File: CreateTessels.cpp

package info (click to toggle)
vecgeom 1.2.8%2Bdfsg-2
  • links: PTS, VCS
  • area: main
  • in suites: sid, trixie
  • size: 24,016 kB
  • sloc: cpp: 88,803; ansic: 6,888; python: 1,035; sh: 582; sql: 538; makefile: 23
file content (307 lines) | stat: -rw-r--r-- 11,205 bytes parent folder | download
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
#include "VecGeom/base/Config.h"

#ifndef VECGEOM_ENABLE_CUDA

#include <VecCore/VecCore>

#include "test/benchmark/ArgParser.h"
#include "VecGeom/volumes/utilities/VolumeUtilities.h"
#include "VecGeom/base/Stopwatch.h"
#include "VecGeom/volumes/TessellatedStruct.h"
#include "VecGeom/volumes/kernel/TessellatedImplementation.h"
#include "test/core/TessellatedOrb.h"

#ifdef VECGEOM_ROOT
#include "VecGeomTest/Visualizer.h"
#include "TPolyMarker3D.h"
#include "TPolyLine3D.h"
#include "TH1.h"
#include "TGraph.h"
#include "TFile.h"
#include "VecGeom/volumes/Box.h"
#endif

#ifdef NDEBUG
#undef NDEBUG
#endif
#include <cassert>

/* Simple test for the scalability of creation of the tessellated structure.
   An orb is split into ngrid theta and phi regions; each cell is represented
   as a quadrilateral. The solid will contain 2*(ngrid-1)*ngrid triangle facets */

using namespace vecgeom;
using Real_v = vecgeom::VectorBackend::Real_v;

void RandomDirection(Vector3D<Precision> &direction)
{
  Precision phi   = RNG::Instance().uniform(0., 2. * kPi);
  Precision theta = std::acos(1. - 2. * RNG::Instance().uniform(0, 1));
  direction.x()   = std::sin(theta) * std::cos(phi);
  direction.y()   = std::sin(theta) * std::sin(phi);
  direction.z()   = std::cos(theta);
}

void RandomPointInBBox(Vector3D<Precision> &point, TessellatedStruct<3, Precision> const &tsl)
{
  Vector3D<Precision> rnd(RNG::Instance().uniform(0, 1), RNG::Instance().uniform(0, 1), RNG::Instance().uniform(0, 1));
  point = tsl.fMinExtent + rnd * (tsl.fMaxExtent - tsl.fMinExtent);
}

#ifdef VECGEOM_ROOT
void AddFacetToVisualizer(TriangleFacet<Precision> const *facet, Visualizer &visualizer)
{
  TPolyLine3D pl(3);
  pl.SetLineColor(kBlue);
  for (int i = 0; i < 3; i++)
    pl.SetNextPoint(facet->fVertices[i].x(), facet->fVertices[i].y(), facet->fVertices[i].z());
  visualizer.AddLine(pl);
}

void DrawCluster(TessellatedStruct<3, Precision> const &tsl, size_t icluster, Visualizer &visualizer,
                 bool boxonly = false)
{
  // Draw only segments of the facets which are not shared within the cluster
  TPolyLine3D pl(2);
  pl.SetLineColor(kBlue);
  if (boxonly) {
    Vector3D<Precision> minext = tsl.fClusters[icluster]->fMinExtent;
    Vector3D<Precision> maxext = tsl.fClusters[icluster]->fMaxExtent;
    Vector3D<Precision> dext   = maxext - minext;
    pl.SetPoint(0, minext.x(), minext.y(), minext.z());
    pl.SetPoint(1, minext.x() + dext.x(), minext.y(), minext.z());
    visualizer.AddLine(pl);
    pl.SetPoint(0, minext.x() + dext.x(), minext.y(), minext.z());
    pl.SetPoint(1, minext.x() + dext.x(), minext.y() + dext.y(), minext.z());
    visualizer.AddLine(pl);
    pl.SetPoint(0, minext.x() + dext.x(), minext.y() + dext.y(), minext.z());
    pl.SetPoint(1, minext.x(), minext.y() + dext.y(), minext.z());
    visualizer.AddLine(pl);
    pl.SetPoint(0, minext.x(), minext.y() + dext.y(), minext.z());
    pl.SetPoint(1, minext.x(), minext.y(), minext.z());
    visualizer.AddLine(pl);

    pl.SetPoint(0, minext.x(), minext.y(), minext.z());
    pl.SetPoint(1, minext.x(), minext.y(), minext.z() + dext.z());
    visualizer.AddLine(pl);
    pl.SetPoint(0, minext.x() + dext.x(), minext.y(), minext.z());
    pl.SetPoint(1, minext.x() + dext.x(), minext.y(), minext.z() + dext.z());
    visualizer.AddLine(pl);
    pl.SetPoint(0, minext.x() + dext.x(), minext.y() + dext.y(), minext.z());
    pl.SetPoint(1, minext.x() + dext.x(), minext.y() + dext.y(), minext.z() + dext.z());
    visualizer.AddLine(pl);
    pl.SetPoint(0, minext.x(), minext.y() + dext.y(), minext.z());
    pl.SetPoint(1, minext.x(), minext.y() + dext.y(), minext.z() + dext.z());
    visualizer.AddLine(pl);

    pl.SetPoint(0, minext.x(), minext.y(), minext.z() + dext.z());
    pl.SetPoint(1, minext.x() + dext.x(), minext.y(), minext.z() + dext.z());
    visualizer.AddLine(pl);
    pl.SetPoint(0, minext.x() + dext.x(), minext.y(), minext.z() + dext.z());
    pl.SetPoint(1, minext.x() + dext.x(), minext.y() + dext.y(), minext.z() + dext.z());
    visualizer.AddLine(pl);
    pl.SetPoint(0, minext.x() + dext.x(), minext.y() + dext.y(), minext.z() + dext.z());
    pl.SetPoint(1, minext.x(), minext.y() + dext.y(), minext.z() + dext.z());
    visualizer.AddLine(pl);
    pl.SetPoint(0, minext.x(), minext.y() + dext.y(), minext.z() + dext.z());
    pl.SetPoint(1, minext.x(), minext.y(), minext.z() + dext.z());
    visualizer.AddLine(pl);
    return;
  }

  size_t nfacets = 0;
  size_t ifacet  = 0;
  size_t iother  = 0;
  TriangleFacet<Precision> *facets[kVecSize];
  while (ifacet < kVecSize) {
    bool add = true;
    for (size_t i = 0; i < nfacets; ++i) {
      if (tsl.fClusters[icluster]->fFacets[ifacet] == facets[i]) {
        ifacet++;
        add = false;
        break;
      }
    }
    if (add) facets[nfacets++] = tsl.fClusters[icluster]->fFacets[ifacet++];
  }
  // Loop facets
  ifacet = 0;
  size_t ivert[2];
  while (ifacet < nfacets) {
    // loop segments
    for (int iseg = 0; iseg < 3; iseg++) {
      bool shared = false;
      ivert[0]    = facets[ifacet]->fIndices[iseg];
      ivert[1]    = facets[ifacet]->fIndices[(iseg + 1) % 3];
      // loop remaining facets
      for (iother = 0; iother < nfacets; iother++) {
        if (iother == ifacet) continue;
        // check if the other facet has the 2 vertices
        if (facets[iother]->fIndices[0] != ivert[0] && facets[iother]->fIndices[1] != ivert[0] &&
            facets[iother]->fIndices[2] != ivert[0])
          continue;
        if (facets[iother]->fIndices[0] != ivert[1] && facets[iother]->fIndices[1] != ivert[1] &&
            facets[iother]->fIndices[2] != ivert[1])
          continue;
        // The line is shared
        shared = true;
        break;
      }
      if (shared) continue;
      // Add the line segment to the visualizer
      pl.SetPoint(0, facets[ifacet]->fVertices[iseg].x(), facets[ifacet]->fVertices[iseg].y(),
                  facets[ifacet]->fVertices[iseg].z());
      pl.SetPoint(1, facets[ifacet]->fVertices[(iseg + 1) % 3].x(), facets[ifacet]->fVertices[(iseg + 1) % 3].y(),
                  facets[ifacet]->fVertices[(iseg + 1) % 3].z());
      visualizer.AddLine(pl);
    }
    ifacet++;
  }
}
#endif // VECGEOM_ROOT
#endif // VECGEOM_CUDA

int main(int argc, char *argv[])
{
#ifndef VECGEOM_ENABLE_CUDA
  using namespace vecgeom;
  //  using Real_v = typename VectorBackend::Real_v;

  OPTION_INT(ngrid, 100);
  OPTION_INT(npoints, 10000);
#ifdef VECGEOM_ROOT
  OPTION_INT(vis, 0);
  OPTION_INT(scalability, 0);
  int ngrid1            = 10;
  int i                 = 0;
  const Precision sqrt2 = vecCore::math::Sqrt(2.);
#endif
  constexpr Precision r = 10.;
  Vector3D<Precision> start(0, 0, 0);
  Vector3D<Precision> point;

  Vector3D<Precision> *dirs = new Vector3D<Precision>[npoints];
  for (int i = 0; i < npoints; ++i)
    RandomDirection(dirs[i]);

#ifdef VECGEOM_ROOT
  TGraph *gtime = nullptr;
  if (scalability) {
    gtime = new TGraph(14);
    while (ngrid1 < 1000) {
      SimpleTessellated *stsl   = new SimpleTessellated("test_VecGeomTessellated");
      UnplacedTessellated *tsl1 = (UnplacedTessellated *)stsl->GetUnplacedVolume();
      int nfacets1              = TessellatedOrb(r, ngrid1, *tsl1);
      // Close the solid
      Stopwatch timer;
      timer.Start();
      tsl1->Close();
      double tbuild = timer.Stop();
      gtime->SetPoint(i++, nfacets1, tbuild);
      // Check Distance performance
      timer.Start();
      for (int i = 0; i < npoints; ++i)
        stsl->DistanceToIn(start, dirs[i]);
      double trun = timer.Stop();
      printf("n=%d ngrid=%d nfacets=%d  build time=%g run time=%g\n", i, ngrid1, nfacets1, tbuild, trun);
      delete tsl1;
      ngrid1 = sqrt2 * double(ngrid1);
    }
  }
#endif
  SimpleTessellated *stsl1                   = new SimpleTessellated("test_VecGeomTessellated");
  UnplacedTessellated *utsl                  = (UnplacedTessellated *)stsl1->GetUnplacedVolume();
  TessellatedStruct<3, Precision> const &tsl = utsl->GetStruct();
  TessellatedOrb(r, ngrid, *utsl);
  utsl->Close();
  std::cout << "=== Tessellated solid statistics: nfacets = " << tsl.fFacets.size()
            << "  nclusters = " << tsl.fClusters.size() << "  kVecSize = " << kVecSize << std::endl;
  std::cout << "    cluster distribution: ";
  for (unsigned i = 1; i <= kVecSize; ++i) {
    std::cout << i << ": " << tsl.fNcldist[i] << " | ";
  }
  std::cout << "\n";

// Visualize the facets
#ifdef VECGEOM_ROOT
  // Analyze clusters
  int nblobs, nfacets;
  int nfacetstot    = 0;
  TH1F *hdispersion = new TH1F("hdispersion", "Cluster dispersion", 100, 0., 10.);
  TH1I *hblobs      = new TH1I("hblobs", "Blobs in clusters", 8, 0, 8);
  for (unsigned icluster = 0; icluster < tsl.fClusters.size(); ++icluster) {
    double dispersion = tsl.fClusters[icluster]->ComputeSparsity(nblobs, nfacets);
    nfacetstot += nfacets;
    hdispersion->Fill(dispersion);
    hblobs->Fill(nblobs);
  }
  printf("Number of facets = %d/%zu\n", nfacetstot, tsl.fFacets.size());
  TFile *file = TFile::Open("dispersion.root", "RECREATE");
  hdispersion->Write();
  hblobs->Write();
  if (gtime) gtime->Write();
  file->Write();

  if (vis) {
    Visualizer visualizer;
    // Visualize bounding box
    Vector3D<Precision> deltas = 0.5 * (tsl.fMaxExtent - tsl.fMinExtent);
    Vector3D<Precision> origin = 0.5 * (tsl.fMaxExtent + tsl.fMinExtent);
    SimpleBox box("bbox", deltas.x(), deltas.y(), deltas.z());
    visualizer.AddVolume(box, Transformation3D(origin.x(), origin.y(), origin.z()));

    // Visualize facets

    for (auto facet : tsl.fFacets)
      AddFacetToVisualizer(facet, visualizer);

    // Visualize clusters
    //    for (unsigned icluster = 0; icluster < tsl.fClusters.size(); ++icluster)
    //      DrawCluster(tsl, icluster, visualizer, false);

    TPolyMarker3D pm(npoints);
    pm.SetMarkerColor(kRed);
    pm.SetMarkerStyle(7);
    // Test contains function

    for (int i = 0; i < npoints; ++i) {
      RandomPointInBBox(point, tsl);
      if (0) {
        // Visualize a specific point/direction
        point.Set(-8, 8, 0);
        Vector3D<Precision> direction(-0.74608321159322855, -0.28587882094198169, -0.60135941093123035);
        pm.SetNextPoint(point[0], point[1], point[2]);
        TPolyLine3D pl(2);
        pl.SetLineColor(kRed);
        pl.SetNextPoint(point[0], point[1], point[2]);
        point += direction * 25;
        pm.SetNextPoint(point[0], point[1], point[2]);
        pl.SetNextPoint(point[0], point[1], point[2]);
        visualizer.AddLine(pl);
        break;
      }
      bool contains;
      TessellatedImplementation::Contains<Precision, bool>(tsl, point, contains);
      if (contains) pm.SetNextPoint(point[0], point[1], point[2]);
    }

    // Test distance to out from origin

    /*
        for (int i = 0; i < npoints; ++i) {
          tsl.DistanceToSolid<false>(start, dirs[i], InfinityLength<Precision>(), distance, ifacet);
          point = start + distance * dirs[i];
          pm.SetNextPoint(point[0], point[1], point[2]);
        }
    */
    delete[] dirs;

    visualizer.AddPoints(pm);
    visualizer.Show();
    return 0;
  }
#endif // VECGEOM_ROOT
#endif

  return 0;
}