1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202
|
#include "VecGeom/base/Config.h"
#ifndef VECGEOM_ENABLE_CUDA
#include "VecGeom/volumes/LogicalVolume.h"
#include "VecGeomTest/Benchmarker.h"
#include "VecGeom/management/GeoManager.h"
#include "ArgParser.h"
#include "VecGeom/base/Stopwatch.h"
#include <iostream>
#include "VecGeom/volumes/Tessellated.h"
#include "VecGeom/volumes/Box.h"
#include "test/core/TessellatedOrb.h"
#ifdef VECGEOM_EMBREE
#include <embree3/rtcore.h>
#endif
using namespace vecgeom;
#endif
#ifdef VECGEOM_EMBREE
//> An meshed shape which uses the Embree data structures and layout
class EmbreeMeshShape {
public:
EmbreeMeshShape(UnplacedTessellated const &);
void InitMeshFromTesselatedSolid(UnplacedTessellated const &);
virtual double DistanceToIn(double x, double y, double z, double dx, double dy, double dz)
{
RTCRayHit ray;
ray.ray.flags = 0;
ray.ray.org_x = x;
ray.ray.org_y = y;
ray.ray.org_z = z;
ray.ray.dir_x = dx;
ray.ray.dir_y = dy;
ray.ray.dir_z = dz;
ray.ray.tnear = 0.;
ray.ray.tfar = 1E20f;
{
RTCIntersectContext context;
rtcInitIntersectContext(&context);
rtcIntersect1(fScene, &context, &ray);
ray.hit.Ng_x = -ray.hit.Ng_x; // EMBREE_FIXME: only correct for triangles,quads, and subdivision surfaces
ray.hit.Ng_y = -ray.hit.Ng_y;
ray.hit.Ng_z = -ray.hit.Ng_z;
}
return ray.ray.tfar;
}
private:
RTCDevice fDevice = nullptr;
RTCScene fScene = nullptr;
};
EmbreeMeshShape::EmbreeMeshShape(const UnplacedTessellated &tsl)
{
InitMeshFromTesselatedSolid(tsl);
}
void EmbreeMeshShape::InitMeshFromTesselatedSolid(const UnplacedTessellated &tsl)
{
fDevice = rtcNewDevice("VecGeomDevice"); // --> could be a global device??
fScene = rtcNewScene(fDevice);
rtcSetSceneBuildQuality(fScene, RTC_BUILD_QUALITY_HIGH);
unsigned int meshID;
RTCGeometry geom_0 = rtcNewGeometry(fDevice, RTC_GEOMETRY_TYPE_TRIANGLE);
rtcSetGeometryBuildQuality(geom_0, RTC_BUILD_QUALITY_HIGH);
rtcSetGeometryTimeStepCount(geom_0, 1);
meshID = rtcAttachGeometry(fScene, geom_0);
struct Vertex {
float x, y, z, r;
};
struct Triangle {
int v0, v1, v2;
};
// determine number of vertices and triangles
int ntriangles = tsl.GetNFacets();
int nvertices = 3 * ntriangles; // lets assume they are all different so that we don't have to match the vertices
//
/* set vertices and vertex colors */
Vertex *vertices = (Vertex *)rtcSetNewGeometryBuffer(geom_0, RTC_BUFFER_TYPE_VERTEX, 0, RTC_FORMAT_FLOAT3,
4 * sizeof(float), nvertices);
Triangle *triangles = (Triangle *)rtcSetNewGeometryBuffer(geom_0, RTC_BUFFER_TYPE_INDEX, 0, RTC_FORMAT_UINT3,
3 * sizeof(int), ntriangles);
// loop over all tessellated triangles and add them to the embree buffer
int vertexcounter = 0;
for (int t = 0; t < ntriangles; ++t) {
auto tile = tsl.GetFacet(t);
auto v = tile->fVertices;
// tile->fIndices;
vertices[vertexcounter].x = v[0].x();
vertices[vertexcounter].y = v[0].y();
vertices[vertexcounter].z = v[0].z();
triangles[t].v0 = vertexcounter;
vertexcounter++;
vertices[vertexcounter].x = v[1].x();
vertices[vertexcounter].y = v[1].y();
vertices[vertexcounter].z = v[1].z();
triangles[t].v1 = vertexcounter;
vertexcounter++;
vertices[vertexcounter].x = v[2].x();
vertices[vertexcounter].y = v[2].y();
vertices[vertexcounter].z = v[2].z();
triangles[t].v2 = vertexcounter;
vertexcounter++;
}
rtcCommitGeometry(geom_0);
rtcReleaseGeometry(geom_0);
rtcCommitScene(fScene);
}
#endif // VECGEOM_EMBREE
int main(int argc, char *argv[])
{
#ifndef VECGEOM_ENABLE_CUDA
OPTION_INT(npoints, 1024);
OPTION_INT(nrep, 4);
OPTION_DOUBLE(ngrid, 100);
double r = 10. * ngrid;
UnplacedBox worldUnplaced = UnplacedBox(2. * r, 2. * r, 2. * r);
UnplacedTessellated tsl;
// Create the tessellated solid
size_t nfacets = TessellatedOrb(r, ngrid, tsl);
Stopwatch timer;
timer.Start();
tsl.Close();
auto elapsed = timer.Stop();
std::cout << "SETUP TOOK " << elapsed << " s\n";
std::cout << "Benchmarking tessellated sphere having " << nfacets << " facets\n";
LogicalVolume world("world", &worldUnplaced);
LogicalVolume tessellated("tessellated", &tsl);
Transformation3D placement(0, 0, 0);
const VPlacedVolume *placedTsl = world.PlaceDaughter("tessellated", &tessellated, &placement);
(void)placedTsl;
VPlacedVolume *worldPlaced = world.Place();
GeoManager::Instance().SetWorldAndClose(worldPlaced);
// testing tesselated with Embree
// retrieve tessels first of all
assert(nfacets == tsl.GetNFacets());
Benchmarker tester(GeoManager::Instance().GetWorld());
tester.SetVerbosity(1);
tester.SetRepetitions(nrep);
tester.SetPointCount(npoints);
tester.SetToInBias(0.8);
tester.SetPoolMultiplier(1);
tester.RunToInBenchmark();
auto &rays = tester.GetProblematicRays();
std::cerr << "have " << rays.size() << "rays\n";
#ifdef VECGEOM_EMBREE
// this part enables comparison to a pure EMBREE represented tesselated solid
// just to see what is maximally possible if we used floating point precision and no error handling
timer.Start();
EmbreeMeshShape mesh(tsl);
elapsed = timer.Stop();
std::cout << "EMBREE SETUP TOOK " << elapsed << " s\n";
// Stopwatch timer;
timer.Start();
double s = 0;
for (int i = 0; i < rays.size(); ++i) {
const auto &p = rays[i].first;
const auto &d = rays[i].second;
auto dist = mesh.DistanceToIn(p.x(), p.y(), p.z(), d.x(), d.y(), d.z());
// std::cerr << "EMBREE " << dist << "\n";
s += dist;
}
elapsed = timer.Stop();
std::cerr << "time took " << elapsed << " s "
<< " CHECKSUM " << s << "\n";
#endif
// tester.RunToOutBenchmark();
return 0; // tester.RunBenchmark();
#else
return 0;
#endif
}
|