1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 300 301 302 303 304 305 306 307 308 309 310 311 312 313 314 315 316 317 318 319 320 321 322 323 324 325 326 327 328 329 330 331 332 333
|
/*
* UnplacedCutTube.cpp
*
* Created on: 03.11.2016
* Author: mgheata
*/
#include "VecGeom/volumes/UnplacedCutTube.h"
#include "VecGeom/volumes/SpecializedCutTube.h"
#ifndef VECCORE_CUDA
#include "VecGeom/base/RNG.h"
//#include <cmath>
#include <iostream>
#endif
#include "VecGeom/volumes/utilities/GenerationUtilities.h"
#include "VecGeom/management/VolumeFactory.h"
namespace vecgeom {
inline namespace VECGEOM_IMPL_NAMESPACE {
VECCORE_ATT_HOST_DEVICE
void UnplacedCutTube::Print() const
{
printf("UnplacedCutTube {rmin=%.2f, rmax=%.2f, z=%.2f, sphi=%.2f, dphi=%.2f bottom=(%f, %f, %f) top=(%f, %f, %f)}",
rmin(), rmax(), z(), sphi(), dphi(), BottomNormal().x(), BottomNormal().y(), BottomNormal().z(),
TopNormal().x(), TopNormal().y(), TopNormal().z());
}
void UnplacedCutTube::Print(std::ostream &os) const
{
os << "UnplacedCutTube { rmin=" << rmin() << ", rmax=" << rmax() << ", z=" << z() << ", sphi=" << sphi()
<< ", dphi=" << dphi() << ", bottom=" << BottomNormal() << ", top=" << TopNormal() << "}\n";
}
Precision UnplacedCutTube::volume() const
{
constexpr Precision onethird = 1. / 3.;
Precision volNocut = z() * dphi() * (rmax() * rmax() - rmin() * rmin());
Precision vDelta = onethird * (rmax() * rmax() * rmax() - rmin() * rmin() * rmin()) *
(((TopNormal().x() / TopNormal().z() - BottomNormal().x() / BottomNormal().z()) *
(fCutTube.fSinPhi2 - fCutTube.fSinPhi1)) -
((TopNormal().y() / TopNormal().z() - BottomNormal().y() / BottomNormal().z()) *
(fCutTube.fCosPhi2 - fCutTube.fCosPhi1)));
return (volNocut - vDelta);
}
Vector3D<Precision> UnplacedCutTube::SamplePointOnSurface() const
{
Precision xVal = 0., yVal = 0., zVal = 0.;
#ifndef VECCORE_CUDA
Precision area[6];
Precision atotal = 0.;
area[0] = GetBottomArea();
area[1] = GetTopArea();
area[2] = GetLateralArea(rmax());
area[3] = GetLateralArea(rmin());
area[4] = GetLateralPhi1Area();
area[5] = GetLateralPhi2Area();
for (int i = 0; i < 6; ++i)
atotal += area[i];
RNG &rng = RNG::Instance();
/* random value to choose surface to place the point */
Precision rand = rng.uniform() * atotal;
int surface = 0;
while (rand > area[surface])
rand -= area[surface], surface++;
// assert (surface < 6);
Precision rVal, phiVal, zmin, zmax;
switch (surface) {
case 0: // bottom
rVal = rng.uniform(rmin(), rmax());
phiVal = rng.uniform(sphi(), sphi() + dphi());
zVal = ZlimitBottom(rVal, phiVal);
break;
case 1: // top
rVal = rng.uniform(rmin(), rmax());
phiVal = rng.uniform(sphi(), sphi() + dphi());
zVal = ZlimitTop(rVal, phiVal);
break;
case 2: // outer
rVal = rmax();
phiVal = rng.uniform(sphi(), sphi() + dphi());
zmin = ZlimitBottom(rVal, phiVal);
zmax = ZlimitTop(rVal, phiVal);
// assert(zmax-zmin > 0);
zVal = zmin + (zmax - zmin) * rng.uniform();
break;
case 3: // inner
rVal = rmin();
phiVal = rng.uniform(sphi(), sphi() + dphi());
zmin = ZlimitBottom(rVal, phiVal);
zmax = ZlimitTop(rVal, phiVal);
// assert(zmax-zmin > 0);
zVal = rng.uniform(zmin, zmax);
break;
case 4: // phi
rVal = rng.uniform(rmin(), rmax());
phiVal = sphi();
zmin = ZlimitBottom(rVal, phiVal);
zmax = ZlimitTop(rVal, phiVal);
// assert(zmax-zmin > 0);
zVal = rng.uniform(zmin, zmax);
break;
case 5: // phi + dphi
rVal = rng.uniform(rmin(), rmax());
phiVal = sphi() + dphi();
zmin = ZlimitBottom(rVal, phiVal);
zmax = ZlimitTop(rVal, phiVal);
// assert(zmax-zmin > 0);
zVal = rng.uniform(zmin, zmax);
break;
}
xVal = rVal * vecCore::math::Cos(phiVal);
yVal = rVal * vecCore::math::Sin(phiVal);
#endif
return Vector3D<Precision>(xVal, yVal, zVal);
}
VECCORE_ATT_HOST_DEVICE
void UnplacedCutTube::Extent(Vector3D<Precision> &aMin, Vector3D<Precision> &aMax) const
{
Precision dztop = rmax() * Sqrt(1. - TopNormal().z() * TopNormal().z()) / TopNormal().z();
Precision dzbottom = -rmax() * vecCore::math::Sqrt(1. - BottomNormal().z() * BottomNormal().z()) / BottomNormal().z();
aMin = Vector3D<Precision>(-rmax(), -rmax(), -z() - dzbottom);
aMax = Vector3D<Precision>(rmax(), rmax(), z() + dztop);
if (dphi() == kTwoPi) return;
// The phi cut can reduce the extent in Z
bool topReduce =
!fCutTube.fTubeStruct.fPhiWedge.Contains(Vector3D<Precision>(-TopNormal().x(), -TopNormal().y(), 0.));
if (topReduce) {
aMax.z() = vecCore::math::Max(ZlimitTop(rmax(), sphi()), ZlimitTop(rmax(), sphi() + dphi()));
aMax.z() = vecCore::math::Max(aMax.z(), ZlimitTop(rmin(), sphi()), ZlimitTop(rmin(), sphi() + dphi()));
}
bool bottomReduce =
!fCutTube.fTubeStruct.fPhiWedge.Contains(Vector3D<Precision>(-BottomNormal().x(), -BottomNormal().y(), 0.));
if (bottomReduce) {
aMin.z() = vecCore::math::Min(ZlimitBottom(rmax(), sphi()), ZlimitBottom(rmax(), sphi() + dphi()));
aMin.z() = vecCore::math::Min(aMin.z(), ZlimitBottom(rmin(), sphi()), ZlimitBottom(rmin(), sphi() + dphi()));
}
// The phi cut can also reduce the extent in x,y
bool xPlusReduce = !fCutTube.fTubeStruct.fPhiWedge.Contains(Vector3D<Precision>(1., 0., 0.));
if (xPlusReduce) {
aMax.x() = vecCore::math::Max(rmax() * fCutTube.fCosPhi1, rmax() * fCutTube.fCosPhi2);
aMax.x() = vecCore::math::Max(aMax.x(), rmin() * fCutTube.fCosPhi1, rmin() * fCutTube.fCosPhi2);
}
bool xMinusReduce = !fCutTube.fTubeStruct.fPhiWedge.Contains(Vector3D<Precision>(-1., 0., 0.));
if (xMinusReduce) {
aMin.x() = vecCore::math::Min(rmax() * fCutTube.fCosPhi1, rmax() * fCutTube.fCosPhi2);
aMin.x() = vecCore::math::Min(aMin.x(), rmin() * fCutTube.fCosPhi1, rmin() * fCutTube.fCosPhi2);
}
bool yPlusReduce = !fCutTube.fTubeStruct.fPhiWedge.Contains(Vector3D<Precision>(0., 1., 0.));
if (yPlusReduce) {
aMax.y() = vecCore::math::Max(rmax() * fCutTube.fSinPhi1, rmax() * fCutTube.fSinPhi2);
aMax.y() = vecCore::math::Max(aMax.y(), rmin() * fCutTube.fSinPhi1, rmin() * fCutTube.fSinPhi2);
}
bool yMinusReduce = !fCutTube.fTubeStruct.fPhiWedge.Contains(Vector3D<Precision>(0., -1., 0.));
if (yMinusReduce) {
aMin.y() = vecCore::math::Min(rmax() * fCutTube.fSinPhi1, rmax() * fCutTube.fSinPhi2);
aMin.y() = vecCore::math::Min(aMin.y(), rmin() * fCutTube.fSinPhi1, rmin() * fCutTube.fSinPhi2);
}
}
VECCORE_ATT_HOST_DEVICE
void UnplacedCutTube::DetectConvexity()
{
// Default safe convexity value
fGlobalConvexity = false;
// Logic to calculate the convexity
if (rmin() == 0.) {
if (dphi() <= kPi || dphi() == kTwoPi) fGlobalConvexity = true;
}
}
VECCORE_ATT_HOST_DEVICE
bool UnplacedCutTube::Normal(Vector3D<Precision> const &point, Vector3D<Precision> &normal) const
{
bool valid;
CutTubeImplementation::NormalKernel<Precision>(fCutTube, point, normal, valid);
return valid;
}
#ifndef VECCORE_CUDA
SolidMesh *UnplacedCutTube::CreateMesh3D(Transformation3D const &trans, size_t nSegments) const
{
SolidMesh *sm = new SolidMesh();
typedef Vector3D<Precision> Vec_t;
sm->ResetMesh(4 * (nSegments + 1), 4 * nSegments + 2);
Vec_t *const vertices = new Vec_t[4 * (nSegments + 1)];
size_t idx = 0;
size_t idx1 = (nSegments + 1);
size_t idx2 = 2 * (nSegments + 1);
size_t idx3 = 3 * (nSegments + 1);
Precision phi = sphi();
Precision phi_step = dphi() / nSegments;
Precision x, y;
for (size_t i = 0; i <= nSegments; i++, phi += phi_step) {
x = rmax() * std::cos(phi);
y = rmax() * std::sin(phi);
vertices[idx++] = Vec_t(x, y, (z() - TopNormal().x() * x - TopNormal().y() * y) / TopNormal().z()); // top outer
vertices[idx1++] =
Vec_t(x, y, (z() - BottomNormal().x() * x - BottomNormal().y() * y) / BottomNormal().z()); // bottom outer
x = rmin() * std::cos(phi);
y = rmin() * std::sin(phi);
vertices[idx2++] = Vec_t(x, y, (z() - TopNormal().x() * x - TopNormal().y() * y) / TopNormal().z()); // top inner
vertices[idx3++] =
Vec_t(x, y, (z() - BottomNormal().x() * x - BottomNormal().y() * y) / BottomNormal().z()); // bottom inner
}
sm->SetVertices(vertices, 4 * (nSegments + 1));
delete[] vertices;
sm->TransformVertices(trans);
for (size_t i = 0, j = nSegments + 1; i < nSegments; i++, j++) {
sm->AddPolygon(4, {i, j, j + 1, i + 1}, true); // OUTER
}
for (size_t i = 0, j = 2 * (nSegments + 1), k = j + nSegments + 1; i < nSegments; i++, j++, k++) {
sm->AddPolygon(4, {j, j + 1, k + 1, k}, true); // inner
}
for (size_t i = 0, j = (nSegments + 1), k = j + 2 * (nSegments + 1); i < nSegments; i++, j++, k++) {
sm->AddPolygon(4, {j, k, k + 1, j + 1}, true); // lower
}
for (size_t i = 0, j = 0, k = j + 2 * (nSegments + 1); i < nSegments; i++, j++, k++) {
sm->AddPolygon(4, {j, j + 1, k + 1, k}, true); // Upper
}
if (dphi() != kTwoPi) {
sm->AddPolygon(4, {0, 2 * (nSegments + 1), 3 * (nSegments + 1), nSegments + 1}, true);
sm->AddPolygon(
4, {nSegments, nSegments + nSegments + 1, nSegments + 3 * (nSegments + 1), nSegments + 2 * (nSegments + 1)},
true);
}
return sm;
}
#endif
template <TranslationCode trans_code, RotationCode rot_code>
VECCORE_ATT_DEVICE
VPlacedVolume *UnplacedCutTube::Create(LogicalVolume const *const logical_volume,
Transformation3D const *const transformation,
#ifdef VECCORE_CUDA
const int id, const int copy_no, const int child_id,
#endif
VPlacedVolume *const placement)
{
if (placement) {
new (placement) SpecializedCutTube<trans_code, rot_code>(logical_volume, transformation
#ifdef VECCORE_CUDA
,
id, copy_no, child_id
#endif
);
return placement;
}
return new SpecializedCutTube<trans_code, rot_code>(logical_volume, transformation
#ifdef VECCORE_CUDA
,
id, copy_no, child_id
#endif
);
}
VECCORE_ATT_DEVICE
VPlacedVolume *UnplacedCutTube::SpecializedVolume(LogicalVolume const *const volume,
Transformation3D const *const transformation,
const TranslationCode trans_code, const RotationCode rot_code,
#ifdef VECCORE_CUDA
const int id, const int copy_no, const int child_id,
#endif
VPlacedVolume *const placement) const
{
return VolumeFactory::CreateByTransformation<UnplacedCutTube>(volume, transformation, trans_code, rot_code,
#ifdef VECCORE_CUDA
id, copy_no, child_id,
#endif
placement);
}
#ifdef VECGEOM_CUDA_INTERFACE
DevicePtr<cuda::VUnplacedVolume> UnplacedCutTube::CopyToGpu(DevicePtr<cuda::VUnplacedVolume> const in_gpu_ptr) const
{
return CopyToGpuImpl<UnplacedCutTube>(in_gpu_ptr, rmin(), rmax(), z(), sphi(), dphi(), BottomNormal().x(),
BottomNormal().y(), BottomNormal().z(), TopNormal().x(), TopNormal().y(),
TopNormal().z());
}
DevicePtr<cuda::VUnplacedVolume> UnplacedCutTube::CopyToGpu() const
{
return CopyToGpuImpl<UnplacedCutTube>();
}
#endif // VECGEOM_CUDA_INTERFACE
} // namespace VECGEOM_IMPL_NAMESPACE
#ifdef VECCORE_CUDA
namespace cxx {
template size_t DevicePtr<cuda::UnplacedCutTube>::SizeOf();
template void DevicePtr<cuda::UnplacedCutTube>::Construct(const Precision rmin, const Precision rmax, const Precision z,
const Precision sphi, const Precision dphi,
const Precision bx, const Precision by, const Precision bz,
const Precision tx, const Precision ty,
const Precision tz) const;
} // namespace cxx
#endif
} // namespace vecgeom
|