Precision> boxtranslation = (lower + upper) / 2.;
UnplacedBox box(delta);
Transformation3D tr(boxtranslation.x(), boxtranslation.y(), boxtranslation.z());
VPlacedVolume const *boxplaced = LogicalVolume("", &box).Place(&tr);
// int contains = 0;
// for(int i=0;i<10000;++i)
// {
// Vector3D<Precision> p = box.SamplePointOnSurface() + boxtranslation;
// std::cerr << *lowerc << " " << * upperc << " " << p << "\n";
// if( pvol->Contains( p ) ) contains++;
// }
// if( contains > 10){
#endif
}
// initialize vector version of Container
int index = 0;
unsigned int assignedscalarvectors = 0;
for (uint i = 0; i < ndaughters; i += vecCore::VectorSize<Float_v>()) {
Vector3D<Float_v> lower;
Vector3D<Float_v> upper;
// assign by components ( using generic VecCore API )
for (uint k = 0; k < vecCore::VectorSize<Float_v>(); ++k) {
if (2 * (i + k) < 2 * ndaughters) {
vecCore::Set(lower.x(), k, boxes[2 * (i + k)].x());
vecCore::Set(lower.y(), k, boxes[2 * (i + k)].y());
vecCore::Set(lower.z(), k, boxes[2 * (i + k)].z());
vecCore::Set(upper.x(), k, boxes[2 * (i + k) + 1].x());
vecCore::Set(upper.y(), k, boxes[2 * (i + k) + 1].y());
vecCore::Set(upper.z(), k, boxes[2 * (i + k) + 1].z());
assignedscalarvectors += 2;
} else {
// filling in bounding boxes of zero size
// better to put some irrational number than 0?
vecCore::Scalar<Float_v> neginf = -InfinityLength<vecCore::Scalar<Float_v>>();
vecCore::Set(lower.x(), k, neginf);
vecCore::Set(lower.y(), k, neginf);
vecCore::Set(lower.z(), k, neginf);
vecCore::Set(upper.x(), k, neginf);
vecCore::Set(upper.y(), k, neginf);
vecCore::Set(upper.z(), k, neginf);
}
}
vectorboxes[index++] = lower;
vectorboxes[index++] = upper;
}
assert(index == size);
assert(assignedscalarvectors == 2 * ndaughters);
(void) assignedscalarvectors; // silence compiler warnings
}
void ABBoxManager::RemoveABBoxes(LogicalVolume const *lvol)
{
if (fVolToABBoxesMap[lvol->id()] != nullptr) delete[] fVolToABBoxesMap[lvol->id()];
}
}
}
|