1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 300 301 302 303 304 305 306 307 308 309 310 311 312 313 314 315 316 317 318 319 320 321 322 323 324 325 326 327 328 329 330 331 332 333 334 335 336 337 338 339 340 341 342 343 344 345 346 347 348 349 350 351 352 353 354 355 356 357 358 359 360 361 362 363 364 365 366 367 368 369 370 371 372 373 374 375 376 377 378 379 380 381 382 383 384 385 386 387 388 389 390 391 392 393 394 395 396 397 398 399 400 401 402 403 404 405 406 407 408 409 410 411 412 413 414 415 416 417 418 419 420 421 422 423 424 425 426 427 428 429 430 431 432 433 434 435 436 437 438 439 440 441 442 443 444 445 446 447 448 449 450 451 452 453 454 455 456 457 458 459 460 461 462 463 464 465 466 467 468 469 470 471 472 473 474 475 476 477 478 479 480 481 482 483 484 485 486 487 488 489 490 491 492 493 494 495 496 497 498 499 500 501 502 503 504 505 506 507 508 509 510 511 512 513 514 515 516 517 518 519 520 521 522 523 524 525 526 527 528 529 530 531 532 533 534 535 536 537 538 539 540 541 542 543 544 545 546 547 548 549 550 551 552 553 554 555 556 557 558 559 560 561 562 563 564 565 566 567 568 569 570 571 572 573 574 575 576 577 578 579 580 581 582 583 584 585 586 587 588 589 590 591 592 593 594 595 596 597 598 599 600 601 602 603 604 605 606 607 608 609 610 611 612 613 614 615 616 617 618 619 620 621 622 623 624 625 626 627 628 629 630 631 632 633 634 635 636 637 638 639 640 641 642 643 644 645 646 647 648 649 650 651 652 653 654 655 656 657 658 659 660 661 662 663 664 665 666 667 668 669 670 671 672 673 674 675 676 677 678 679 680 681 682 683 684 685 686 687 688 689 690 691 692 693 694 695 696 697 698 699 700 701 702 703 704
|
/// \file UnplacedPolyhedron.cpp
/// \author Johannes de Fine Licht (johannes.definelicht@cern.ch)
#include "VecGeom/base/Global.h"
#include "VecGeom/volumes/UnplacedPolyhedron.h"
#include "VecGeom/volumes/PlacedPolyhedron.h"
#include "VecGeom/volumes/SpecializedPolyhedron.h"
#include "VecGeom/volumes/utilities/GenerationUtilities.h"
#include "VecGeom/management/VolumeFactory.h"
#include <cmath>
#include <memory>
namespace vecgeom {
inline namespace VECGEOM_IMPL_NAMESPACE {
using namespace vecgeom::Polyhedron;
UnplacedPolyhedron::UnplacedPolyhedron(const int sideCount, const int zPlaneCount, Precision const zPlanes[],
Precision const rMin[], Precision const rMax[])
: UnplacedPolyhedron(0., kTwoPi, sideCount, zPlaneCount, zPlanes, rMin, rMax)
{
DetectConvexity();
ComputeBBox();
}
VECCORE_ATT_HOST_DEVICE
UnplacedPolyhedron::UnplacedPolyhedron(Precision phiStart, Precision phiDelta, const int sideCount,
const int zPlaneCount, Precision const zPlanes[], Precision const rMin[],
Precision const rMax[])
: fPoly(phiStart, phiDelta, sideCount, zPlaneCount, zPlanes, rMin, rMax)
{
DetectConvexity();
ComputeBBox();
}
UnplacedPolyhedron::UnplacedPolyhedron(Precision phiStart, Precision phiDelta, const int sideCount,
const int verticesCount,
Precision const r[], // 2*zPlaneCount elements
Precision const z[] // ditto
)
: fPoly(phiStart, phiDelta, sideCount, verticesCount, r, z)
{
DetectConvexity();
ComputeBBox();
}
VECCORE_ATT_HOST_DEVICE
int UnplacedPolyhedron::GetNQuadrilaterals() const
{
int count = 0;
for (int i = 0; i < GetZSegmentCount(); ++i) {
// outer
count += GetZSegment(i).outer.size();
// inner
count += GetZSegment(i).inner.size();
// phi
count += GetZSegment(i).phi.size();
}
return count;
}
template <TranslationCode transCodeT, RotationCode rotCodeT>
VECCORE_ATT_DEVICE
VPlacedVolume *UnplacedPolyhedron::Create(LogicalVolume const *const logical_volume,
Transformation3D const *const transformation,
#ifdef VECCORE_CUDA
const int id, const int copy_no, const int child_id,
#endif
VPlacedVolume *const placement)
{
UnplacedPolyhedron const *unplaced = static_cast<UnplacedPolyhedron const *>(logical_volume->GetUnplacedVolume());
EInnerRadii innerRadii = unplaced->HasInnerRadii() ? EInnerRadii::kTrue : EInnerRadii::kFalse;
EPhiCutout phiCutout = unplaced->HasPhiCutout()
? (unplaced->HasLargePhiCutout() ? EPhiCutout::kLarge : EPhiCutout::kTrue)
: EPhiCutout::kFalse;
#ifndef VECCORE_CUDA
// for the moment we do not propagate placement specialization
// (We should in the future select a few important specializations here such as rotation or no rotation)
#define POLYHEDRON_CREATE_SPECIALIZATION(INNER, PHI) \
return CreateSpecializedWithPlacement<SpecializedPolyhedron<translation::kGeneric, rotation::kGeneric, INNER, PHI>>( \
logical_volume, transformation, placement)
#else
#define POLYHEDRON_CREATE_SPECIALIZATION(INNER, PHI) \
return CreateSpecializedWithPlacement<SpecializedPolyhedron<translation::kGeneric, rotation::kGeneric, INNER, PHI>>( \
logical_volume, transformation, id, copy_no, child_id, placement)
#endif
if (innerRadii == EInnerRadii::kTrue) {
if (phiCutout == EPhiCutout::kFalse) POLYHEDRON_CREATE_SPECIALIZATION(EInnerRadii::kTrue, EPhiCutout::kFalse);
if (phiCutout == EPhiCutout::kTrue) POLYHEDRON_CREATE_SPECIALIZATION(EInnerRadii::kTrue, EPhiCutout::kTrue);
if (phiCutout == EPhiCutout::kLarge) POLYHEDRON_CREATE_SPECIALIZATION(EInnerRadii::kTrue, EPhiCutout::kLarge);
} else {
if (phiCutout == EPhiCutout::kFalse) POLYHEDRON_CREATE_SPECIALIZATION(EInnerRadii::kFalse, EPhiCutout::kFalse);
if (phiCutout == EPhiCutout::kTrue) POLYHEDRON_CREATE_SPECIALIZATION(EInnerRadii::kFalse, EPhiCutout::kTrue);
if (phiCutout == EPhiCutout::kLarge) POLYHEDRON_CREATE_SPECIALIZATION(EInnerRadii::kFalse, EPhiCutout::kLarge);
}
// Return value in case of NO_SPECIALIZATION
if (placement) {
new (placement)
SpecializedPolyhedron<transCodeT, rotCodeT, Polyhedron::EInnerRadii::kGeneric,
#ifdef VECCORE_CUDA
Polyhedron::EPhiCutout::kGeneric>(logical_volume, transformation, id, copy_no, child_id);
#else
Polyhedron::EPhiCutout::kGeneric>(logical_volume, transformation);
#endif
return placement;
}
return new SpecializedPolyhedron<translation::kGeneric, rotation::kGeneric, Polyhedron::EInnerRadii::kGeneric,
#ifdef VECCORE_CUDA
Polyhedron::EPhiCutout::kGeneric>(logical_volume, transformation, id, copy_no,
child_id);
#else
Polyhedron::EPhiCutout::kGeneric>(logical_volume, transformation);
#endif
#undef POLYHEDRON_CREATE_SPECIALIZATION
}
VECCORE_ATT_DEVICE
VPlacedVolume *UnplacedPolyhedron::SpecializedVolume(LogicalVolume const *const volume,
Transformation3D const *const transformation,
const TranslationCode trans_code, const RotationCode rot_code,
#ifdef VECCORE_CUDA
const int id, const int copy_no, const int child_id,
#endif
VPlacedVolume *const placement) const
{
return VolumeFactory::CreateByTransformation<UnplacedPolyhedron>(volume, transformation, trans_code, rot_code,
#ifdef VECCORE_CUDA
id, copy_no, child_id,
#endif
placement);
}
VECCORE_ATT_HOST_DEVICE
Precision UnplacedPolyhedron::GetTriangleArea(Vector3D<Precision> const &v1, Vector3D<Precision> const &v2,
Vector3D<Precision> const &v3) const
{
Vector3D<Precision> vec1 = v1 - v2;
Vector3D<Precision> vec2 = v1 - v3;
return 0.5 * (vec1.Cross(vec2)).Mag();
}
// TODO: this functions seems to be neglecting the phi cut !!
Precision UnplacedPolyhedron::Capacity() const
{
if (fPoly.fCapacity == 0.) {
// Formula for section : V=h(f+F+sqrt(f*F))/3;
// Fand f-areas of surfaces on +/-dz
// h-heigh
// a helper lambda for the volume calculation ( per quadrilaterial )
auto VolumeHelperFunc = [&](Vector3D<Precision> const &a, Vector3D<Precision> const &b,
Vector3D<Precision> const &c, Vector3D<Precision> const &d) {
Precision dz = std::fabs(a.z() - c.z());
Precision bottomArea = GetTriangleArea(a, b, Vector3D<Precision>(0., 0., a.z()));
Precision topArea = GetTriangleArea(c, d, Vector3D<Precision>(0., 0., c.z()));
return dz * (bottomArea + topArea + std::sqrt(topArea * bottomArea));
};
for (int j = 0; j < GetZSegmentCount(); ++j) {
// need to protect against empty segments because it could be
// that the polyhedron makes a jump at this segment count
if (GetZSegment(j).outer.size() > 0) {
auto outercorners = GetZSegment(j).outer.GetCorners();
Vector3D<Precision> a = outercorners[0][0];
Vector3D<Precision> b = outercorners[1][0];
Vector3D<Precision> c = outercorners[2][0];
Vector3D<Precision> d = outercorners[3][0];
Precision volume = VolumeHelperFunc(a, b, c, d); // outer volume
if (GetZSegment(j).inner.size() > 0) {
auto innercorners = GetZSegment(j).inner.GetCorners();
a = innercorners[0][0];
b = innercorners[1][0];
c = innercorners[2][0];
d = innercorners[3][0];
volume -= VolumeHelperFunc(a, b, c, d); // subtract inner volume
}
fPoly.fCapacity += volume;
}
}
fPoly.fCapacity *= GetSideCount() * (1. / 3.);
}
return fPoly.fCapacity;
}
// VECCORE_ATT_HOST_DEVICE
Precision UnplacedPolyhedron::SurfaceArea() const
{
if (!fPoly.fAreaStruct) {
signed int j;
Precision totArea = 0., area, aTop = 0., aBottom = 0.;
fPoly.fAreaStruct = new PolyhedronStruct<Precision>::AreaStruct(GetZSegmentCount());
// Below we generate the areas relevant to our solid
// We are starting with ZSegments(lateral parts)
for (j = 0; j < GetZSegmentCount(); ++j) {
fPoly.fAreaStruct->outer[j] = 0.;
fPoly.fAreaStruct->inner[j] = 0.;
fPoly.fAreaStruct->phi[j] = 0.;
if (GetZSegment(j).outer.size() > 0) {
area = GetZSegment(j).outer.GetQuadrilateralArea(0) * GetSideCount();
fPoly.fAreaStruct->outer[j] = area;
totArea += area;
}
if (GetZSegment(j).inner.size() > 0) {
area = GetZSegment(j).inner.GetQuadrilateralArea(0) * GetSideCount();
fPoly.fAreaStruct->inner[j] = area;
totArea += area;
}
if (HasPhiCutout() && GetZSegment(j).phi.size() > 0) {
area = GetZSegment(j).phi.GetQuadrilateralArea(0) * 2.0;
fPoly.fAreaStruct->phi[j] = area;
totArea += area;
}
}
// Must include top and bottom areas
//
Vector3D<Precision> point1 = GetZSegment(0).outer.GetCorners()[0][0];
Vector3D<Precision> point2 = GetZSegment(0).outer.GetCorners()[1][0];
Vector3D<Precision> point3, point4;
if (GetZSegment(0).inner.size() > 0) {
point3 = GetZSegment(0).inner.GetCorners()[0][0];
point4 = GetZSegment(0).inner.GetCorners()[1][0];
aTop = GetSideCount() * (GetTriangleArea(point1, point2, point3) + GetTriangleArea(point3, point4, point2));
} else {
point3.Set(0.0, 0.0, GetZSegment(0).outer.GetCorners()[0][0].z());
aTop = GetSideCount() * (GetTriangleArea(point1, point2, point3));
}
fPoly.fAreaStruct->top_area = aTop;
totArea += aTop;
point1 = GetZSegment(GetZSegmentCount() - 1).outer.GetCorners()[2][0];
point2 = GetZSegment(GetZSegmentCount() - 1).outer.GetCorners()[3][0];
if (GetZSegment(GetZSegmentCount() - 1).inner.size() > 0) {
point3 = GetZSegment(GetZSegmentCount() - 1).inner.GetCorners()[2][0];
point4 = GetZSegment(GetZSegmentCount() - 1).inner.GetCorners()[3][0];
aBottom = GetSideCount() * (GetTriangleArea(point1, point2, point3) + GetTriangleArea(point3, point4, point2));
} else {
point3.Set(0.0, 0.0, GetZSegment(GetZSegmentCount() - 1).outer.GetCorners()[2][0].z());
aBottom = GetSideCount() * GetTriangleArea(point1, point2, point3);
}
fPoly.fAreaStruct->bottom_area = aBottom;
totArea += aBottom;
fPoly.fAreaStruct->area = totArea;
}
return fPoly.fAreaStruct->area;
}
#ifndef VECCORE_CUDA
void UnplacedPolyhedron::Extent(Vector3D<Precision> &aMin, Vector3D<Precision> &aMax) const
{
aMin = kInfLength;
aMax = -kInfLength;
Precision phiStart = fPoly.fPhiStart;
Precision phiDelta = fPoly.fPhiDelta;
Precision sidePhi = phiDelta / fPoly.fSideCount;
// Specified radii are to the sides, not to the corners. Change these values,
// as corners and not sides are used to compute the extent
Precision conv = 1. / cos(0.5 * sidePhi);
Vector3D<Precision> crt;
// Loop all vertices and update min/max
for (int iphi = 0; iphi <= fPoly.fSideCount; ++iphi) {
Precision phi = phiStart + iphi * sidePhi;
Precision corx = conv * cos(phi);
Precision cory = conv * sin(phi);
for (int zPlaneCount = 0; zPlaneCount < fPoly.fZPlanes.size(); ++zPlaneCount) {
// Do Rmin
crt.Set(fPoly.fRMin[zPlaneCount] * corx, fPoly.fRMin[zPlaneCount] * cory, fPoly.fZPlanes[zPlaneCount]);
for (int i = 0; i < 3; ++i) {
aMin[i] = Min(aMin[i], crt[i]);
aMax[i] = Max(aMax[i], crt[i]);
}
// Do Rmax
crt.Set(fPoly.fRMax[zPlaneCount] * corx, fPoly.fRMax[zPlaneCount] * cory, fPoly.fZPlanes[zPlaneCount]);
for (int i = 0; i < 3; ++i) {
aMin[i] = Min(aMin[i], crt[i]);
aMax[i] = Max(aMax[i], crt[i]);
}
}
}
}
VECCORE_ATT_HOST_DEVICE
Precision UnplacedPolyhedron::DistanceSquarePointToSegment(Vector3D<Precision> &v1, Vector3D<Precision> &v2,
const Vector3D<Precision> &p) const
{
Precision p1_p2_squareLength = (v1 - v2).Mag2();
Precision dotProduct = (p - v1).Dot(v1 - v2) / p1_p2_squareLength;
if (dotProduct < 0) {
return (p - v1).Mag2();
} else if (dotProduct <= 1) {
Precision p_p1_squareLength = (p - v1).Mag2();
return p_p1_squareLength - dotProduct * dotProduct * p1_p2_squareLength;
} else {
return (p - v2).Mag2();
}
}
VECCORE_ATT_HOST_DEVICE
bool UnplacedPolyhedron::InsideTriangle(Vector3D<Precision> &v1, Vector3D<Precision> &v2, Vector3D<Precision> &v3,
const Vector3D<Precision> &p) const
{
Precision epsilon_square = 0.00000001;
Vector3D<Precision> vec1 = p - v1;
Vector3D<Precision> vec2 = p - v2;
Vector3D<Precision> vec3 = p - v3;
bool sameSide1 = vec1.Dot(vec2) >= 0.;
bool sameSide2 = vec1.Dot(vec3) >= 0.;
bool sameSide3 = vec2.Dot(vec3) >= 0.;
sameSide1 = sameSide1 && sameSide2 && sameSide3;
if (sameSide1) return sameSide1;
// If sameSide1 is false, point can be on the Surface or Outside
// Use sqr of distance in order to check if point is on the Surface
if (DistanceSquarePointToSegment(v1, v2, p) <= epsilon_square) return true;
if (DistanceSquarePointToSegment(v1, v3, p) <= epsilon_square) return true;
if (DistanceSquarePointToSegment(v2, v3, p) <= epsilon_square) return true;
return false;
}
VECCORE_ATT_HOST_DEVICE
Vector3D<Precision> UnplacedPolyhedron::GetPointOnTriangle(Vector3D<Precision> const &v1, Vector3D<Precision> const &v2,
Vector3D<Precision> const &v3) const
{
Precision r1 = RNG::Instance().uniform(0.0, 1.0);
Precision r2 = RNG::Instance().uniform(0.0, 1.0);
if (r1 + r2 > 1.) {
r1 = 1. - r1;
r2 = 1. - r2;
}
Vector3D<Precision> vec1 = v2 - v1;
Vector3D<Precision> vec2 = v3 - v1;
return v1 + r1 * vec1 + r2 * vec2;
}
Vector3D<Precision> UnplacedPolyhedron::SamplePointOnSurface() const
{
int j;
Precision chose, rnd, achose;
Precision totArea = SurfaceArea();
auto areaStruct = fPoly.fAreaStruct;
Vector3D<Precision> point1, point2, point3, point4, pReturn;
// Chose area and Create Point on Surface
chose = RNG::Instance().uniform(0.0, totArea);
achose = areaStruct->top_area + areaStruct->bottom_area; // top or bottom
// Point on Top or Bottom
if (chose < achose) {
chose = RNG::Instance().uniform(0.0, achose);
int iside = int(RNG::Instance().uniform(0.0, GetSideCount()));
if (chose < areaStruct->top_area) {
point1 = GetZSegment(GetZSegmentCount() - 1).outer.GetCorners()[2][iside];
point2 = GetZSegment(GetZSegmentCount() - 1).outer.GetCorners()[3][iside];
// Avoid generating points on degenerated triangles
if (GetZSegment(GetZSegmentCount() - 1).inner.size() > 0) {
point3 = GetZSegment(GetZSegmentCount() - 1).inner.GetCorners()[2][iside];
point4 = GetZSegment(GetZSegmentCount() - 1).inner.GetCorners()[3][iside];
if ((point4 - point3).Mag2() < kTolerance || RNG::Instance().uniform(0.0, 1.0) < 0.5)
pReturn = GetPointOnTriangle(point3, point1, point2);
else
pReturn = GetPointOnTriangle(point4, point3, point2);
} else {
point3.Set(0.0, 0.0, GetZSegment(GetZSegmentCount() - 1).outer.GetCorners()[2][iside].z());
pReturn = GetPointOnTriangle(point3, point1, point2);
}
return pReturn;
} else {
point1 = GetZSegment(0).outer.GetCorners()[0][iside];
point2 = GetZSegment(0).outer.GetCorners()[1][iside];
if (GetZSegment(0).inner.size() > 0) {
point3 = GetZSegment(0).inner.GetCorners()[0][iside];
point4 = GetZSegment(0).inner.GetCorners()[1][iside];
// Avoid generating points on degenerated triangles
if ((point4 - point3).Mag2() < kTolerance || RNG::Instance().uniform(0.0, 1.0) < 0.5)
pReturn = GetPointOnTriangle(point3, point1, point2);
else
pReturn = GetPointOnTriangle(point4, point3, point2);
} else {
point3.Set(0.0, 0.0, GetZSegment(0).outer.GetCorners()[0][iside].z());
pReturn = GetPointOnTriangle(point3, point1, point2);
}
return pReturn;
}
} else {
// Point on Lateral segment or Phi segment
for (j = 0; j < GetZSegmentCount(); j++) {
achose += areaStruct->outer[j] + areaStruct->inner[j] + areaStruct->phi[j];
if ((chose < achose) || (j == GetZSegmentCount() - 1)) {
break;
}
}
}
// At this point we have chosen a subsection
// between to adjacent plane cuts
rnd = int(RNG::Instance().uniform(0.0, GetSideCount()));
// area of the selected section
totArea = areaStruct->outer[j] + areaStruct->inner[j] + areaStruct->phi[j];
chose = RNG::Instance().uniform(0., totArea);
Vector3D<Precision> RandVec;
if (chose <= areaStruct->outer[j]) {
RandVec = (GetZSegment(j)).outer.GetPointOnFace(rnd);
return RandVec;
} else if (chose <= areaStruct->outer[j] + areaStruct->inner[j]) {
return (GetZSegment(j)).inner.GetPointOnFace(rnd);
}
// Point on Phi segment
rnd = int(RNG::Instance().uniform(0.0, 1.999999));
RandVec = (GetZSegment(j)).phi.GetPointOnFace(rnd);
return RandVec;
}
VECCORE_ATT_HOST_DEVICE
bool UnplacedPolyhedron::Normal(Vector3D<Precision> const &point, Vector3D<Precision> &normal) const
{
// Compute normal vector to closest surface
return (
PolyhedronImplementation<Polyhedron::EInnerRadii::kGeneric, Polyhedron::EPhiCutout::kGeneric>::ScalarNormalKernel(
fPoly, point, normal));
}
#endif // !VECCORE_CUDA
VECCORE_ATT_HOST_DEVICE
void UnplacedPolyhedron::Print() const
{
printf("UnplacedPolyhedron {%i sides, phi %f to %f, %i segments}", fPoly.fSideCount, GetPhiStart() * kRadToDeg,
GetPhiEnd() * kRadToDeg, fPoly.fZSegments.size());
printf("}");
}
VECCORE_ATT_HOST_DEVICE
void UnplacedPolyhedron::PrintSegments() const
{
printf("Printing %i polyhedron segments: ", fPoly.fZSegments.size());
for (int i = 0, iMax = fPoly.fZSegments.size(); i < iMax; ++i) {
printf(" Outer: ");
fPoly.fZSegments[i].outer.Print();
printf("\n");
if (fPoly.fHasPhiCutout) {
printf(" Phi: ");
fPoly.fZSegments[i].phi.Print();
printf("\n");
}
if (fPoly.fZSegments[i].inner.size() > 0) {
printf(" Inner: ");
fPoly.fZSegments[i].inner.Print();
printf("\n");
}
}
}
void UnplacedPolyhedron::Print(std::ostream &os) const
{
int oldprc = os.precision(16);
int Nz = fPoly.fZPlanes.size();
os << "-----------------------------------------------------------\n"
<< " *** Dump for solid - polyhedron ***\n"
<< " ===================================================\n"
<< " Parameters:\n"
<< " Phi start= " << fPoly.fPhiStart * vecgeom::kRadToDeg
<< " deg, Phi delta= " << fPoly.fPhiDelta * vecgeom::kRadToDeg << " deg\n"
<< " Number of segments along phi: " << fPoly.fSideCount << "\n"
<< " N = number of Z-sections: " << Nz << "\n"
<< " N+1 z-coordinates (in cm):\n";
for (int i = 0; i < Nz; ++i) {
os << " at Z=" << fPoly.fZPlanes[i] << "cm:"
<< " Rmin=" << fPoly.fRMin[i] << "cm,"
<< " Rmax=" << fPoly.fRMax[i] << "cm\n";
}
os << "-----------------------------------------------------------\n";
os.precision(oldprc);
}
VECCORE_ATT_HOST_DEVICE
void UnplacedPolyhedron::DetectConvexity()
{
// Default safe convexity value
fGlobalConvexity = false;
if (fPoly.fConvexityPossible) {
if (fPoly.fEqualRmax &&
(fPoly.fPhiDelta <= kPi ||
fPoly.fPhiDelta ==
kTwoPi)) // In this case, Polycone become solid Cylinder, No need to check anything else, 100% convex
fGlobalConvexity = true;
else {
if (fPoly.fPhiDelta <= kPi || fPoly.fPhiDelta == kTwoPi) {
fGlobalConvexity = fPoly.fContinuousInSlope;
}
}
}
}
#ifndef VECCORE_CUDA
SolidMesh *UnplacedPolyhedron::CreateMesh3D(Transformation3D const &trans, size_t nSegments) const
{
typedef Vector3D<Precision> Vec_t;
SolidMesh *sm = new SolidMesh();
size_t n = GetZSegmentCount();
size_t nSides = GetSideCount();
Precision k = std::cos(0.5 * GetPhiDelta() / nSides); // divide R_side by k to get the R_corner
Vec_t *vertices = new Vec_t[2 * (n + 1) * (nSides + 1)];
size_t idx = 0;
size_t idx2 = ((n + 1) * (nSides + 1));
for (size_t i = 0; i <= n; i++) {
for (size_t j = 0; j <= nSides; j++) {
vertices[idx++] = GetPhiSection(j) * GetRMax()[i] / k + Vec_t(0, 0, GetZPlane(i));
vertices[idx2++] = GetPhiSection(j) * GetRMin()[i] / k + Vec_t(0, 0, GetZPlane(i));
}
}
sm->ResetMesh(2 * (n + 1) * (nSides + 1), 2 * n * nSides + 2 * nSides + 2 * n);
sm->SetVertices(vertices, 2 * (n + 1) * (nSides + 1));
delete[] vertices;
sm->TransformVertices(trans);
for (size_t i = 0, p = 0, k = nSides + 1, offset = (n + 1) * (nSides + 1); i < n; i++, p++, k++) {
for (size_t j = 0; j < nSides; j++, p++, k++) {
sm->AddPolygon(4, {p, p + 1, k + 1, k}, true); // outer
sm->AddPolygon(4, {k + offset, k + 1 + offset, p + offset + 1, p + offset}, true); // inner
}
}
for (size_t i = 0, l = n * (nSides + 1), k = l + nSides + 1, p = k + l; i < nSides; i++, k++, l++, p++) {
sm->AddPolygon(4, {k, k + 1, i + 1, i}, true); // lower
sm->AddPolygon(4, {l, l + 1, p + 1, p}, true); // upper
}
if (GetPhiDelta() != kTwoPi) {
for (size_t i = 0, j = 0, k = nSides + 1, offset = (n + 1) * (nSides + 1); i < n;
i++, j += nSides + 1, k += nSides + 1) {
sm->AddPolygon(4, {j, k, k + offset, j + offset}, true); // surface at sPhi
sm->AddPolygon(4, {j + offset + nSides, k + offset + nSides, k + nSides, j + nSides},
true); // surface at sPhi + dPhi
}
}
return sm;
}
#endif
#ifdef VECGEOM_CUDA_INTERFACE
DevicePtr<cuda::VUnplacedVolume> UnplacedPolyhedron::CopyToGpu(DevicePtr<cuda::VUnplacedVolume> const gpuPtr) const
{
// idea: reconstruct defining arrays: copy them to GPU; then construct the UnplacedPolycon object from scratch
// on the GPU
DevicePtr<Precision> zPlanesGpu;
zPlanesGpu.Allocate(fPoly.fZPlanes.size());
zPlanesGpu.ToDevice(&fPoly.fZPlanes[0], fPoly.fZPlanes.size());
DevicePtr<Precision> rminGpu;
rminGpu.Allocate(fPoly.fZPlanes.size());
rminGpu.ToDevice(&fPoly.fRMin[0], fPoly.fZPlanes.size());
DevicePtr<Precision> rmaxGpu;
rmaxGpu.Allocate(fPoly.fZPlanes.size());
rmaxGpu.ToDevice(&fPoly.fRMax[0], fPoly.fZPlanes.size());
DevicePtr<cuda::VUnplacedVolume> gpupolyhedra = CopyToGpuImpl<UnplacedPolyhedron>(
gpuPtr, fPoly.fPhiStart, fPoly.fPhiDelta, fPoly.fSideCount, fPoly.fZPlanes.size(), zPlanesGpu, rminGpu, rmaxGpu);
zPlanesGpu.Deallocate();
rminGpu.Deallocate();
rmaxGpu.Deallocate();
CudaAssertError();
return gpupolyhedra;
}
DevicePtr<cuda::VUnplacedVolume> UnplacedPolyhedron::CopyToGpu() const
{
return CopyToGpuImpl<UnplacedPolyhedron>();
}
/**
* Bulk-copy UnplacedPolyhedron instances to the device.
* This function is significantly faster in constructing unplaced polyhedra on the GPU, because it bulk
* copies the constructor arguments to the device, saving a lot of memory allocations and kernel invocations.
* @param volumes Pointers to UnplacedPolyhedron instances.
* @param devicePointer Locations where the unplaced polyhedra should be constructed.
*/
void UnplacedPolyhedron::CopyToGpu(std::vector<VUnplacedVolume const *> const & volumes,
std::vector<DevicePtr<cuda::VUnplacedVolume>> const & devicePointers)
{
const auto size = volumes.size();
std::vector<Precision> floatData(2*size, 0.);
std::vector<int> intData(2*size, 0);
struct VarLengthData {
std::vector<std::size_t> offsets[3];
std::vector<Precision> data;
} vld;
struct RAIIDevPtr {
DevicePtr<Precision> devPtr;
RAIIDevPtr() = default;
RAIIDevPtr(const RAIIDevPtr&) = delete;
~RAIIDevPtr() { devPtr.Deallocate(); }
} vldGPU;
for (unsigned int i = 0; i < size; ++i) {
UnplacedPolyhedron const & volume = static_cast<UnplacedPolyhedron const &>(*volumes[i]);
floatData[0*size + i] = volume.fPoly.fPhiStart;
floatData[1*size + i] = volume.fPoly.fPhiDelta;
intData[0*size + i] = volume.fPoly.fSideCount;
intData[1*size + i] = volume.fPoly.fZPlanes.size();
int offsetCounter = 0;
for (vecgeom::cxx::Array<Precision> const * array : {&volume.fPoly.fZPlanes, &volume.fPoly.fRMin, &volume.fPoly.fRMax}) {
vld.offsets[offsetCounter++].push_back(vld.data.size());
for (int j = 0; j < array->size(); ++j) {
vld.data.push_back((*array)[j]);
}
}
}
vldGPU.devPtr.Allocate(vld.data.size());
vldGPU.devPtr.ToDevice(vld.data.data(), vld.data.size());
std::vector<Precision const *> zPlanesGpuPtr, rMinGpuPtr, rMaxGpuPtr;
auto computeGpuPtr = [&vldGPU](std::size_t offset){ return vldGPU.devPtr.GetPtr() + offset; };
std::transform(vld.offsets[0].begin(), vld.offsets[0].end(), std::back_inserter(zPlanesGpuPtr), computeGpuPtr);
std::transform(vld.offsets[1].begin(), vld.offsets[1].end(), std::back_inserter(rMinGpuPtr), computeGpuPtr);
std::transform(vld.offsets[2].begin(), vld.offsets[2].end(), std::back_inserter(rMaxGpuPtr), computeGpuPtr);
// Forwards all data to this constructor:
// UnplacedPolyhedron(Precision phiStart, Precision phiDelta, const int sideCount,
// const int zPlaneCount, Precision const zPlanes[], Precision const rMin[],
// Precision const rMax[])
ConstructManyOnGpu<vecgeom::cuda::UnplacedPolyhedron>(size, devicePointers.data(),
floatData.data(), floatData.data()+size, // phiStart, phiDelta
intData.data(), intData.data()+size, // sideCount, zPlaneCount
zPlanesGpuPtr.data(), rMinGpuPtr.data(), rMaxGpuPtr.data()
);
}
#endif
} // namespace VECGEOM_IMPL_NAMESPACE
#ifdef VECCORE_CUDA
namespace cxx {
template size_t DevicePtr<cuda::UnplacedPolyhedron>::SizeOf();
template void DevicePtr<cuda::UnplacedPolyhedron>::Construct(Precision phiStart, Precision phiDelta, int sideCount,
int zPlaneCount, DevicePtr<Precision> zPlanes,
DevicePtr<Precision> rMin,
DevicePtr<Precision> rMax) const;
template void ConstructManyOnGpu<cuda::UnplacedPolyhedron>(std::size_t nElement, DevicePtr<cuda::VUnplacedVolume> const * gpu_ptrs,
Precision const * phiStart, Precision const * phiDelta,
int const * sideCount, int const * zPlaneCount,
Precision const * const * zPlanes, Precision const * const * rMin, Precision const * const * rMax);
} // namespace cxx
#endif
} // End namespace vecgeom
|