File: UnplacedGenTrap.cpp

package info (click to toggle)
vecgeom 1.2.8%2Bdfsg-2
  • links: PTS, VCS
  • area: main
  • in suites: sid, trixie
  • size: 24,016 kB
  • sloc: cpp: 88,803; ansic: 6,888; python: 1,035; sh: 582; sql: 538; makefile: 23
file content (380 lines) | stat: -rw-r--r-- 15,303 bytes parent folder | download | duplicates (2)
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
/// \file UnplacedGenTrap.cpp
/// \author: swenzel
///  Modified and completed: mihaela.gheata@cern.ch

#include "VecGeom/volumes/UnplacedGenTrap.h"
#include <ostream>
#include <iomanip>
#include <iostream>
#include "VecGeom/management/VolumeFactory.h"
#include "VecGeom/volumes/SpecializedGenTrap.h"
#ifndef VECCORE_CUDA
#include "VecGeom/base/RNG.h"
#endif

namespace vecgeom {
inline namespace VECGEOM_IMPL_NAMESPACE {

//______________________________________________________________________________
Vector3D<Precision> UnplacedGenTrap::SamplePointOnSurface() const
{
  // Generate randomly a point on one of the surfaces
  // Select randomly a surface
  Vertex_t point;
#ifndef VECCORE_CUDA // CUDA does not support RNG:: for now
  // Avoid using the bounding box due to possible point-like top/bottom
  // which would be impossible to sample
  bool degenerate[6] = {false};
  int nvertices      = 4; // by default 4 vertices on top/bottom faces
  // bottom
  for (unsigned int j = 0; j < 4; ++j) {
    if ((Abs(fGenTrap.fDeltaX[j]) < kTolerance) && (Abs(fGenTrap.fDeltaY[j]) < kTolerance)) nvertices--;
  }
  if (nvertices < 3) degenerate[4] = true;
  nvertices = 4;
  // top
  for (unsigned int j = 0; j < 4; ++j) {
    if ((Abs(fGenTrap.fDeltaX[j + 4]) < kTolerance) && (Abs(fGenTrap.fDeltaY[j + 4]) < kTolerance)) nvertices--;
  }
  if (nvertices < 3) degenerate[5] = true;
  for (unsigned int j = 0; j < 4; ++j) {
    if ((Abs(fGenTrap.fDeltaX[j]) < kTolerance) && (Abs(fGenTrap.fDeltaY[j]) < kTolerance) &&
        (Abs(fGenTrap.fDeltaX[j + 4]) < kTolerance) && (Abs(fGenTrap.fDeltaY[j + 4]) < kTolerance))
      degenerate[j] = true;
  }
  // Shoot on non-degenerate surface
  unsigned int i = 0;
  while (1) {
    i = int(RNG::Instance().uniform(0., 6.));
    if (!degenerate[i]) break;
  }
  // Generate point on lateral surface
  if (i < 4) {
    unsigned int j = (i + 1) % 4;
    Vertex_t vi(fGenTrap.fVertices[i + 4] - fGenTrap.fVertices[i]);
    Vertex_t vj(fGenTrap.fVertices[j + 4] - fGenTrap.fVertices[j]);
    Vertex_t h0(fGenTrap.fVertices[j] - fGenTrap.fVertices[i]);
    // Random height
    Precision fz = RNG::Instance().uniform(0., 1.);
    // Random fraction along the horizontal hi at selected z
    Precision f = RNG::Instance().uniform(0., 1.);
    point       = fGenTrap.fVertices[i] + fz * vi + f * h0 + f * fz * (vj - vi);
    return point;
  }
  i -= 4; // now 0 (bottom surface) or 1 (top surface)
  // Select z position
  Precision cross, x, y;
  Precision z = (2. * i - 1.) * fGenTrap.fDz;
  i *= 4; // now matching the index of the start vertex
          // Compute min/max  in x and y for the selected surface

  // Consider degenerate cases (if we would like to generate points also on these)
  /*
    if (nvertices <= 1) {
      // A single vertex. Generate the point identical to the vertex
      point.Set(fVertices[i].x(), fVertices[i].y(), z);
      return point;
    } else if (nvertices == 2) {
      for (int j = i; j< i + 4 ; ++j) {
        if ( (Abs(fDeltaX[j]) < kTolerance) && (Abs(fDeltaY[j]) < kTolerance) ) continue;
        // We have found two different points. Generate a random x:
        x = RNG::Instance().uniform(fVertices[j].x(), fVertices[j+1].x());
        // Calculate corresponding y
        if (Abs(fDeltaX[j]) < kTolerance)
          y = RNG::Instance().uniform(fVertices[j].y(), fVertices[j+1].y());
        else
          y = fVertices[j].y() + (x - fVertices[j].x())*fDeltaY[j]/fDeltaX[j];
        point.Set(x,y,z);
        return point;
      }
    }
  */
  // Generate point on top/bottom surfaces
  Precision xmin = fGenTrap.fVertices[i].x();
  Precision xmax = xmin;
  Precision ymin = fGenTrap.fVertices[i].y();
  Precision ymax = ymin;
  for (unsigned int j = i + 1; j < i + 4; ++j) {
    if (fGenTrap.fVertices[j].x() < xmin) xmin = fGenTrap.fVertices[j].x();
    if (fGenTrap.fVertices[j].x() > xmax) xmax = fGenTrap.fVertices[j].x();
    if (fGenTrap.fVertices[j].y() < ymin) ymin = fGenTrap.fVertices[j].y();
    if (fGenTrap.fVertices[j].y() > ymax) ymax = fGenTrap.fVertices[j].y();
  }
  bool inside = false;
  while (!inside) {
    inside = true;
    // Now generate randomly between (xmin,xmax) and (ymin,ymax)
    x = RNG::Instance().uniform(xmin, xmax);
    y = RNG::Instance().uniform(ymin, ymax);
    // Now make sure the point (x,y) is on the selected surface. Use same
    // algorithm as for Contains
    for (unsigned int j = i; j < i + 4; ++j) {
      unsigned int k = i + (j + 1) % 4;
      Precision dx   = fGenTrap.fVertices[k].x() - fGenTrap.fVertices[j].x();
      Precision dy   = fGenTrap.fVertices[k].y() - fGenTrap.fVertices[j].y();
      cross          = (x - fGenTrap.fVertices[j].x()) * dy - (y - fGenTrap.fVertices[j].y()) * dx;
      if (cross < -kTolerance) {
        inside = false;
        break;
      }
    }
  }
  // Set point coordinates
  point.Set(x, y, z);
#endif // VECCORE_CUDA
  return point;
}

//______________________________________________________________________________
Precision UnplacedGenTrap::SurfaceArea() const
{
  // Computes analytically the surface area of the trapezoid. The formula is
  // computed by integrating along Z axis the sum of areas for infinitezimal
  // trapezoids of each lateral surface. Since this can be twisted, the area
  // of each such mini-surface is computed separately for the top/bottom parts
  // separated by the diagonal.
  //    vi, vj = vectors bottom->top for each lateral surface // j=(i+1)%4
  //    hi0 = vector connecting consecutive bottom vertices
  Vertex_t vi, vj, hi0, vres;
  Precision surfTop     = 0.;
  Precision surfBottom  = 0.;
  Precision surfLateral = 0;
  for (int i = 0; i < 4; ++i) {
    int j = (i + 1) % 4;
    surfBottom +=
        0.5 * (fGenTrap.fVerticesX[i] * fGenTrap.fVerticesY[j] - fGenTrap.fVerticesX[j] * fGenTrap.fVerticesY[i]);
    surfTop += 0.5 * (fGenTrap.fVerticesX[i + 4] * fGenTrap.fVerticesY[j + 4] -
                      fGenTrap.fVerticesX[j + 4] * fGenTrap.fVerticesY[i + 4]);
    vi.Set(fGenTrap.fVerticesX[i + 4] - fGenTrap.fVerticesX[i], fGenTrap.fVerticesY[i + 4] - fGenTrap.fVerticesY[i],
           2 * fGenTrap.fDz);
    vj.Set(fGenTrap.fVerticesX[j + 4] - fGenTrap.fVerticesX[j], fGenTrap.fVerticesY[j + 4] - fGenTrap.fVerticesY[j],
           2 * fGenTrap.fDz);
    hi0.Set(fGenTrap.fVerticesX[j] - fGenTrap.fVerticesX[i], fGenTrap.fVerticesY[j] - fGenTrap.fVerticesY[i], 0.);
    vres = 0.5 * (Vertex_t::Cross(vi + vj, hi0) + Vertex_t::Cross(vi, vj));
    surfLateral += vres.Mag();
  }
  return (Abs(surfTop) + Abs(surfBottom) + surfLateral);
}

//______________________________________________________________________________
VECCORE_ATT_HOST_DEVICE
bool UnplacedGenTrap::Normal(Vector3D<Precision> const &point, Vector3D<Precision> &normal) const
{
  bool valid;
  GenTrapImplementation::NormalKernel<Precision>(fGenTrap, point, normal, valid);
  return valid;
}

//______________________________________________________________________________
Precision UnplacedGenTrap::volume() const
{
  // Computes analytically the capacity of the trapezoid
  int i, j;
  Precision capacity = 0;
  for (i = 0; i < 4; i++) {
    j = (i + 1) % 4;
    capacity +=
        0.25 * fGenTrap.fDz *
        ((fGenTrap.fVerticesX[i] + fGenTrap.fVerticesX[i + 4]) * (fGenTrap.fVerticesY[j] + fGenTrap.fVerticesY[j + 4]) -
         (fGenTrap.fVerticesX[j] + fGenTrap.fVerticesX[j + 4]) * (fGenTrap.fVerticesY[i] + fGenTrap.fVerticesY[i + 4]) +
         (1. / 3) * ((fGenTrap.fVerticesX[i + 4] - fGenTrap.fVerticesX[i]) *
                         (fGenTrap.fVerticesY[j + 4] - fGenTrap.fVerticesY[j]) -
                     (fGenTrap.fVerticesX[j] - fGenTrap.fVerticesX[j + 4]) *
                         (fGenTrap.fVerticesY[i] - fGenTrap.fVerticesY[i + 4])));
  }
  return Abs(capacity);
}

//______________________________________________________________________________
void UnplacedGenTrap::Print(std::ostream &os) const
{
  int oldprc = os.precision(16);
  os << "--------------------------------------------------------\n"
     //     << "    *** Dump for solid - " << GetName() << " *** \n"
     << "    =================================================== \n"
     << " Solid type: UnplacedGenTrap \n"
     << "   half length Z: " << fGenTrap.fDz << " mm \n"
     << "   list of vertices:\n";

  for (int i = 0; i < 8; ++i) {
    os << std::setw(5) << "#" << i << "   vx = " << fGenTrap.fVertices[i].x() << " mm"
       << "   vy = " << fGenTrap.fVertices[i].y() << " mm\n";
  }
  os << "   planar: " << IsPlanar() << std::endl;
  os.precision(oldprc);
}

//______________________________________________________________________________
std::ostream &UnplacedGenTrap::StreamInfo(std::ostream &os) const
{
  int oldprc = os.precision(16);
  os << "--------------------------------------------------------\n"
     //     << "    *** Dump for solid - " << GetName() << " *** \n"
     << "    =================================================== \n"
     << " Solid type: UnplacedGenTrap \n"
     << "   half length Z: " << fGenTrap.fDz << " mm \n"
     << "   list of vertices:\n";

  for (int i = 0; i < 8; ++i) {
    os << std::setw(5) << "#" << i << "   vx = " << fGenTrap.fVertices[i].x() << " mm"
       << "   vy = " << fGenTrap.fVertices[i].y() << " mm\n";
  }
  os << "   planar: " << IsPlanar() << std::endl;
  os.precision(oldprc);
  return os;
}

#ifndef VECCORE_CUDA
SolidMesh *UnplacedGenTrap::CreateMesh3D(Transformation3D const &trans, size_t nSegments) const
{

  SolidMesh *sm = new SolidMesh();
  if (IsPlanar()) {
    sm->SetVertices(GetVertices(), 8);
    sm->TransformVertices(trans);

    sm->AddPolygon(4, {0, 1, 2, 3}, true);
    sm->AddPolygon(4, {4, 7, 6, 5}, true);
    sm->AddPolygon(4, {0, 4, 5, 1}, true);
    sm->AddPolygon(4, {1, 5, 6, 2}, true);
    sm->AddPolygon(4, {2, 6, 7, 3}, true);
    sm->AddPolygon(4, {3, 7, 4, 0}, true);
  } else {
    typedef Vector3D<Precision> Vec_t;
    Vec_t *const vertices = new Vec_t[4 * (nSegments + 1)];

    size_t idx = 0;
    for (int j = 0; j < 4; j++) {

      Vertex_t v1 = GetVertex(j);
      Vertex_t v3 = GetVertex(j + 4);
      Vec_t step  = (v3 - v1) / nSegments;

      for (size_t i = 0; i <= nSegments; i++) {
        v1 += step;
        vertices[idx++] = v1;
      }
    }

    sm->SetVertices(vertices, 4 * (nSegments + 1));
    delete[] vertices;
    sm->TransformVertices(trans);

    for (size_t s0 = 0, s1 = nSegments + 1, s2 = 2 * s1, s3 = 3 * s1; s0 < nSegments; s0++, s1++, s2++, s3++) {
      sm->AddPolygon(4, {s0, s0 + 1, s1 + 1, s1}, true); // lateral surface 0
      sm->AddPolygon(4, {s1, s1 + 1, s2 + 1, s2}, true); // lateral surface 1
      sm->AddPolygon(4, {s2, s2 + 1, s3 + 1, s3}, true); // lateral surface 2
      sm->AddPolygon(4, {s3, s3 + 1, s0 + 1, s0}, true); // lateral surface 3
    }
    sm->AddPolygon(4, {0, nSegments + 1, 2 * (nSegments + 1), 3 * (nSegments + 1)}, true);
    sm->AddPolygon(
        4, {3 * (nSegments + 1) + nSegments, 2 * (nSegments + 1) + nSegments, nSegments + 1 + nSegments, 0 + nSegments},
        true);
  }

  return sm;
}
#endif

//______________________________________________________________________________
VECCORE_ATT_DEVICE
VPlacedVolume *UnplacedGenTrap::SpecializedVolume(LogicalVolume const *const volume,
                                                  Transformation3D const *const transformation,
                                                  const TranslationCode trans_code, const RotationCode rot_code,
#ifdef VECCORE_CUDA
                                                  const int id, const int copy_no, const int child_id,
#endif
                                                  VPlacedVolume *const placement) const
{
  return VolumeFactory::CreateByTransformation<UnplacedGenTrap>(volume, transformation, trans_code, rot_code,
#ifdef VECCORE_CUDA
                                                                id, copy_no, child_id,
#endif
                                                                placement);
}

//______________________________________________________________________________
template <TranslationCode trans_code, RotationCode rot_code>
VECCORE_ATT_DEVICE
VPlacedVolume *UnplacedGenTrap::Create(LogicalVolume const *const logical_volume,
                                       Transformation3D const *const transformation,
#ifdef VECCORE_CUDA
                                       const int id, const int copy_no, const int child_id,
#endif
                                       VPlacedVolume *const placement)
{
  if (placement) {
    new (placement) SpecializedGenTrap<trans_code, rot_code>(logical_volume, transformation
#ifdef VECCORE_CUDA
                                                             ,
                                                             id, copy_no, child_id
#endif
    );
    return placement;
  }
  return new SpecializedGenTrap<trans_code, rot_code>(logical_volume, transformation
#ifdef VECCORE_CUDA
                                                      ,
                                                      id, copy_no, child_id
#endif
  );
}

//______________________________________________________________________________
/*
VECCORE_ATT_DEVICE
VPlacedVolume *UnplacedGenTrap::CreateSpecializedVolume(LogicalVolume const *const volume,
                                                        Transformation3D const *const transformation,
                                                        const TranslationCode trans_code, const RotationCode rot_code,
#ifdef VECCORE_CUDA
                                                        const int id,
#endif
                                                        VPlacedVolume *const placement) {
  return VolumeFactory::CreateByTransformation<UnplacedGenTrap>(volume, transformation, trans_code, rot_code,
#ifdef VECCORE_CUDA
                                                                id,
#endif
                                                                placement);
}
*/
#ifdef VECGEOM_CUDA_INTERFACE

//______________________________________________________________________________
DevicePtr<cuda::VUnplacedVolume> UnplacedGenTrap::CopyToGpu(DevicePtr<cuda::VUnplacedVolume> const in_gpu_ptr) const
{
  // Copy vertices on GPU, then create the object
  Precision *xv_gpu_ptr = AllocateOnGpu<Precision>(8 * sizeof(Precision));
  Precision *yv_gpu_ptr = AllocateOnGpu<Precision>(8 * sizeof(Precision));

  vecgeom::CopyToGpu(fGenTrap.fVerticesX, xv_gpu_ptr, 8 * sizeof(Precision));
  vecgeom::CopyToGpu(fGenTrap.fVerticesY, yv_gpu_ptr, 8 * sizeof(Precision));

  DevicePtr<cuda::VUnplacedVolume> gpugentrap =
      CopyToGpuImpl<UnplacedGenTrap>(in_gpu_ptr, xv_gpu_ptr, yv_gpu_ptr, GetDZ());
  FreeFromGpu(xv_gpu_ptr);
  FreeFromGpu(yv_gpu_ptr);
  return gpugentrap;
}

//______________________________________________________________________________
DevicePtr<cuda::VUnplacedVolume> UnplacedGenTrap::CopyToGpu() const
{
  return CopyToGpuImpl<UnplacedGenTrap>();
}

#endif // VECGEOM_CUDA_INTERFACE

} // namespace VECGEOM_IMPL_NAMESPACE

#ifdef VECCORE_CUDA

namespace cxx {

template size_t DevicePtr<cuda::UnplacedGenTrap>::SizeOf();
template void DevicePtr<cuda::UnplacedGenTrap>::Construct(Precision *, Precision *, Precision) const;

} // namespace cxx

#endif

} // namespace vecgeom