1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 300 301 302 303 304 305 306 307 308 309 310 311 312 313 314 315 316 317 318 319 320 321 322 323 324 325 326 327 328 329 330 331 332 333 334 335 336 337 338 339 340 341 342 343 344 345 346 347 348 349 350 351 352 353 354 355 356 357 358 359 360 361 362 363 364 365 366 367 368 369 370 371 372 373 374 375 376 377 378 379 380 381 382 383 384 385 386 387 388 389 390 391 392 393 394 395 396 397 398 399 400 401 402 403 404 405 406 407 408 409 410 411 412 413 414 415 416 417 418 419 420 421 422 423 424 425 426 427 428 429 430 431 432 433 434 435 436 437 438 439 440 441 442 443 444 445 446 447 448 449 450 451 452 453 454 455 456 457 458 459 460 461 462 463 464 465 466 467 468 469 470 471 472 473 474 475 476 477 478 479 480 481 482 483 484 485 486 487 488 489 490 491 492 493 494 495 496 497 498 499 500 501 502 503 504 505 506 507 508 509 510 511 512 513 514 515 516 517 518 519 520 521 522 523 524 525 526 527 528 529 530 531 532 533 534 535 536 537 538 539 540 541 542 543 544 545 546 547 548 549 550 551 552 553 554 555 556 557
|
// This file is part of VecGeom and is distributed under the
// conditions in the file LICENSE.txt in the top directory.
// For the full list of authors see CONTRIBUTORS.txt and `git log`.
/// \author created by Sandro Wenzel
#include "VecGeom/management/FlatVoxelManager.h"
#include "VecGeom/volumes/LogicalVolume.h"
#include "VecGeom/volumes/utilities/VolumeUtilities.h"
#include "VecGeom/navigation/SimpleABBoxSafetyEstimator.h"
#include <thread>
#include <future>
#include <random> // C++11 random numbers
#include <sstream>
#include <set>
// for timing measurement
#include "VecGeom/base/Stopwatch.h"
namespace vecgeom {
inline namespace VECGEOM_IMPL_NAMESPACE {
void FlatVoxelManager::InitStructure(LogicalVolume const *lvol)
{
auto numregisteredlvols = GeoManager::Instance().GetRegisteredVolumesCount();
if (fStructureHolder.size() != numregisteredlvols) {
fStructureHolder.resize(numregisteredlvols, nullptr);
}
if (fStructureHolder[lvol->id()] != nullptr) {
RemoveStructure(lvol);
}
fStructureHolder[lvol->id()] = BuildStructure(lvol);
}
// #define EXTREMELOOKUP
FlatVoxelHashMap<int, false> *FlatVoxelManager::BuildSafetyVoxels(LogicalVolume const *vol)
{
// TODO: How/Where is this supposed to be used, or is it obsolete?
#ifdef EXTREMELOOKUP
Vector3D<Precision> lower, upper;
vol->GetUnplacedVolume()->Extent(lower, upper);
// these numbers have to be chosen dynamically to best match the situation
int Nx = 500;
int Ny = 500;
int Nz = 500;
auto voxels = new FlatVoxelHashMap<float, true>(lower, 1.005 * (upper - lower), Nx, Ny, Nz);
// fill the values ... we will sample this using a point cloud so as to avoid
// filling useless values (completely inside volumes)
// We should then try to fill the remaining holes via some kind of connecting/clustering
// algorithm
int numtasks = std::thread::hardware_concurrency();
// int npointstotal{1000000000};
int npointstotal{1000000};
int pointspertask = npointstotal / numtasks;
std::vector<std::mt19937> engines(numtasks);
std::vector<SOA3D<float> *> points(numtasks);
std::vector<std::vector<long> *> keyspertask(numtasks);
// reserve space and init engines
for (int t = 0; t < numtasks; ++t) {
engines[t].seed(t * 13 + 11);
points[t] = new SOA3D<float>(pointspertask);
}
Stopwatch timer;
timer.Start();
std::vector<std::future<void>> futures;
for (int t = 0; t < numtasks; ++t) {
auto fut = std::async([&engines, &points, &keyspertask, vol, t, voxels] {
bool foundPoints = volumeUtilities::FillUncontainedPoints(*vol, engines[t], *points[t]);
if (foundPoints) {
keyspertask[t] = new std::vector<long>;
voxels->getKeys(*points[t], *keyspertask[t]);
} else {
keyspertask[t] = nullptr;
}
});
futures.push_back(std::move(fut));
}
std::for_each(futures.begin(), futures.end(), [](std::future<void> &fut) { fut.wait(); });
auto elapsed = timer.Stop();
std::cout << "Sampling points and keys took " << elapsed << "s \n";
timer.Start();
// merge all keys
std::vector<long> allkeys;
for (int t = 0; t < numtasks; ++t) {
if (keyspertask[t]) std::copy(keyspertask[t]->begin(), keyspertask[t]->end(), std::back_inserter(allkeys));
}
// Do we need to delete keyspertask[t] ?? JA
if (allkeys.begin() == allkeys.end() || allkeys.size() <= 1) {
// No points found -- the daughthers fill the current volume
return nullptr;
}
std::sort(allkeys.begin(), allkeys.end());
// get rid of duplicates easily since they are sorted
std::vector<long> sortedkeys;
for (auto &k : allkeys) {
if (sortedkeys.size() == 0) {
sortedkeys.push_back(k);
} else if (k != sortedkeys.back()) {
sortedkeys.push_back(k);
}
}
std::cout << "Generating unique keys took " << timer.Stop() << "s \n";
std::cout << "We have " << sortedkeys.size() << " sorted unique keys; fraction "
<< sortedkeys.size() / (1. * Nx * Ny * Nz) << " estimated volume "
<< sortedkeys.size() * safetyvoxels->getVoxelVolume() << "\n";
timer.Start();
// make a vector where to collect safeties
std::vector<float> safeties(sortedkeys.size());
const auto safetyestimator = static_cast<SimpleABBoxSafetyEstimator const *>(SimpleABBoxSafetyEstimator::Instance());
std::vector<std::future<void>> safetyfutures;
std::cerr << " Calculating safeties ... in parallel ";
for (int t = 0; t < numtasks; ++t) {
auto fut = std::async([t, numtasks, &safeties, safetyvoxels, &sortedkeys, safetyestimator, vol] {
// define start and end to work on
size_t s = sortedkeys.size();
size_t chunksize = s / numtasks;
size_t remainder = s % numtasks;
int startindex = t * chunksize;
int endindex = (t + 1) * chunksize;
if (t == numtasks - 1) {
endindex += remainder;
}
const float voxelhalfdiagonal = 0.5 * safetyvoxels->getVoxelDiagonal();
for (int i = startindex; i < endindex; ++i) {
auto k = sortedkeys[i];
Vector3D<float> midpointfloat = safetyvoxels->keyToPos(k);
Vector3D<double> midpointdouble(midpointfloat.x(), midpointfloat.y(), midpointfloat.z());
auto safety = safetyestimator->TreatSafetyToIn(midpointdouble, vol, 1E20);
safeties[i] = safety - voxelhalfdiagonal;
}
});
safetyfutures.push_back(std::move(fut));
}
std::for_each(safetyfutures.begin(), safetyfutures.end(), [](std::future<void> &fut) { fut.wait(); });
std::cout << "Generating safeties took " << timer.Stop() << "s \n";
auto filename = createName(vol, Nx, Ny, Nz);
dumpToTFile(filename.c_str(), *points[0], sortedkeys, safeties);
// finally register safeties in voxel map
for (size_t i = 0; i < sortedkeys.size(); ++i) {
auto k = sortedkeys[i];
auto safety = safeties[i];
voxels->addPropertyForKey(k, safety);
}
std::cout << " done \n";
auto structure = new VoxelStructure();
structure->fVoxels = voxels;
structure->fVol = vol;
return structure;
#else
Vector3D<Precision> lower, upper;
vol->GetUnplacedVolume()->Extent(lower, upper);
// these numbers have to be chosen dynamically to best match the situation
const auto &daughters = vol->GetDaughters();
const size_t ndaughters = daughters.size();
// a good guess is by the number of daughters and their average extent/dimensions
std::cout << " Setting up safety voxels for " << vol->GetName() << " with " << ndaughters << " daughters \n";
int Nx = std::max(4., 2 * std::sqrt(1. * ndaughters));
int Ny = std::max(4., 2 * std::sqrt(1. * ndaughters));
int Nz = std::max(4., 2 * std::sqrt(1. * ndaughters));
// int Nx = 10; //std::max(4., 2*std::sqrt(1.*ndaughters));
// int Ny = 10; //std::max(4., 2*std::sqrt(1.*ndaughters));
// int Nz = 10; //std::max(4., 2*std::sqrt(1.*ndaughters));
// Initialize new structure
auto* safetyvoxels = new FlatVoxelHashMap<int, false>(lower, 1.005 * (upper - lower), Nx, Ny, Nz);
int numtasks = std::thread::hardware_concurrency();
int npointstotal{1000 * Nx * Ny * Nz};
int pointspertask = npointstotal / numtasks;
std::vector<std::mt19937> engines(numtasks);
std::vector<SOA3D<float> *> points(numtasks);
std::vector<std::vector<long> *> keyspertask(numtasks);
// reserve space and init engines
for (int t = 0; t < numtasks; ++t) {
engines[t].seed(t * 13 + 11);
points[t] = new SOA3D<float>(pointspertask);
}
Stopwatch timer;
timer.Start();
std::vector<std::future<void>> futures;
for (int t = 0; t < numtasks; ++t) {
auto fut = std::async([&engines, &points, &keyspertask, vol, t, safetyvoxels] {
bool foundPoints = volumeUtilities::FillUncontainedPoints(*vol, engines[t], *points[t]);
if (foundPoints) {
keyspertask[t] = new std::vector<long>;
safetyvoxels->getKeys(*points[t], *keyspertask[t]);
// delete points[t]; points[t] = nullptr; // JA 2021.03.04 17:15 CEST ???
} else {
keyspertask[t] = nullptr;
std::cerr << " WARNING: Found 0 uncontained points for " << vol->GetName()
<< " -- expect problems in estimating safety. \n";
}
});
futures.push_back(std::move(fut));
}
std::for_each(futures.begin(), futures.end(), [](std::future<void> &fut) { fut.wait(); });
auto elapsed = timer.Stop();
std::cout << "Sampling points and keys took " << elapsed << "s \n";
timer.Start();
// merge all keys
std::vector<long> allkeys;
for (int t = 0; t < numtasks; ++t) {
if (keyspertask[t]) std::copy(keyspertask[t]->begin(), keyspertask[t]->end(), std::back_inserter(allkeys));
}
if (allkeys.begin() == allkeys.end() || allkeys.size() <= 1) {
// No points found -- the daughthers fill the current volume
return nullptr;
}
std::sort(allkeys.begin(), allkeys.end());
// get rid of duplicates easily since they are sorted
std::vector<long> sortedkeys;
for (auto &k : allkeys) {
if (sortedkeys.size() == 0) {
sortedkeys.push_back(k);
} else if (k != sortedkeys.back()) {
sortedkeys.push_back(k);
}
}
std::cout << "Generating unique keys took " << timer.Stop() << " s \n";
std::cout << " We have " << sortedkeys.size() << " sorted unique keys; fraction "
<< sortedkeys.size() / (1. * Nx * Ny * Nz) << " estimated volume "
<< sortedkeys.size() * safetyvoxels->getVoxelVolume() << "\n";
size_t minSize = 50;
if (sortedkeys.size() < minSize) {
std::cerr << " ** Keys are few -- not creating acceleration structure. \n";
return nullptr;
}
//
timer.Start();
// make a vector where to collect the safetycandidates
std::vector<std::vector<int>> safetycandidates(sortedkeys.size());
std::vector<std::future<void>> safetyfutures;
#ifdef VOXEL_DEBUG
std::cerr << " Calculating safety candidates ... in parallel \n";
#endif
for (int t = 0; t < numtasks; ++t) {
auto fut = std::async([t, numtasks, &safetycandidates, safetyvoxels, &sortedkeys, vol] {
// define start and end to work on
size_t s = sortedkeys.size();
size_t chunksize = s / numtasks;
size_t remainder = s % numtasks;
int startindex = t * chunksize;
int endindex = (t + 1) * chunksize;
if (t == numtasks - 1) {
endindex += remainder;
}
int size{0};
auto abboxcorners = ABBoxManager::Instance().GetABBoxes(vol, size);
std::vector<Vector3D<float>> voxelsurfacepoints;
for (int i = startindex; i < endindex; ++i) {
auto k = sortedkeys[i];
// ---
// step 1 is to check intersections of this voxel with all object bounding boxes
// ---
Vector3D<float> keylower;
Vector3D<float> keyupper;
safetyvoxels->Extent(k, keylower, keyupper);
#ifdef VOXEL_DEBUG
bool verbose = false;
if (verbose) {
std::cerr << "KEY LOWER EXTENT " << keylower << "\n";
std::cerr << "KEY UPPER EXTENT " << keyupper << "\n";
}
#endif
// painful but we could speed up with SIMD
for (int boxindex = 0; boxindex < size; ++boxindex) {
const auto &boxlower = abboxcorners[2 * boxindex];
const auto &boxupper = abboxcorners[2 * boxindex + 1];
if (volumeUtilities::IntersectionExist(keylower, keyupper, boxlower, boxupper)) {
safetycandidates[i].push_back(boxindex);
}
}
// ---
// step 2 is to determine which other candidates are possible --- for instance
// important when this voxel is in empty space
// (WE NEED TO BE CAREFUL ABOUT TOPOLOGICALLY WEIRD CASES)
// ---
std::set<int> othersafetycandidates;
std::set<int> insidedaughtercandidates;
voxelsurfacepoints.clear();
volumeUtilities::GenerateRegularSurfacePointsOnBox(keylower, keyupper, 10, voxelsurfacepoints);
for (const auto &sp : voxelsurfacepoints) {
// surface point in double precission (needed for some interfaces)
Vector3D<Precision> spdouble(sp.x(), sp.y(), sp.z());
#ifdef VOXEL_DEBUG
if (verbose) {
std::cerr << "CHECKING SURFACE POINT " << sp << "\n";
}
#endif
const auto inmother = vol->GetUnplacedVolume()->Contains(spdouble);
if (!inmother) {
othersafetycandidates.insert(-1);
continue;
}
// we can use the knowledge about intersecting bounding boxes to query
// daughter insection quickly
auto daughters = vol->GetDaughters();
bool inanydaughter = false;
for (const auto &boxindex : safetycandidates[i]) {
const auto &boxlower = abboxcorners[2 * boxindex];
const auto &boxupper = abboxcorners[2 * boxindex + 1];
bool inboundingbox{false};
ABBoxImplementation::ABBoxContainsKernelGeneric(boxlower, boxupper, sp, inboundingbox);
if (inboundingbox) {
// ASSUMING BOXINDEX == DAUGHTERINDEX !!
if (daughters[boxindex]->Contains(spdouble)) {
inanydaughter = true;
// if(verbose) std::cerr << "used to ignore surface point " << sp << " inside daughter vol " << boxindex
// << "\n";
insidedaughtercandidates.insert(boxindex);
// Should only be inside one daughter volume
break;
}
}
}
if (!inanydaughter) {
// get safetytoout as reference length scale
const auto safetyout = vol->GetUnplacedVolume()->SafetyToOut(spdouble);
const auto safetyoutsqr = safetyout * safetyout;
#ifdef VOXEL_DEBUG
if (verbose) {
std::cerr << "POINT OK; MOTHER SAFETY " << safetyout << "\n";
}
#endif
// get all intersecting objects within this distance
// which are not yet part of candidates ... we are using
// the simple safety estimator for this (could use better algorithms) but in a SIMD way
int size{0};
// fetches the SIMDized bounding box representations
ABBoxManager::ABBoxContainer_v bboxes = ABBoxManager::Instance().GetABBoxes_v(vol, size);
using IdDistPair_t = ABBoxManager::BoxIdDistancePair_t;
char stackspace[VECGEOM_MAXDAUGHTERS * sizeof(IdDistPair_t)];
IdDistPair_t *boxsafetylist = reinterpret_cast<IdDistPair_t *>(&stackspace);
// calculate squared bounding box safeties in vectorized way which are within range of safety to mother
auto ncandidates =
SimpleABBoxSafetyEstimator::GetSafetyCandidates_v(spdouble, bboxes, size, boxsafetylist, safetyoutsqr);
int bestcandidate = -1; // -1 means mother
// final safety for this surfacepoint
float finalsafetysqr = safetyoutsqr;
for (size_t candidateindex = 0; candidateindex < ncandidates; ++candidateindex) {
const auto volid = boxsafetylist[candidateindex].first;
const auto safetytoboxsqr = boxsafetylist[candidateindex].second;
const auto candidatesafety = daughters[volid]->SafetyToIn(spdouble);
const auto candsafetysqr = candidatesafety * candidatesafety;
#ifdef VOXEL_DEBUG
if (verbose) {
std::cerr << "DAUGH " << volid << " squared box saf " << safetytoboxsqr << " cands " << candidatesafety
<< "\n";
}
#endif
// we take the larger of boxsafety or candidatesafety as the safety for this object
const auto thiscandidatesafetysqr = std::max<Precision>(candsafetysqr, safetytoboxsqr);
// if this safety is smaller than the previously known safety
if (thiscandidatesafetysqr <= finalsafetysqr) {
#ifdef VOXEL_DEBUG
if (verbose) {
std::cerr << "Updating best cand from " << bestcandidate << " to " << volid
<< " safety-sq = " << thiscandidatesafetysqr << " for sp = " << sp << "\n";
}
#endif
bestcandidate = volid;
finalsafetysqr = thiscandidatesafetysqr;
}
}
#ifdef VOXEL_DEBUG
if (verbose) {
std::cerr << "Inserting best candidate " << bestcandidate << "\n";
}
#endif
othersafetycandidates.insert(bestcandidate);
} // if not in daughter
} // loop over surface points of voxel
for (const auto &other : othersafetycandidates) {
// we add the other candidates to the list of existing candidates
auto iter = std::find(safetycandidates[i].begin(), safetycandidates[i].end(), other);
if (iter == safetycandidates[i].end()) {
safetycandidates[i].push_back(other);
}
}
#ifdef CHECK_IN_DAUGHTER_CANDIDATES
// Check whether any 'in-daughter' candidates are not yet seen
for (const auto &other : insidedaughtercandidates) {
// we add the other candidates to the list of existing candidates
auto iter = std::find(safetycandidates[i].begin(), safetycandidates[i].end(), other);
if (iter == safetycandidates[i].end()) {
// if(verbose)
std::cerr << "used to ignore 'inside daughter' vol " << other << "\n";
safetycandidates[i].push_back(other);
}
}
#endif
std::sort(safetycandidates[i].begin(), safetycandidates[i].end());
} // loop over keys/voxels
});
safetyfutures.push_back(std::move(fut));
}
std::for_each(safetyfutures.begin(), safetyfutures.end(), [](std::future<void> &fut) { fut.wait(); });
std::cout << "Generating safeties took " << timer.Stop() << "s \n";
// bool verboseAdd= false;
// finally register safety or locate candidates in voxel hash map
for (size_t i = 0; i < sortedkeys.size(); ++i) {
auto key = sortedkeys[i];
for (const auto &cand : safetycandidates[i]) {
// if( verboseAdd ) { std::cout << "Adding cand " << cand << " to key " << key << "\n"; }
safetyvoxels->addPropertyForKey(key, cand);
}
}
std::cout << " done \n";
return safetyvoxels;
#endif // extreme lookup
}
FlatVoxelHashMap<int, false> *FlatVoxelManager::BuildLocateVoxels(LogicalVolume const *vol)
{
Vector3D<Precision> lower, upper;
vol->GetUnplacedVolume()->Extent(lower, upper);
// these numbers have to be chosen dynamically to best match the situation
const auto &daughters = vol->GetDaughters();
const size_t ndaughters = daughters.size();
// a good guess is by the number of daughters and their average extent/dimensions
std::cout << "Setting up locate voxels for " << vol->GetName() << " with " << ndaughters << " daughters \n";
int Nx = 10; // std::max(4., std::sqrt(1.*ndaughters));
int Ny = 10; // std::max(4., std::sqrt(1.*ndaughters));
int Nz = 10; // std::max(4., std::sqrt(1.*ndaughters));
auto locatevoxels = new FlatVoxelHashMap<int, false>(lower, 1.005 * (upper - lower), Nx, Ny, Nz);
size_t numkeys = Nx * Ny * Nz;
int numtasks = std::thread::hardware_concurrency();
// here we simply iterate over all keys
Stopwatch timer;
timer.Start();
//
std::vector<long> sortedkeys;
for (size_t i = 0; i < numkeys; ++i) {
sortedkeys.push_back(i);
}
std::cout << "Generating unique keys took " << timer.Stop() << "s \n";
//
timer.Start();
// make a vector where to collect the locatecandidates
std::vector<std::vector<int>> locatecandidates(sortedkeys.size());
std::vector<std::future<void>> futures;
std::cout << " Calculating locate candidates ... in parallel ";
for (int t = 0; t < numtasks; ++t) {
auto fut = std::async([t, numtasks, &locatecandidates, locatevoxels, &sortedkeys, vol] {
// define start and end to work on
size_t s = sortedkeys.size();
size_t chunksize = s / numtasks;
size_t remainder = s % numtasks;
int startindex = t * chunksize;
int endindex = (t + 1) * chunksize;
if (t == numtasks - 1) {
endindex += remainder;
}
int size{0};
auto abboxcorners = ABBoxManager::Instance().GetABBoxes(vol, size);
for (int i = startindex; i < endindex; ++i) {
auto k = sortedkeys[i];
Vector3D<float> keylower;
Vector3D<float> keyupper;
locatevoxels->Extent(k, keylower, keyupper);
// painful but we could speed up with SIMD
for (int boxindex = 0; boxindex < size; ++boxindex) {
const auto &boxlower = abboxcorners[2 * boxindex];
const auto &boxupper = abboxcorners[2 * boxindex + 1];
if (volumeUtilities::IntersectionExist(keylower, keyupper, boxlower, boxupper)) {
locatecandidates[i].push_back(boxindex);
}
}
} // loop over keys/voxels
});
futures.push_back(std::move(fut));
}
std::for_each(futures.begin(), futures.end(), [](std::future<void> &fut) { fut.wait(); });
std::cout << "Generating locate voxels took " << timer.Stop() << "s \n";
// finally register safety or locate candidates in voxel hash map
for (size_t i = 0; i < sortedkeys.size(); ++i) {
auto key = sortedkeys[i];
for (const auto &cand : locatecandidates[i]) {
locatevoxels->addPropertyForKey(key, cand);
}
}
// locatevoxels->print();
return locatevoxels;
}
FlatVoxelManager::VoxelStructure *FlatVoxelManager::BuildStructure(LogicalVolume const *vol)
{
auto structure = new VoxelStructure();
structure->fVoxelToCandidate = BuildSafetyVoxels(vol);
structure->fVoxelToLocateCandidates = BuildLocateVoxels(vol);
structure->fVol = vol;
return structure;
}
void FlatVoxelManager::RemoveStructure(LogicalVolume const *lvol)
{
// FIXME: take care of memory deletion within acceleration structure
if (fStructureHolder[lvol->id()]) delete fStructureHolder[lvol->id()];
}
} // namespace VECGEOM_IMPL_NAMESPACE
} // namespace vecgeom
|