File: UnplacedSphere.cpp

package info (click to toggle)
vecgeom 1.2.8%2Bdfsg-2
  • links: PTS, VCS
  • area: main
  • in suites: sid, trixie
  • size: 24,016 kB
  • sloc: cpp: 88,803; ansic: 6,888; python: 1,035; sh: 582; sql: 538; makefile: 23
file content (486 lines) | stat: -rw-r--r-- 18,342 bytes parent folder | download | duplicates (2)
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
/// \file UnplacedSphere.cpp
/// \author Raman Sehgal (raman.sehgal@cern.ch)

#include "VecGeom/volumes/SphereUtilities.h"
#include "VecGeom/volumes/UnplacedSphere.h"
#include "VecGeom/volumes/UnplacedOrb.h"
#include "VecGeom/volumes/PlacedOrb.h"
#ifndef VECCORE_CUDA
#include "VecGeom/volumes/UnplacedImplAs.h"
#endif
#include "VecGeom/volumes/SpecializedSphere.h"
#include "VecGeom/volumes/utilities/VolumeUtilities.h"
#include "VecGeom/volumes/utilities/GenerationUtilities.h"
#ifndef VECCORE_CUDA
#include "VecGeom/base/RNG.h"
#endif
#include "VecGeom/management/VolumeFactory.h"

#ifdef VECGEOM_ROOT
#include "TGeoSphere.h"
#endif

#ifdef VECGEOM_GEANT4
#include "G4Sphere.hh"
#endif

namespace vecgeom {
inline namespace VECGEOM_IMPL_NAMESPACE {

VECCORE_ATT_HOST_DEVICE
UnplacedSphere::UnplacedSphere(Precision pRmin, Precision pRmax, Precision pSPhi, Precision pDPhi, Precision pSTheta,
                               Precision pDTheta)
    : fSphere(pRmin, pRmax, pSPhi, pDPhi, pSTheta, pDTheta)
{
  DetectConvexity();
  ComputeBBox();
}

// specialized constructor for orb like instantiation
VECCORE_ATT_HOST_DEVICE
UnplacedSphere::UnplacedSphere(Precision pR) : UnplacedSphere(0, pR)
{
  ComputeBBox();
}

VECCORE_ATT_HOST_DEVICE
void UnplacedSphere::DetectConvexity()
{
  // Default Convexity set to false
  fGlobalConvexity = false;
  // Logic to calculate the convexity
  if (fSphere.fRmin == 0.) {
    if (((fSphere.fDPhi == kTwoPi) && (fSphere.fSTheta == 0.) && (fSphere.eTheta == kPi)) ||
        ((fSphere.fDPhi <= kPi) && (fSphere.fSTheta == 0) && (fSphere.eTheta == kPi)) ||
        ((fSphere.fDPhi == kTwoPi) && (fSphere.fSTheta == 0) && (fSphere.eTheta <= kPi / 2)) ||
        ((fSphere.fDPhi == kTwoPi) && (fSphere.fSTheta >= kPi / 2) && (fSphere.eTheta == kPi)))
      fGlobalConvexity = true;
  }
}

#if (0)
// Simplest Implementation of Extent
VECCORE_ATT_HOST_DEVICE
void UnplacedSphere::Extent(Vector3D<Precision> &aMin, Vector3D<Precision> &aMax) const
{
  // Returns the full 3D cartesian extent of the solid.
  aMin.Set(-fRmax);
  aMax.Set(fRmax);
}
#endif

//#ifndef VECCORE_CUDA
#if (1)
// Sophisticated Implementation taking into account the PHI and THETA cut also.
VECCORE_ATT_HOST_DEVICE
void UnplacedSphere::Extent(Vector3D<Precision> &aMin, Vector3D<Precision> &aMax) const
{
  // most general case
  aMin.Set(-fSphere.fRmax);
  aMax.Set(fSphere.fRmax);
  Precision eTheta = fSphere.fSTheta + fSphere.fDTheta;

  if (fSphere.fFullSphere) return;

  Precision st1 = 0.;
  Precision st2 = 0.;

  if (!fSphere.fFullThetaSphere) {
    // Simplified logic suggested by Evgueni Tcherniaev
    aMax.z() = ((fSphere.fSTheta <= kPi / 2.) ? fSphere.fRmax : fSphere.fRmin) * Cos(fSphere.fSTheta);
    aMin.z() = ((eTheta <= kPi / 2.) ? fSphere.fRmin : fSphere.fRmax) * Cos(eTheta);

    st1 = Sin(fSphere.fSTheta);
    st2 = Sin(fSphere.eTheta);

    if (fSphere.fSTheta <= kPi / 2.) {
      if ((eTheta) < kPi / 2.) {
        aMax.x() = fSphere.fRmax * st2;
        aMin.x() = -fSphere.fRmax * st2;
        aMax.y() = fSphere.fRmax * st2;
        aMin.y() = -fSphere.fRmax * st2;
      }
    } else {
      aMax.x() = fSphere.fRmax * st1;
      aMin.x() = -fSphere.fRmax * st1;
      aMax.y() = fSphere.fRmax * st1;
      aMin.y() = -fSphere.fRmax * st1;
    }
  }
  if (!fSphere.fFullPhiSphere) {
    Precision Rmax = fSphere.fRmax;
    if (fSphere.fSTheta > kPi / 2.) Rmax *= st1;
    if (eTheta < kPi / 2.) Rmax *= st2;
    Precision Rmin = fSphere.fRmin * Min(st1, st2);
    // These newly calculated Rmin and Rmax will be used by PHI section

    // Borrowed PHI logic from Tube
    // check how many of phi=90, 180, 270, 360deg are outside this tube

    auto Rin       = 0.5 * (Rmax + Rmin);
    bool phi0out   = !fSphere.fPhiWedge.Contains(Vector3D<Precision>(Rin, 0, 0));
    bool phi90out  = !fSphere.fPhiWedge.Contains(Vector3D<Precision>(0, Rin, 0));
    bool phi180out = !fSphere.fPhiWedge.Contains(Vector3D<Precision>(-Rin, 0, 0));
    bool phi270out = !fSphere.fPhiWedge.Contains(Vector3D<Precision>(0, -Rin, 0));

    // if none of those 4 phis is outside, largest box still required
    if (!(phi0out || phi90out || phi180out || phi270out)) return;

    // some extent(s) of box will be reduced
    // --> think of 4 points A,B,C,D such that A,B are at Rmin, C,D at Rmax
    //     and A,C at startPhi (fSphi), B,D at endPhi (fSphi+fDphi)
    auto Cx = Rmax * cos(fSphere.fSPhi);
    auto Dx = Rmax * cos(fSphere.fSPhi + fSphere.fDPhi);
    auto Cy = Rmax * sin(fSphere.fSPhi);
    auto Dy = Rmax * sin(fSphere.fSPhi + fSphere.fDPhi);

    // then rewrite box sides whenever each one of those phis are not contained in the tube section
    if (phi0out) aMax.x() = Max(Cx, Dx);
    if (phi90out) aMax.y() = Max(Cy, Dy);
    if (phi180out) aMin.x() = Min(Cx, Dx);
    if (phi270out) aMin.y() = Min(Cy, Dy);

    if (fSphere.fDPhi >= kPi) return;

    auto Ax = Rmin * cos(fSphere.fSPhi);
    auto Bx = Rmin * cos(fSphere.fSPhi + fSphere.fDPhi);
    auto Ay = Rmin * sin(fSphere.fSPhi);
    auto By = Rmin * sin(fSphere.fSPhi + fSphere.fDPhi);

    Precision temp;
    temp     = Max(Ax, Bx);
    aMax.x() = temp > aMax.x() ? temp : aMax.x();

    temp     = Max(Ay, By);
    aMax.y() = temp > aMax.y() ? temp : aMax.y();

    temp     = Min(Ax, Bx);
    aMin.x() = temp < aMin.x() ? temp : aMin.x();

    temp     = Min(Ay, By);
    aMin.y() = temp < aMin.y() ? temp : aMin.y();
  }
  return;
}
#endif

//#endif // !VECCORE_CUDA

void UnplacedSphere::GetParametersList(int, Precision *aArray) const
{
  aArray[0] = GetInnerRadius();
  aArray[1] = GetOuterRadius();
  aArray[2] = GetStartPhiAngle();
  aArray[3] = GetDeltaPhiAngle();
  aArray[4] = GetStartThetaAngle();
  aArray[5] = GetDeltaThetaAngle();
}

#ifndef VECCORE_CUDA
Vector3D<Precision> UnplacedSphere::SamplePointOnSurface() const
{

  Precision zRand, aOne, aTwo, aThr, aFou, aFiv, chose, phi, sinphi, cosphi;
  Precision height1, height2, slant1, slant2, costheta, sintheta, rRand;

  height1 = (fSphere.fRmax - fSphere.fRmin) * fSphere.cosSTheta;
  height2 = (fSphere.fRmax - fSphere.fRmin) * fSphere.cosETheta;
  slant1  = std::sqrt(sqr((fSphere.fRmax - fSphere.fRmin) * fSphere.sinSTheta) + height1 * height1);
  slant2  = std::sqrt(sqr((fSphere.fRmax - fSphere.fRmin) * fSphere.sinETheta) + height2 * height2);
  rRand   = GetRadiusInRing(fSphere.fRmin, fSphere.fRmax);

  aOne = fSphere.fRmax * fSphere.fRmax * fSphere.fDPhi * (fSphere.cosSTheta - fSphere.cosETheta);
  aTwo = fSphere.fRmin * fSphere.fRmin * fSphere.fDPhi * (fSphere.cosSTheta - fSphere.cosETheta);
  aThr = fSphere.fDPhi * ((fSphere.fRmax + fSphere.fRmin) * fSphere.sinSTheta) * slant1;
  aFou = fSphere.fDPhi * ((fSphere.fRmax + fSphere.fRmin) * fSphere.sinETheta) * slant2;
  aFiv = 0.5 * fSphere.fDTheta * (fSphere.fRmax * fSphere.fRmax - fSphere.fRmin * fSphere.fRmin);

  phi      = RNG::Instance().uniform(fSphere.fSPhi, fSphere.ePhi);
  cosphi   = std::cos(phi);
  sinphi   = std::sin(phi);
  costheta = RNG::Instance().uniform(fSphere.cosETheta, fSphere.cosSTheta);
  sintheta = std::sqrt(1. - sqr(costheta));

  if (fSphere.fFullPhiSphere) {
    aFiv = 0;
  }
  if (fSphere.fSTheta == 0) {
    aThr = 0;
  }
  if (fSphere.eTheta == kPi) {
    aFou = 0;
  }
  if (fSphere.fSTheta == kPi / 2) {
    aThr = kPi * (fSphere.fRmax * fSphere.fRmax - fSphere.fRmin * fSphere.fRmin);
  }
  if (fSphere.eTheta == kPi / 2) {
    aFou = kPi * (fSphere.fRmax * fSphere.fRmax - fSphere.fRmin * fSphere.fRmin);
  }

  chose = RNG::Instance().uniform(0., aOne + aTwo + aThr + aFou + 2. * aFiv);
  if ((chose >= 0.) && (chose < aOne)) {
    return Vector3D<Precision>(fSphere.fRmax * sintheta * cosphi, fSphere.fRmax * sintheta * sinphi,
                               fSphere.fRmax * costheta);
  } else if ((chose >= aOne) && (chose < aOne + aTwo)) {
    return Vector3D<Precision>(fSphere.fRmin * sintheta * cosphi, fSphere.fRmin * sintheta * sinphi,
                               fSphere.fRmin * costheta);
  } else if ((chose >= aOne + aTwo) && (chose < aOne + aTwo + aThr)) {
    if (fSphere.fSTheta != kPi / 2) {
      zRand = RNG::Instance().uniform(fSphere.fRmin * fSphere.cosSTheta, fSphere.fRmax * fSphere.cosSTheta);
      return Vector3D<Precision>(fSphere.tanSTheta * zRand * cosphi, fSphere.tanSTheta * zRand * sinphi, zRand);
    } else {
      return Vector3D<Precision>(rRand * cosphi, rRand * sinphi, 0.);
    }
  } else if ((chose >= aOne + aTwo + aThr) && (chose < aOne + aTwo + aThr + aFou)) {
    if (fSphere.eTheta != kPi / 2) {
      zRand = RNG::Instance().uniform(fSphere.fRmin * fSphere.cosETheta, fSphere.fRmax * fSphere.cosETheta);
      return Vector3D<Precision>(fSphere.tanETheta * zRand * cosphi, fSphere.tanETheta * zRand * sinphi, zRand);
    } else {
      return Vector3D<Precision>(rRand * cosphi, rRand * sinphi, 0.);
    }
  } else if ((chose >= aOne + aTwo + aThr + aFou) && (chose < aOne + aTwo + aThr + aFou + aFiv)) {
    return Vector3D<Precision>(rRand * sintheta * fSphere.cosSPhi, rRand * sintheta * fSphere.sinSPhi,
                               rRand * costheta);
  } else {
    return Vector3D<Precision>(rRand * sintheta * fSphere.cosEPhi, rRand * sintheta * fSphere.sinEPhi,
                               rRand * costheta);
  }
}

std::string UnplacedSphere::GetEntityType() const
{
  return "Sphere\n";
}

#endif // !VECCORE_CUDA

/*UnplacedSphere *UnplacedSphere::Clone() const
{
  return new UnplacedSphere(fSphere.fRmin, fSphere.fRmax, fSphere.fSPhi, fSphere.fDPhi, fSphere.fSTheta,
fSphere.fDTheta);
}*/

std::ostream &UnplacedSphere::StreamInfo(std::ostream &os) const
// Definition taken from USphere
{

  int oldprc = os.precision(16);
  os << "-----------------------------------------------------------\n"
     //  << "     *** Dump for solid - " << GetName() << " ***\n"
     //  << "     ===================================================\n"

     << " Solid type: VecGeomSphere\n"
     << " Parameters: \n"

     << "       outer radius: " << fSphere.fRmax << " mm \n"
     << "               Inner radius: " << fSphere.fRmin << "mm\n"
     << "               Start Phi Angle: " << fSphere.fSPhi << "\n"
     << "               Delta Phi Angle: " << fSphere.fDPhi << "\n"
     << "               Start Theta Angle: " << fSphere.fSTheta << "\n"
     << "               Delta Theta Angle: " << fSphere.fDTheta << "\n"
     << "-----------------------------------------------------------\n";
  os.precision(oldprc);

  return os;
}

template <>
UnplacedSphere *Maker<UnplacedSphere>::MakeInstance(Precision pRmin, Precision pRmax, Precision pSPhi, Precision pDPhi,
                                                    Precision pSTheta, Precision pDTheta)
{
#if !defined(VECCORE_CUDA) && !defined(VECGEOM_NO_SPECIALIZATION)
  if (pRmin == 0. && pDPhi >= kTwoPi && pDTheta == kPi) {
    return new SUnplacedImplAs<UnplacedSphere, UnplacedOrb>(pRmax);
  }
#endif
  return new UnplacedSphere(pRmin, pRmax, pSPhi, pDPhi, pSTheta, pDTheta);
}

VECCORE_ATT_HOST_DEVICE
void UnplacedSphere::Print() const
{
  printf("UnplacedSphere {%.2f , %.2f , %.2f , %.2f , %.2f , %.2f}", GetInnerRadius(), GetOuterRadius(),
         GetStartPhiAngle(), GetDeltaPhiAngle(), GetStartThetaAngle(), GetDeltaThetaAngle());
}

void UnplacedSphere::Print(std::ostream &os) const
{
  os << "UnplacedSphere { " << GetInnerRadius() << " " << GetOuterRadius() << " " << GetStartPhiAngle() << " "
     << GetDeltaPhiAngle() << " " << GetStartThetaAngle() << " " << GetDeltaThetaAngle() << " }";
}

#ifndef VECCORE_CUDA
#include "VecGeom/volumes/SolidMesh.h"
SolidMesh *UnplacedSphere::CreateMesh3D(Transformation3D const &trans, size_t nSegments) const
{

  typedef Vector3D<Precision> Vec_t;
  SolidMesh *sm   = new SolidMesh();
  Vec_t *vertices = new Vec_t[2 * (nSegments + 1) * (nSegments + 1)];

  // sm->ResetMesh(nMeshVertices, nVertical * nHorizontal);

  Precision phi_step   = GetDPhi() / nSegments;
  Precision theta_step = GetDTheta() / nSegments;
  Precision phi        = GetSPhi();
  Precision theta      = GetSTheta();

  size_t idx  = 0;
  size_t idx2 = (nSegments + 1) * (nSegments + 1);
  Precision z, xy;
  for (size_t i = 0; i <= nSegments; ++i) {
    theta = M_PI / 2 - GetSTheta() - i * theta_step; // starting from pi/2 to -pi/2
    xy    = GetOuterRadius() * std::cos(theta);
    z     = GetOuterRadius() * std::sin(theta);

    for (size_t j = 0; j <= nSegments; ++j) {
      phi             = GetSPhi() + j * phi_step; // starting from 0 to 2pi
      vertices[idx++] = Vec_t(xy * std::cos(phi), xy * std::sin(phi), z);
    }

    xy = GetInnerRadius() * std::cos(theta);
    z  = GetInnerRadius() * std::sin(theta);

    for (size_t j = 0; j <= nSegments; ++j) {
      phi              = GetSPhi() + j * phi_step; // starting from 0 to 2pi
      vertices[idx2++] = Vec_t(xy * std::cos(phi), xy * std::sin(phi), z);
    }
  }
  sm->SetVertices(vertices, 2 * (nSegments + 1) * (nSegments + 1));
  delete[] vertices;
  sm->TransformVertices(trans);

  for (size_t j = 0, k = 0; j < nSegments; j++, k++) {
    for (size_t i = 0, l = k + nSegments + 1; i < nSegments; i++, k++, l++) {
      sm->AddPolygon(4, {k + 1, k, l, l + 1}, true); // outer
    }
  }

  for (size_t j = 0, k = (nSegments + 1) * (nSegments + 1); j < nSegments; j++, k++) {
    for (size_t i = 0, l = k + nSegments + 1; i < nSegments; i++, k++, l++) {
      sm->AddPolygon(4, {k, k + 1, l + 1, l}, true); // inner
    }
  }

  if (!IsFullThetaSphere()) {
    for (size_t i = 0, k = 0, l = k + (nSegments + 1) * (nSegments + 1); i < nSegments; i++, k++, l++) {
      sm->AddPolygon(4, {k, k + 1, l + 1, l}, true); // upper at sTheta
    }

    for (size_t i = 0, k = nSegments * (nSegments + 1), l = k + (nSegments + 1) * (nSegments + 1); i < nSegments;
         i++, k++, l++) {
      sm->AddPolygon(4, {k + 1, k, l, l + 1}, true); // lower at sTheta + dTheta
    }
  }

  if (!IsFullPhiSphere()) {

    for (size_t i = 0, k = 0, l = k + (nSegments + 1) * (nSegments + 1); i < nSegments;
         i++, k += nSegments + 1, l += nSegments + 1) {
      sm->AddPolygon(4, {k + nSegments + 1, k, l, l + nSegments + 1}, true); // lateral at sPhi
    }

    for (size_t i = 0, k = nSegments, l = k + (nSegments + 1) * (nSegments + 1); i < nSegments;
         i++, k += nSegments + 1, l += nSegments + 1) {
      sm->AddPolygon(4, {k + nSegments + 1, l + nSegments + 1, l, k}, true); // lateral at sPhi + dPhi
    }
  }

  return sm;
}
#endif

#ifndef VECCORE_CUDA

#ifdef VECGEOM_ROOT
TGeoShape const *UnplacedSphere::ConvertToRoot(char const *label) const
{
  return new TGeoSphere(label, GetInnerRadius(), GetOuterRadius(), GetStartThetaAngle() * kRadToDeg,
                        (GetStartThetaAngle() + GetDeltaThetaAngle()) * kRadToDeg, GetStartPhiAngle() * kRadToDeg,
                        (GetStartPhiAngle() + GetDeltaPhiAngle()) * kRadToDeg);
}
#endif

#ifdef VECGEOM_GEANT4
G4VSolid const *UnplacedSphere::ConvertToGeant4(char const *label) const
{
  return new G4Sphere(label, GetInnerRadius(), GetOuterRadius(), GetStartPhiAngle(), GetDeltaPhiAngle(),
                      GetStartThetaAngle(), GetDeltaThetaAngle());
}
#endif

template <TranslationCode trans_code, RotationCode rot_code>
VPlacedVolume *UnplacedSphere::Create(LogicalVolume const *const logical_volume,
                                      Transformation3D const *const transformation, VPlacedVolume *const placement)
{
  if (placement) {
    new (placement) SpecializedSphere<trans_code, rot_code>(logical_volume, transformation);
    return placement;
  }
  return new SpecializedSphere<trans_code, rot_code>(logical_volume, transformation);
}

VPlacedVolume *UnplacedSphere::CreateSpecializedVolume(LogicalVolume const *const volume,
                                                       Transformation3D const *const transformation,
                                                       const TranslationCode trans_code, const RotationCode rot_code,
                                                       VPlacedVolume *const placement)
{
  return VolumeFactory::CreateByTransformation<UnplacedSphere>(volume, transformation, trans_code, rot_code, placement);
}

#else

template <TranslationCode trans_code, RotationCode rot_code>
VECCORE_ATT_DEVICE
VPlacedVolume *UnplacedSphere::Create(LogicalVolume const *const logical_volume,
                                      Transformation3D const *const transformation, const int id, const int copy_no,
                                      const int child_id, VPlacedVolume *const placement)
{
  if (placement) {
    new (placement) SpecializedSphere<trans_code, rot_code>(logical_volume, transformation, id, copy_no, child_id);
    return placement;
  }
  return new SpecializedSphere<trans_code, rot_code>(logical_volume, transformation, id, copy_no, child_id);
}

VECCORE_ATT_DEVICE VPlacedVolume *UnplacedSphere::CreateSpecializedVolume(
    LogicalVolume const *const volume, Transformation3D const *const transformation, const TranslationCode trans_code,
    const RotationCode rot_code, const int id, const int copy_no, const int child_id, VPlacedVolume *const placement)
{
  return VolumeFactory::CreateByTransformation<UnplacedSphere>(volume, transformation, trans_code, rot_code, id,
                                                               copy_no, child_id, placement);
}

#endif

#ifdef VECGEOM_CUDA_INTERFACE

DevicePtr<cuda::VUnplacedVolume> UnplacedSphere::CopyToGpu(DevicePtr<cuda::VUnplacedVolume> const in_gpu_ptr) const
{
  return CopyToGpuImpl<UnplacedSphere>(in_gpu_ptr, GetInnerRadius(), GetOuterRadius(), GetStartPhiAngle(),
                                       GetDeltaPhiAngle(), GetStartThetaAngle(), GetDeltaThetaAngle());
}

DevicePtr<cuda::VUnplacedVolume> UnplacedSphere::CopyToGpu() const
{
  return CopyToGpuImpl<UnplacedSphere>();
}

#endif // VECGEOM_CUDA_INTERFACE

} // namespace VECGEOM_IMPL_NAMESPACE

#ifdef VECCORE_CUDA

namespace cxx {

template size_t DevicePtr<cuda::UnplacedSphere>::SizeOf();
template void DevicePtr<cuda::UnplacedSphere>::Construct(const Precision rmin, const Precision rmax,
                                                         const Precision sphi, const Precision dphi,
                                                         const Precision stheta, const Precision dtheta) const;

} // namespace cxx

#endif

} // namespace vecgeom