1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287
|
// This file is part of VecGeom and is distributed under the
// conditions in the file LICENSE.txt in the top directory.
// For the full list of authors see CONTRIBUTORS.txt and `git log`.
/// @file source/UnplacedParaboloid.cpp
/// @author Marilena Bandieramonte (marilena.bandieramonte@cern.ch)
#include "VecGeom/volumes/UnplacedParaboloid.h"
#include "VecGeom/management/VolumeFactory.h"
#include "VecGeom/volumes/SpecializedParaboloid.h"
#include "VecGeom/base/RNG.h"
#include <stdio.h>
namespace vecgeom {
inline namespace VECGEOM_IMPL_NAMESPACE {
VECCORE_ATT_HOST_DEVICE
UnplacedParaboloid::UnplacedParaboloid() : fCubicVolume(0), fSurfaceArea(0)
{
// default constructor
fGlobalConvexity = true;
ComputeBBox();
}
VECCORE_ATT_HOST_DEVICE
UnplacedParaboloid::UnplacedParaboloid(const Precision rlo, const Precision rhi, const Precision dz)
: fParaboloid(rlo, rhi, dz)
{
CalcCapacity();
CalcSurfaceArea();
fGlobalConvexity = true;
ComputeBBox();
}
VECCORE_ATT_HOST_DEVICE
void UnplacedParaboloid::CalcCapacity()
{
fCubicVolume = kPi * fParaboloid.fDz * (fParaboloid.fRlo * fParaboloid.fRlo + fParaboloid.fRhi * fParaboloid.fRhi);
}
VECCORE_ATT_HOST_DEVICE
void UnplacedParaboloid::CalcSurfaceArea()
{
Precision h1, h2, A1, A2;
h1 = -fParaboloid.fB + fParaboloid.fDz;
h2 = -fParaboloid.fB - fParaboloid.fDz;
// Calculate surface area for the paraboloid full paraboloid
// cutoff at z = dz (not the cutoff area though).
A1 = fParaboloid.fRhi2 + 4 * h1 * h1;
A1 *= (A1 * A1); // Sets A1 = A1^3
A1 = kPi * fParaboloid.fRhi / 6 / (h1 * h1) * (sqrt(A1) - fParaboloid.fRhi2 * fParaboloid.fRhi);
// Calculate surface area for the paraboloid full paraboloid
// cutoff at z = -dz (not the cutoff area though).
A2 = fParaboloid.fRlo2 + 4 * (h2 * h2);
A2 *= (A2 * A2); // Sets A2 = A2^3
if (h2 != 0)
A2 = kPi * fParaboloid.fRlo / 6 / (h2 * h2) * (Sqrt(A2) - fParaboloid.fRlo2 * fParaboloid.fRlo);
else
A2 = 0.;
fSurfaceArea = (A1 - A2 + (fParaboloid.fRlo2 + fParaboloid.fRhi2) * kPi);
}
VECCORE_ATT_HOST_DEVICE
void UnplacedParaboloid::Extent(Vector3D<Precision> &aMin, Vector3D<Precision> &aMax) const
{
aMin.x() = -fParaboloid.fDx;
aMax.x() = fParaboloid.fDx;
aMin.y() = -fParaboloid.fDy;
aMax.y() = fParaboloid.fDy;
aMin.z() = -fParaboloid.fDz;
aMax.z() = fParaboloid.fDz;
}
Vector3D<Precision> UnplacedParaboloid::SamplePointOnSurface() const
{
// G4 implementation
Precision A = SurfaceArea();
Precision z = RNG::Instance().uniform(0., 1.);
Precision phi = RNG::Instance().uniform(0., 2 * kPi);
if (kPi * (fParaboloid.fRlo2 + fParaboloid.fRhi2) / A >= z) {
Precision rho;
// points on the cutting circle surface at -dZ
if (kPi * fParaboloid.fRlo2 / A > z) {
rho = fParaboloid.fRlo * Sqrt(RNG::Instance().uniform(0., 1.));
return Vector3D<Precision>(rho * cos(phi), rho * sin(phi), -fParaboloid.fDz);
}
// points on the cutting circle surface at dZ
else {
rho = fParaboloid.fRhi * Sqrt(RNG::Instance().uniform(0., 1.));
return Vector3D<Precision>(rho * cos(phi), rho * sin(phi), fParaboloid.fDz);
}
}
// points on the paraboloid surface
else {
z = RNG::Instance().uniform(0., 1.) * 2 * fParaboloid.fDz - fParaboloid.fDz;
return Vector3D<Precision>(Sqrt(z * fParaboloid.fInvA - fParaboloid.fB * fParaboloid.fInvA) * cos(phi),
Sqrt(z * fParaboloid.fInvA - fParaboloid.fB * fParaboloid.fInvA) * sin(phi), z);
}
}
std::string UnplacedParaboloid::GetEntityType() const
{
return "Paraboloid\n";
}
/*
VECCORE_ATT_HOST_DEVICE
void UnplacedParaboloid::GetParametersList(int, Precision *aArray) const
{
aArray[0] = GetRadius();
}
*/
VECCORE_ATT_HOST_DEVICE
UnplacedParaboloid *UnplacedParaboloid::Clone() const
{
return new UnplacedParaboloid(fParaboloid.fRlo, fParaboloid.fRhi, fParaboloid.fDz);
}
// VECCORE_ATT_HOST_DEVICE
std::ostream &UnplacedParaboloid::StreamInfo(std::ostream &os) const
// Definition taken from UParaboloid
{
int oldprc = os.precision(16);
os << "-----------------------------------------------------------\n"
<< " *** Dump for solid - " << GetEntityType() << " ***\n"
<< " ===================================================\n"
<< " Solid type: Paraboloid\n"
<< " Parameters: \n"
<< " Paraboloid Radii Rlo=" << fParaboloid.fRlo << "mm, Rhi" << fParaboloid.fRhi << "mm \n"
<< " Half-length Dz = " << fParaboloid.fDz << "mm\n";
os << "-----------------------------------------------------------\n";
os.precision(oldprc);
return os;
}
VECCORE_ATT_HOST_DEVICE
void UnplacedParaboloid::Print() const
{
// printf("UnplacedParaboloid {%.2f}", GetRadius());
printf("UnplacedParaboloid {%.2f, %.2f, %.2f, %.2f, %.2f}", GetRlo(), GetRhi(), GetDz(), GetA(), GetB());
}
void UnplacedParaboloid::Print(std::ostream &os) const
{
// os << "UnplacedParaboloid {" << GetRadius() << "}";
os << "UnplacedParaboloid {" << GetRlo() << ", " << GetRhi() << ", " << GetDz() << ", " << GetA() << ", " << GetB();
}
#ifndef VECCORE_CUDA
SolidMesh *UnplacedParaboloid::CreateMesh3D(Transformation3D const &trans, size_t nSegments) const
{
typedef Vector3D<Precision> Vec_t;
SolidMesh *sm = new SolidMesh();
size_t nMeshVertices = (nSegments + 1) * (nSegments + 1);
Vec_t *vertices = new Vec_t[nMeshVertices];
sm->ResetMesh(nMeshVertices, nSegments * nSegments + 2);
Precision phi_step = 2 * M_PI / nSegments;
Precision phi = 0.;
Precision z_step = 2 * GetDz() / nSegments;
Precision z = -GetDz();
size_t idx = 0;
for (size_t i = 0; i <= nSegments; ++i, z += z_step, phi = 0.) {
Precision intermediate = std::sqrt(std::abs((z - GetB()) / GetA()));
for (size_t j = 0; j <= nSegments; ++j, phi += phi_step) {
vertices[idx++] = Vec_t(intermediate * std::cos(phi), intermediate * std::sin(phi), z);
}
}
sm->SetVertices(vertices, nMeshVertices);
delete[] vertices;
sm->TransformVertices(trans);
for (size_t j = 0, k = 0; j < nSegments; j++, k++) {
for (size_t i = 0, l = k + nSegments + 1; i < nSegments; i++, k++, l++) {
sm->AddPolygon(4, {l + 1, l, k, k + 1}, true);
}
}
Utils3D::vector_t<size_t> indices;
indices.reserve(nSegments);
if (GetRlo() != 0.) {
// lower surface
for (size_t i = nSegments; i > 0; i--) {
indices.push_back(i - 1);
}
sm->AddPolygon(nSegments, indices, true);
}
if (GetRhi() != 0.) {
// upper surface
indices.clear();
for (size_t i = 0, k = (nSegments + 1) * (nSegments); i < nSegments; i++, k++) {
indices.push_back(k);
}
sm->AddPolygon(nSegments, indices, true);
}
return sm;
}
#endif
#ifndef VECCORE_CUDA
template <TranslationCode trans_code, RotationCode rot_code>
VPlacedVolume *UnplacedParaboloid::Create(LogicalVolume const *const logical_volume,
Transformation3D const *const transformation, VPlacedVolume *const placement)
{
if (placement) {
new (placement) SpecializedParaboloid<trans_code, rot_code>(logical_volume, transformation);
return placement;
}
return new SpecializedParaboloid<trans_code, rot_code>(logical_volume, transformation);
}
VPlacedVolume *UnplacedParaboloid::SpecializedVolume(LogicalVolume const *const volume,
Transformation3D const *const transformation,
const TranslationCode trans_code, const RotationCode rot_code,
VPlacedVolume *const placement) const
{
return VolumeFactory::CreateByTransformation<UnplacedParaboloid>(volume, transformation, trans_code, rot_code,
placement);
}
#else
template <TranslationCode trans_code, RotationCode rot_code>
VECCORE_ATT_DEVICE
VPlacedVolume *UnplacedParaboloid::Create(LogicalVolume const *const logical_volume,
Transformation3D const *const transformation, const int id, const int copy_no,
const int child_id, VPlacedVolume *const placement)
{
if (placement) {
new (placement) SpecializedParaboloid<trans_code, rot_code>(logical_volume, transformation, id, copy_no, child_id);
return placement;
}
return new SpecializedParaboloid<trans_code, rot_code>(logical_volume, transformation, id, copy_no, child_id);
}
VECCORE_ATT_DEVICE
VPlacedVolume *UnplacedParaboloid::SpecializedVolume(LogicalVolume const *const volume,
Transformation3D const *const transformation,
const TranslationCode trans_code, const RotationCode rot_code,
const int id, const int copy_no, const int child_id,
VPlacedVolume *const placement) const
{
return VolumeFactory::CreateByTransformation<UnplacedParaboloid>(volume, transformation, trans_code, rot_code, id,
copy_no, child_id, placement);
}
#endif
#ifdef VECGEOM_CUDA_INTERFACE
DevicePtr<cuda::VUnplacedVolume> UnplacedParaboloid::CopyToGpu(DevicePtr<cuda::VUnplacedVolume> const in_gpu_ptr) const
{
return CopyToGpuImpl<UnplacedParaboloid>(in_gpu_ptr, GetRlo(), GetRhi(), GetDz());
}
DevicePtr<cuda::VUnplacedVolume> UnplacedParaboloid::CopyToGpu() const
{
return CopyToGpuImpl<UnplacedParaboloid>();
}
#endif // VECGEOM_CUDA_INTERFACE
} // namespace VECGEOM_IMPL_NAMESPACE
#ifdef VECCORE_CUDA
namespace cxx {
template size_t DevicePtr<cuda::UnplacedParaboloid>::SizeOf();
template void DevicePtr<cuda::UnplacedParaboloid>::Construct(const Precision rlo, const Precision rhi,
const Precision dz) const;
} // namespace cxx
#endif
} // namespace vecgeom
|