1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 300 301 302 303 304 305 306 307 308 309 310 311 312 313 314 315 316 317 318 319 320 321 322 323 324 325 326 327 328 329 330 331 332 333 334 335 336 337 338 339 340 341 342 343 344 345 346 347 348 349 350 351 352 353 354 355 356 357 358 359 360 361 362 363 364 365 366 367 368 369 370 371 372 373 374 375 376 377 378 379 380 381 382 383 384 385 386 387 388 389 390 391 392 393 394 395 396 397 398 399 400 401 402 403 404 405 406 407 408 409 410 411 412 413 414 415 416 417 418 419 420 421 422 423 424 425 426 427 428 429 430 431 432 433 434 435 436 437 438 439 440 441 442 443 444 445 446 447 448 449 450 451 452 453 454 455 456 457 458 459 460 461 462 463 464 465 466 467 468 469 470 471 472 473 474 475 476 477 478 479 480 481 482 483 484 485 486 487 488 489 490 491 492 493 494 495 496 497 498 499 500 501 502 503 504 505 506 507 508 509 510 511 512 513 514 515 516 517 518 519 520 521 522 523 524 525 526 527 528 529 530 531 532 533 534 535 536 537 538 539 540 541 542 543 544 545 546 547 548 549 550 551 552 553 554 555 556 557 558 559 560 561 562 563 564 565 566 567 568 569 570 571 572 573 574 575
|
/*
* UnplacedCone.cpp
*
* Created on: Jun 18, 2014
* Author: swenzel
*/
#include "VecGeom/volumes/UnplacedCone.h"
#include "VecGeom/volumes/UnplacedTube.h"
#include "VecGeom/volumes/SpecializedCone.h"
#include "VecGeom/volumes/utilities/VolumeUtilities.h"
#include "VecGeom/volumes/utilities/GenerationUtilities.h"
#include "VecGeom/base/RNG.h"
#ifndef VECCORE_CUDA
#include "VecGeom/base/RNG.h"
#include "VecGeom/volumes/UnplacedImplAs.h"
#endif
#ifdef VECGEOM_ROOT
#include "TGeoCone.h"
#endif
#ifdef VECGEOM_GEANT4
#include "G4Cons.hh"
#endif
#include "VecGeom/management/VolumeFactory.h"
namespace vecgeom {
inline namespace VECGEOM_IMPL_NAMESPACE {
#ifndef VECCORE_CUDA
#ifdef VECGEOM_ROOT
TGeoShape const *UnplacedCone::ConvertToRoot(char const *label) const
{
if (GetDPhi() == 2. * M_PI) {
return new TGeoCone(label, GetDz(), GetRmin1(), GetRmax1(), GetRmin2(), GetRmax2());
} else {
return new TGeoConeSeg(label, GetDz(), GetRmin1(), GetRmax1(), GetRmin2(), GetRmax2(), GetSPhi() * kRadToDeg,
(GetSPhi() + GetDPhi()) * kRadToDeg);
}
}
#endif
#ifdef VECGEOM_GEANT4
G4VSolid const *UnplacedCone::ConvertToGeant4(char const *label) const
{
return new G4Cons(label, GetRmin1(), GetRmax1(), GetRmin2(), GetRmax2(), GetDz(), GetSPhi(), GetDPhi());
}
#endif
#endif
VECCORE_ATT_HOST_DEVICE
void UnplacedCone::Print() const
{
printf("UnplacedCone {rmin1 %.2f, rmax1 %.2f, rmin2 %.2f, "
"rmax2 %.2f, dz %.2f, phistart %.2f, deltaphi %.2f}",
fCone.fRmin1, fCone.fRmax1, fCone.fRmin2, fCone.fRmax2, fCone.fDz, fCone.fSPhi, fCone.fDPhi);
}
void UnplacedCone::Print(std::ostream &os) const
{
os << "UnplacedCone; please implement Print to outstream\n";
}
#ifndef VECCORE_CUDA
SolidMesh *UnplacedCone::CreateMesh3D(Transformation3D const &trans, size_t nSegments) const
{
typedef Vector3D<Precision> Vec_t;
SolidMesh *sm = new SolidMesh();
Vec_t *vertices = new Vec_t[4 * (nSegments + 1)];
Precision cos, sin;
Precision phi = GetSPhi();
Precision phi_step = GetDPhi() / nSegments;
size_t idx0 = 0;
size_t idx1 = nSegments + 1;
size_t idx2 = 2 * (nSegments + 1);
size_t idx3 = 3 * (nSegments + 1);
for (size_t i = 0; i <= nSegments; ++i, phi += phi_step) {
cos = std::cos(phi);
sin = std::sin(phi);
vertices[idx0++] = Vec_t(GetRmin1() * cos, GetRmin1() * sin, -GetDz()); // bottom inner
vertices[idx1++] = Vec_t(GetRmax1() * cos, GetRmax1() * sin, -GetDz()); // bottom outer
vertices[idx2++] = Vec_t(GetRmin2() * cos, GetRmin2() * sin, GetDz()); // top inner
vertices[idx3++] = Vec_t(GetRmax2() * cos, GetRmax2() * sin, GetDz()); // top outer
}
sm->SetVertices(vertices, 4 * (nSegments + 1));
delete[] vertices;
sm->TransformVertices(trans);
for (size_t j = 0, k = j + nSegments + 1; j < nSegments; j++, k++) {
sm->AddPolygon(4, {k + 1, k, j, j + 1}, true); // bottom surface
}
for (size_t j = 0, k = 2 * (nSegments + 1), l = k + nSegments + 1; j < nSegments; j++, k++, l++) {
sm->AddPolygon(4, {l, l + 1, k + 1, k}, true); // top surface
}
for (size_t j = 0, k = (nSegments + 1), l = k + 2 * (nSegments + 1); j < nSegments; j++, k++, l++) {
sm->AddPolygon(4, {k, k + 1, l + 1, l}, true); // lateral outer surface
}
for (size_t j = 0, k = j + 2 * (nSegments + 1); j < nSegments; j++, k++) {
sm->AddPolygon(4, {k, k + 1, j + 1, j}, true); // lateral inner surface
}
if (GetDPhi() != 2 * kPi) {
sm->AddPolygon(4, {0, nSegments + 1, 3 * (nSegments + 1), 2 * (nSegments + 1)}, true);
sm->AddPolygon(
4, {2 * (nSegments + 1) + nSegments, 3 * (nSegments + 1) + nSegments, nSegments + 1 + nSegments, 0 + nSegments},
true);
}
return sm;
}
#endif
VECCORE_ATT_HOST_DEVICE
void UnplacedCone::DetectConvexity()
{
// Default safe convexity value
fGlobalConvexity = false;
// Logic to calculate the convexity
if (fCone.fRmin1 == 0. && fCone.fRmin2 == 0.) { // Implies Solid cone
if (fCone.fDPhi <= kPi || fCone.fDPhi == kTwoPi) fGlobalConvexity = true;
}
}
#if (0)
// Simplest Extent definition, that does not take PHI into consideration
void UnplacedCone::Extent(Vector3D<Precision> &aMin, Vector3D<Precision> &aMax) const
{
Precision max = fCone.fRmax1 > fCone.fRmax2 ? fCone.fRmax1 : fCone.fRmax2;
aMin = Vector3D<Precision>(-max, -max, -fDz);
aMax = Vector3D<Precision>(max, max, fCone.fDz);
}
#endif
#if (1)
// Improved Extent definition, that takes PHI also into consideration
VECCORE_ATT_HOST_DEVICE
void UnplacedCone::Extent(Vector3D<Precision> &aMin, Vector3D<Precision> &aMax) const
{
// most general case
Precision max = fCone._frmax1 > fCone._frmax2 ? fCone._frmax1 : fCone._frmax2;
Precision min = fCone._frmin1 > fCone._frmin2 ? fCone._frmin2 : fCone._frmin1;
aMin = Vector3D<Precision>(-max, -max, -fCone.fDz);
aMax = Vector3D<Precision>(max, max, fCone.fDz);
/* Below logic borrowed from Tube.
**
** But it would be great, if it's possible to directly call Extent of Tube.
** because in that case we can avoid code replication.
*/
if (fCone.fDPhi == kTwoPi) return;
// check how many of phi=90, 180, 270, 360deg are outside this tube
auto Rin = 0.5 * (max + min);
bool phi0out = !fCone.fPhiWedge.Contains(Vector3D<Precision>(Rin, 0, 0));
bool phi90out = !fCone.fPhiWedge.Contains(Vector3D<Precision>(0, Rin, 0));
bool phi180out = !fCone.fPhiWedge.Contains(Vector3D<Precision>(-Rin, 0, 0));
bool phi270out = !fCone.fPhiWedge.Contains(Vector3D<Precision>(0, -Rin, 0));
// if none of those 4 phis is outside, largest box still required
if (!(phi0out || phi90out || phi180out || phi270out)) return;
// some extent(s) of box will be reduced
// --> think of 4 points A,B,C,D such that A,B are at Rmin, C,D at Rmax
// and A,C at startPhi (fCone.fSPhi), B,D at endPhi (fCone.fSPhi+fDphi)
auto Cx = max * cos(fCone.fSPhi);
auto Dx = max * cos(fCone.fSPhi + fCone.fDPhi);
auto Cy = max * sin(fCone.fSPhi);
auto Dy = max * sin(fCone.fSPhi + fCone.fDPhi);
// then rewrite box sides whenever each one of those phis are not contained in the tube section
if (phi0out) aMax.x() = Max(Cx, Dx);
if (phi90out) aMax.y() = Max(Cy, Dy);
if (phi180out) aMin.x() = Min(Cx, Dx);
if (phi270out) aMin.y() = Min(Cy, Dy);
if (fCone.fDPhi >= kPi) return;
auto Ax = min * cos(fCone.fSPhi);
auto Bx = min * cos(fCone.fSPhi + fCone.fDPhi);
auto Ay = min * sin(fCone.fSPhi);
auto By = min * sin(fCone.fSPhi + fCone.fDPhi);
Precision temp;
temp = Max(Ax, Bx);
aMax.x() = temp > aMax.x() ? temp : aMax.x();
temp = Max(Ay, By);
aMax.y() = temp > aMax.y() ? temp : aMax.y();
temp = Min(Ax, Bx);
aMin.x() = temp < aMin.x() ? temp : aMin.x();
temp = Min(Ay, By);
aMin.y() = temp < aMin.y() ? temp : aMin.y();
return;
}
#endif
VECCORE_ATT_HOST_DEVICE
bool UnplacedCone::Normal(Vector3D<Precision> const &p, Vector3D<Precision> &norm) const
{
return fCone.Normal(p, norm);
}
template <bool top>
bool UnplacedCone::IsOnZPlane(Vector3D<Precision> const &point) const
{
if (top) {
return (point.z() < (fCone.fDz + kTolerance)) && (point.z() > (fCone.fDz - kTolerance));
} else {
return (point.z() < (-fCone.fDz + kTolerance)) && (point.z() > (-fCone.fDz - kTolerance));
}
}
template <bool start>
bool UnplacedCone::IsOnPhiWedge(Vector3D<Precision> const &point) const
{
if (start) {
// return GetWedge().IsOnSurfaceGeneric<kScalar>(GetWedge().GetAlong1(), GetWedge().GetNormal1(), point);
return GetWedge().IsOnSurfaceGeneric(GetWedge().GetAlong1(), GetWedge().GetNormal1(), point);
} else {
// return GetWedge().IsOnSurfaceGeneric<kScalar>(GetWedge().GetAlong2(), GetWedge().GetNormal2(), point);
return GetWedge().IsOnSurfaceGeneric(GetWedge().GetAlong2(), GetWedge().GetNormal2(), point);
}
}
template <bool inner>
Precision UnplacedCone::GetRadiusOfConeAtPoint(Precision const pointZ) const
{
if (inner) {
return GetInnerSlope() * pointZ + GetInnerOffset();
} else {
return GetOuterSlope() * pointZ + GetOuterOffset();
}
}
template <bool inner>
bool UnplacedCone::IsOnConicalSurface(Vector3D<Precision> const &point) const
{
Precision rho = point.Perp2();
Precision coneRad = GetRadiusOfConeAtPoint<inner>(point.z());
Precision coneRad2 = coneRad * coneRad;
return (rho >= (coneRad2 - kTolerance * coneRad)) && (rho <= (coneRad2 + kTolerance * coneRad)) &&
(Abs(point.z()) < (GetDz() + kTolerance));
}
bool UnplacedCone::IsOnEdge(Vector3D<Precision> &point) const
{
int count = 0;
if (IsOnZPlane<true>(point) || IsOnZPlane<false>(point)) count++;
if (IsOnPhiWedge<true>(point)) count++;
if (IsOnPhiWedge<false>(point)) count++;
if (IsOnConicalSurface<true>(point)) count++;
if (IsOnConicalSurface<false>(point)) count++;
return count > 1;
}
#if (0) // Old buggy definition as pointed in Jira-433
Vector3D<Precision> UnplacedCone::SamplePointOnSurface() const
{
// implementation taken from UCons; not verified
//
Vector3D<Precision> retPt;
do {
Precision Aone, Atwo, Athree, Afour, Afive, slin, slout, phi;
Precision zRand, cosu, sinu, rRand1, rRand2, chose, rone, rtwo, qone, qtwo;
rone = (fCone.fRmax1 - fCone.fRmax2) / (2. * fCone.fDz);
rtwo = (fCone.fRmin1 - fCone.fRmin2) / (2. * fCone.fDz);
qone = 0.;
qtwo = 0.;
if (fCone.fRmax1 != fCone.fRmax2) {
qone = fCone.fDz * (fCone.fRmax1 + fCone.fRmax2) / (fCone.fRmax1 - fCone.fRmax2);
}
if (fCone.fRmin1 != fCone.fRmin2) {
qtwo = fCone.fDz * (fCone.fRmin1 + fCone.fRmin2) / (fCone.fRmin1 - fCone.fRmin2);
}
slin = Sqrt((fCone.fRmin1 - fCone.fRmin2) * (fCone.fRmin1 - fCone.fRmin2) + 4. * fCone.fDz * fCone.fDz);
slout = Sqrt((fCone.fRmax1 - fCone.fRmax2) * (fCone.fRmax1 - fCone.fRmax2) + 4. * fCone.fDz * fCone.fDz);
Aone = 0.5 * fCone.fDPhi * (fCone.fRmax2 + fCone.fRmax1) * slout;
Atwo = 0.5 * fCone.fDPhi * (fCone.fRmin2 + fCone.fRmin1) * slin;
Athree = 0.5 * fCone.fDPhi * (fCone.fRmax1 * fCone.fRmax1 - fCone.fRmin1 * fCone.fRmin1);
Afour = 0.5 * fCone.fDPhi * (fCone.fRmax2 * fCone.fRmax2 - fCone.fRmin2 * fCone.fRmin2);
Afive = fCone.fDz * (fCone.fRmax1 - fCone.fRmin1 + fCone.fRmax2 - fCone.fRmin2);
phi = RNG::Instance().uniform(fCone.fSPhi, fCone.fSPhi + fCone.fDPhi);
cosu = std::cos(phi);
sinu = std::sin(phi);
rRand1 = volumeUtilities::GetRadiusInRing(fCone.fRmin1, fCone.fRmin2);
rRand2 = volumeUtilities::GetRadiusInRing(fCone.fRmax1, fCone.fRmax2);
if ((fCone.fSPhi == 0.) && IsFullPhi()) {
Afive = 0.;
}
chose = RNG::Instance().uniform(0., Aone + Atwo + Athree + Afour + 2. * Afive);
if ((chose >= 0.) && (chose < Aone)) {
if (fCone.fRmin1 != fCone.fRmin2) {
zRand = RNG::Instance().uniform(-1. * fCone.fDz, fCone.fDz);
retPt.Set(rtwo * cosu * (qtwo - zRand), rtwo * sinu * (qtwo - zRand), zRand);
} else {
retPt.Set(fCone.fRmin1 * cosu, fCone.fRmin2 * sinu, RNG::Instance().uniform(-1. * fCone.fDz, fCone.fDz));
}
} else if ((chose >= Aone) && (chose <= Aone + Atwo)) {
if (fCone.fRmax1 != fCone.fRmax2) {
zRand = RNG::Instance().uniform(-1. * fCone.fDz, fCone.fDz);
retPt.Set(rone * cosu * (qone - zRand), rone * sinu * (qone - zRand), zRand);
} else {
retPt.Set(fCone.fRmax1 * cosu, fCone.fRmax2 * sinu, RNG::Instance().uniform(-1. * fCone.fDz, fCone.fDz));
}
} else if ((chose >= Aone + Atwo) && (chose < Aone + Atwo + Athree)) {
retPt.Set(rRand1 * cosu, rRand1 * sinu, -1 * fCone.fDz);
} else if ((chose >= Aone + Atwo + Athree) && (chose < Aone + Atwo + Athree + Afour)) {
retPt.Set(rRand2 * cosu, rRand2 * sinu, fCone.fDz);
} else if ((chose >= Aone + Atwo + Athree + Afour) && (chose < Aone + Atwo + Athree + Afour + Afive)) {
zRand = RNG::Instance().uniform(-1. * fCone.fDz, fCone.fDz);
rRand1 = RNG::Instance().uniform(
fCone.fRmin2 - ((zRand - fCone.fDz) / (2. * fCone.fDz)) * (fCone.fRmin1 - fCone.fRmin2),
fCone.fRmax2 - ((zRand - fCone.fDz) / (2. * fCone.fDz)) * (fCone.fRmax1 - fCone.fRmax2));
retPt.Set(rRand1 * std::cos(fCone.fSPhi), rRand1 * std::sin(fCone.fSPhi), zRand);
} else {
zRand = RNG::Instance().uniform(-1. * fCone.fDz, fCone.fDz);
rRand1 = RNG::Instance().uniform(
fCone.fRmin2 - ((zRand - fCone.fDz) / (2. * fCone.fDz)) * (fCone.fRmin1 - fCone.fRmin2),
fCone.fRmax2 - ((zRand - fCone.fDz) / (2. * fCone.fDz)) * (fCone.fRmax1 - fCone.fRmax2));
retPt.Set(rRand1 * std::cos(fCone.fSPhi + fCone.fDPhi), rRand1 * std::sin(fCone.fSPhi + fCone.fDPhi), zRand);
}
} while (IsOnEdge(retPt));
return retPt;
}
#endif
#if (1) // New Simplified and accurate definition to sample points on the surface of Cone
Vector3D<Precision> UnplacedCone::SamplePointOnSurface() const
{
// implementation taken from UCons; not verified
//
Precision rad = 0.;
Vector3D<Precision> retPt;
Precision zRand = RNG::Instance().uniform(-1. * fCone.fDz, fCone.fDz);
int surfSelection = 0;
if (!fCone.fRmin1 && !fCone.fRmin2) {
if (fCone.fDPhi < vecgeom::kTwoPi)
surfSelection = (int)RNG::Instance().uniform(2., 7.);
else
surfSelection = (int)RNG::Instance().uniform(2., 5.);
} else {
if (fCone.fDPhi < vecgeom::kTwoPi)
surfSelection = (int)RNG::Instance().uniform(1., 7.);
else
surfSelection = (int)RNG::Instance().uniform(1., 5.);
}
if (surfSelection == 1) {
// Generate point on inner Conical surface
rad = GetRadiusOfConeAtPoint<true>(zRand);
retPt.z() = zRand;
}
if (surfSelection == 2) {
// Generate point on outer Conical surface
rad = GetRadiusOfConeAtPoint<false>(zRand);
retPt.z() = zRand;
}
if (surfSelection == 3) {
// Generate point on top Z plane
rad = RNG::Instance().uniform(fCone.fRmin2, fCone.fRmax2);
retPt.z() = fCone.fDz;
}
if (surfSelection == 4) {
// Generate point on bottom Z plane
rad = RNG::Instance().uniform(fCone.fRmin1, fCone.fRmax1);
retPt.z() = -fCone.fDz;
}
if (surfSelection == 5) {
// Generate point on startPhi Surface
Precision rmin = 0.;
if (fCone.fRmin1 || fCone.fRmin2) rmin = GetRadiusOfConeAtPoint<true>(zRand);
Precision rmax = GetRadiusOfConeAtPoint<false>(zRand);
Precision rinter = RNG::Instance().uniform(rmin, rmax);
retPt.Set(rinter * std::cos(fCone.fSPhi), rinter * std::sin(fCone.fSPhi), zRand);
return retPt;
}
if (surfSelection == 6) {
// Generate point on endPhi Surface
Precision rmin = 0.;
if (fCone.fRmin1 || fCone.fRmin2) rmin = GetRadiusOfConeAtPoint<true>(zRand);
Precision rmax = GetRadiusOfConeAtPoint<false>(zRand);
Precision rinter = RNG::Instance().uniform(rmin, rmax);
retPt.Set(rinter * std::cos(fCone.fSPhi + fCone.fDPhi), rinter * std::sin(fCone.fSPhi + fCone.fDPhi), zRand);
return retPt;
}
Precision theta = RNG::Instance().uniform(fCone.fSPhi, fCone.fSPhi + fCone.fDPhi);
retPt.x() = rad * std::cos(theta);
retPt.y() = rad * std::sin(theta);
return retPt;
}
#endif
std::ostream &UnplacedCone::StreamInfo(std::ostream &os) const
{
int oldprc = os.precision(16);
os << "-----------------------------------------------------------\n"
<< " *** Dump for solid - " << GetEntityType() << " ***\n"
<< " ===================================================\n"
<< " Solid type: Cone\n"
<< " Parameters: \n"
<< " Cone Radii Rmin1, Rmax1: " << fCone.fRmin1 << "mm, " << fCone.fRmax1 << "mm\n"
<< " Rmin2, Rmax2: " << fCone.fRmin2 << "mm, " << fCone.fRmax2 << "mm\n"
<< " Half-length Z = " << fCone.fDz << "mm\n";
if (fCone.fDPhi < kTwoPi) {
os << " Wedge starting angles:fCone.fSPhi=" << fCone.fSPhi * kRadToDeg << "deg, "
<< ",fCone.fDPhi=" << fCone.fDPhi * kRadToDeg << "deg\n";
}
os << "-----------------------------------------------------------\n";
os.precision(oldprc);
return os;
}
// this is repetitive code:
template <>
UnplacedCone *Maker<UnplacedCone>::MakeInstance(const Precision &rmin1, const Precision &rmax1, const Precision &rmin2,
const Precision &rmax2, const Precision &dz, const Precision &phimin,
const Precision &deltaphi)
{
// #ifdef GENERATE_CONE_SPECIALIZATIONS
#ifndef VECGEOM_NO_SPECIALIZATION
if (rmin1 <= 0 && rmin2 <= 0) {
if (deltaphi >= 2 * M_PI) {
// NonHollowCone becomes NonHollowTube
if (rmax1 == rmax2) {
return new SUnplacedImplAs<SUnplacedCone<ConeTypes::NonHollowCone>, SUnplacedTube<TubeTypes::NonHollowTube>>(
rmin1, rmax1, dz, phimin, 2 * M_PI);
} else {
return new SUnplacedCone<ConeTypes::NonHollowCone>(rmin1, rmax1, rmin2, rmax2, dz, phimin, 2 * M_PI);
}
}
if (deltaphi == M_PI) {
// NonHollowConeWithPiSector becomes NonHollowTubeWithPiSector
if (rmax1 == rmax2) {
return new SUnplacedImplAs<SUnplacedCone<ConeTypes::NonHollowConeWithPiSector>,
SUnplacedTube<TubeTypes::NonHollowTubeWithPiSector>>(rmin1, rmax1, dz, phimin,
deltaphi);
} else {
return new SUnplacedCone<ConeTypes::NonHollowConeWithPiSector>(rmin1, rmax1, rmin2, rmax2, dz, phimin,
deltaphi); // == M_PI ???
}
}
if (deltaphi < M_PI) {
// NonHollowConeWithSmallerThanPiSector becomes NonHollowTubeWithSmallerThanPiSector
if (rmax1 == rmax2) {
return new SUnplacedImplAs<SUnplacedCone<ConeTypes::NonHollowConeWithSmallerThanPiSector>,
SUnplacedTube<TubeTypes::NonHollowTubeWithSmallerThanPiSector>>(rmin1, rmax1, dz,
phimin, deltaphi);
} else {
return new SUnplacedCone<ConeTypes::NonHollowConeWithSmallerThanPiSector>(rmin1, rmax1, rmin2, rmax2, dz,
phimin, deltaphi);
}
}
if (deltaphi > M_PI) {
// NonHollowConeWithBiggerThanPiSector becomes NonHollowTubeWithBiggerThanPiSector
if (rmax1 == rmax2) {
return new SUnplacedImplAs<SUnplacedCone<ConeTypes::NonHollowConeWithBiggerThanPiSector>,
SUnplacedTube<TubeTypes::NonHollowTubeWithBiggerThanPiSector>>(rmin1, rmax1, dz,
phimin, deltaphi);
} else {
return new SUnplacedCone<ConeTypes::NonHollowConeWithBiggerThanPiSector>(rmin1, rmax1, rmin2, rmax2, dz, phimin,
deltaphi);
}
}
} else if (rmin1 > 0 || rmin2 > 0) {
if (deltaphi >= 2 * M_PI) {
// HollowCone becomes HollowTube
if (rmin1 == rmin2 && rmax1 == rmax2) {
return new SUnplacedImplAs<SUnplacedCone<ConeTypes::HollowCone>, SUnplacedTube<TubeTypes::HollowTube>>(
rmin1, rmax1, dz, phimin, deltaphi);
} else {
return new SUnplacedCone<ConeTypes::HollowCone>(rmin1, rmax1, rmin2, rmax2, dz, phimin, deltaphi);
}
}
// HollowConeWithPiSector becomes HollowTubeWithPiSector
if (deltaphi == M_PI) {
if (rmin1 == rmin2 && rmax1 == rmax2) {
return new SUnplacedImplAs<SUnplacedCone<ConeTypes::HollowConeWithPiSector>,
SUnplacedTube<TubeTypes::HollowTubeWithPiSector>>(rmin1, rmax1, dz, phimin,
deltaphi);
} else {
return new SUnplacedCone<ConeTypes::HollowConeWithPiSector>(rmin1, rmax1, rmin2, rmax2, dz, phimin,
deltaphi); // == M_PI ???
}
}
if (deltaphi < M_PI) {
// HollowConeWithSmallerThanPiSector becomes HollowTubeWithSmallerThanPiSector
if (rmin1 == rmin2 && rmax1 == rmax2) {
return new SUnplacedImplAs<SUnplacedCone<ConeTypes::HollowConeWithSmallerThanPiSector>,
SUnplacedTube<TubeTypes::HollowTubeWithSmallerThanPiSector>>(rmin1, rmax1, dz,
phimin, deltaphi);
} else {
return new SUnplacedCone<ConeTypes::HollowConeWithSmallerThanPiSector>(rmin1, rmax1, rmin2, rmax2, dz, phimin,
deltaphi);
}
}
if (deltaphi > M_PI) {
// HollowConeWithBiggerThanPiSector becomes HollowTubeWithBiggerThanPiSector
if (rmin1 == rmin2 && rmax1 == rmax2) {
return new SUnplacedImplAs<SUnplacedCone<ConeTypes::HollowConeWithBiggerThanPiSector>,
SUnplacedTube<TubeTypes::HollowTubeWithBiggerThanPiSector>>(rmin1, rmax1, dz, phimin,
deltaphi);
} else {
return new SUnplacedCone<ConeTypes::HollowConeWithBiggerThanPiSector>(rmin1, rmax1, rmin2, rmax2, dz, phimin,
deltaphi);
}
}
}
// this should never happen...
return nullptr;
#else
// if no specialization, return the most general case
return new SUnplacedCone<ConeTypes::UniversalCone>(rmin1, rmax1, rmin2, rmax2, dz, phimin, deltaphi);
#endif
}
#ifdef VECGEOM_CUDA_INTERFACE
DevicePtr<cuda::VUnplacedVolume> UnplacedCone::CopyToGpu(DevicePtr<cuda::VUnplacedVolume> const in_gpu_ptr) const
{
return CopyToGpuImpl<SUnplacedCone<ConeTypes::UniversalCone>>(in_gpu_ptr, GetRmin1(), GetRmax1(), GetRmin2(),
GetRmax2(), GetDz(), GetSPhi(), GetDPhi());
}
DevicePtr<cuda::VUnplacedVolume> UnplacedCone::CopyToGpu() const
{
return CopyToGpuImpl<SUnplacedCone<ConeTypes::UniversalCone>>();
}
#endif // VECGEOM_CUDA_INTERFACE
} // namespace VECGEOM_IMPL_NAMESPACE
#ifdef VECCORE_CUDA
namespace cxx {
template size_t DevicePtr<cuda::SUnplacedCone<cuda::ConeTypes::UniversalCone>>::SizeOf();
template void DevicePtr<cuda::SUnplacedCone<cuda::ConeTypes::UniversalCone>>::Construct(
const Precision rmin1, const Precision rmax1, const Precision rmin2, const Precision rmax2, const Precision z,
const Precision sphi, const Precision dphi) const;
} // namespace cxx
#endif
} // End namespace vecgeom
|