File: TestOrb.cpp

package info (click to toggle)
vecgeom 1.2.8%2Bdfsg-2
  • links: PTS, VCS
  • area: main
  • in suites: sid, trixie
  • size: 24,016 kB
  • sloc: cpp: 88,803; ansic: 6,888; python: 1,035; sh: 582; sql: 538; makefile: 23
file content (396 lines) | stat: -rw-r--r-- 15,774 bytes parent folder | download | duplicates (2)
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
// This file is part of VecGeom and is distributed under the
// conditions in the file LICENSE.txt in the top directory.
// For the full list of authors see CONTRIBUTORS.txt and `git log`.

/// \brief Unit test for the Orb.
/// \file test/unit_tests/TestOrb.cpp
/// \author Raman Sehgal

// ensure asserts are compiled in
#undef NDEBUG
#include "VecGeom/base/FpeEnable.h"

#include "VecGeom/base/Global.h"
#include "VecGeom/base/Vector3D.h"
#include "VecGeom/volumes/Orb.h"
#include "ApproxEqual.h"

#include <cmath>

bool testvecgeom = false;

using vecgeom::kInfLength;
using vecgeom::kPi;
using vecgeom::Precision;

template <class Orb_t, class Vec_t = vecgeom::Vector3D<vecgeom::Precision>>
bool TestOrb()
{

  int verbose = 0;

  vecgeom::Precision fR = 9.;
  Vec_t pzero(0, 0, 0);
  Vec_t pbigx(100, 0, 0), pbigy(0, 100, 0), pbigz(0, 0, 100);
  Vec_t pbigmx(-100, 0, 0), pbigmy(0, -100, 0), pbigmz(0, 0, -100);
  Vec_t ponx(fR, 0., 0.);   // point on surface on X axis
  Vec_t ponmx(-fR, 0., 0.); // point on surface on minus X axis
  Vec_t pony(0., fR, 0.);   // point on surface on Y axis
  Vec_t ponmy(0., -fR, 0.); // point on surface on minus Y axis
  Vec_t ponz(0., 0., fR);   // point on surface on Z axis
  Vec_t ponmz(0., 0., -fR); // point on surface on minus Z axis

  Vec_t ponxside(fR, 0, 0), ponyside(0, fR, 0), ponzside(0, 0, fR);
  Vec_t ponmxside(-fR, 0, 0), ponmyside(0, -fR, 0), ponmzside(0, 0, -fR);

  Vec_t vx(1, 0, 0), vy(0, 1, 0), vz(0, 0, 1);
  Vec_t vmx(-1, 0, 0), vmy(0, -1, 0), vmz(0, 0, -1);
  Vec_t vxy(1 / std::sqrt(2.0), 1 / std::sqrt(2.0), 0);
  Vec_t vmxy(-1 / std::sqrt(2.0), 1 / std::sqrt(2.0), 0);
  Vec_t vmxmy(-1 / std::sqrt(2.0), -1 / std::sqrt(2.0), 0);
  Vec_t vxmy(1 / std::sqrt(2.0), -1 / std::sqrt(2.0), 0);
  Vec_t vxmz(1 / std::sqrt(2.0), 0, -1 / std::sqrt(2.0));

  Orb_t b1("Solid VecGeomOrb #1", fR);
  Orb_t b2("Solid VecGeomOrb #2", 6);

  // Check cubic volume
  assert(ApproxEqual<Precision>(b1.Capacity(), (4 * kPi / 3) * fR * fR * fR));
  assert(ApproxEqual<Precision>(b2.Capacity(), (4 * kPi / 3) * 6 * 6 * 6));

  // Check Surface area
  assert(ApproxEqual<Precision>(b1.SurfaceArea(), ((4 * kPi) * fR * fR)));
  assert(ApproxEqual<Precision>(b2.SurfaceArea(), ((4 * kPi) * 6 * 6)));

  // Check Extent and cached BBox
  Vec_t minExtent, maxExtent;
  Vec_t minBBox, maxBBox;
  b1.Extent(minExtent, maxExtent);
  b1.GetUnplacedVolume()->GetBBox(minBBox, maxBBox);
  assert(ApproxEqual(minExtent, Vec_t(-fR, -fR, -fR)));
  assert(ApproxEqual(maxExtent, Vec_t(fR, fR, fR)));
  assert(ApproxEqual(minExtent, minBBox));
  assert(ApproxEqual(maxExtent, maxBBox));
  b2.Extent(minExtent, maxExtent);
  b2.GetUnplacedVolume()->GetBBox(minBBox, maxBBox);
  assert(ApproxEqual(minExtent, Vec_t(-6, -6, -6)));
  assert(ApproxEqual(maxExtent, Vec_t(6, 6, 6)));
  assert(ApproxEqual(minExtent, minBBox));
  assert(ApproxEqual(maxExtent, maxBBox));

  // Check Surface Normal
  Vec_t normal;
  bool valid;

  double Dist;

  valid = b1.Normal(ponx, normal);
  assert(ApproxEqual(normal, Vec_t(1, 0, 0)));
  assert(valid);

  valid = b1.Normal(pony, normal);
  assert(ApproxEqual(normal, Vec_t(0, 1, 0)));
  assert(valid);

  valid = b1.Normal(ponz, normal);
  assert(ApproxEqual(normal, Vec_t(0, 0, 1)));
  assert(valid);

  valid = b1.Normal(ponmx, normal);
  assert(ApproxEqual(normal, Vec_t(-1, 0, 0)));
  assert(valid);

  valid = b1.Normal(ponmy, normal);
  assert(ApproxEqual(normal, Vec_t(0, -1, 0)));
  assert(valid);

  valid = b1.Normal(ponmz, normal);
  assert(ApproxEqual(normal, Vec_t(0, 0, -1)));
  assert(valid);
  // DistanceToOut(P,V) with asserts for norm and convex
  Dist  = b1.DistanceToOut(pzero, vx);
  valid = b1.Normal(pzero + Dist * vx, normal);
  assert(ApproxEqual<Precision>(Dist, fR) && ApproxEqual(normal, vx));

  Dist  = b1.DistanceToOut(pzero, vmx);
  valid = b1.Normal(pzero + Dist * vmx, normal);
  assert(ApproxEqual<Precision>(Dist, fR) && ApproxEqual(normal, vmx));

  Dist  = b1.DistanceToOut(pzero, vy);
  valid = b1.Normal(pzero + Dist * vy, normal);
  assert(ApproxEqual<Precision>(Dist, fR) && ApproxEqual(normal, vy));

  Dist  = b1.DistanceToOut(pzero, vmy);
  valid = b1.Normal(pzero + Dist * vmy, normal);
  assert(ApproxEqual<Precision>(Dist, fR) && ApproxEqual(normal, vmy));

  Dist  = b1.DistanceToOut(pzero, vz);
  valid = b1.Normal(pzero + Dist * vz, normal);
  assert(ApproxEqual<Precision>(Dist, fR) && ApproxEqual(normal, vz));

  Dist  = b1.DistanceToOut(pzero, vmz);
  valid = b1.Normal(pzero + Dist * vmz, normal);
  assert(ApproxEqual<Precision>(Dist, fR) && ApproxEqual(normal, vmz));

  Dist  = b1.DistanceToOut(ponxside, vx);
  valid = b1.Normal(ponxside + Dist * vx, normal);
  assert(ApproxEqual<Precision>(Dist, 0) && ApproxEqual(normal, vx));

  Dist  = b1.DistanceToOut(ponxside, vmx);
  valid = b1.Normal(ponxside + Dist * vmx, normal);
  assert(ApproxEqual<Precision>(Dist, 2 * fR) && ApproxEqual(normal, vmx));

  Dist  = b1.DistanceToOut(ponmxside, vx);
  valid = b1.Normal(ponmxside + Dist * vx, normal);
  assert(ApproxEqual<Precision>(Dist, 2 * fR) && ApproxEqual(normal, vx));

  Dist  = b1.DistanceToOut(ponmxside, vmx);
  valid = b1.Normal(ponmxside + Dist * vmx, normal);
  assert(ApproxEqual<Precision>(Dist, 0) && ApproxEqual(normal, vmx));

  Dist  = b1.DistanceToOut(ponyside, vy);
  valid = b1.Normal(ponyside + Dist * vy, normal);
  assert(ApproxEqual<Precision>(Dist, 0) && ApproxEqual(normal, vy));

  Dist  = b1.DistanceToOut(ponyside, vmy);
  valid = b1.Normal(ponyside + Dist * vmy, normal);
  assert(ApproxEqual<Precision>(Dist, 2 * fR) && ApproxEqual(normal, vmy));

  Dist  = b1.DistanceToOut(ponmyside, vy);
  valid = b1.Normal(ponmyside + Dist * vy, normal);
  assert(ApproxEqual<Precision>(Dist, 2 * fR) && ApproxEqual(normal, vy));

  Dist  = b1.DistanceToOut(ponmyside, vmy);
  valid = b1.Normal(ponmyside + Dist * vmy, normal);
  assert(ApproxEqual<Precision>(Dist, 0) && ApproxEqual(normal, vmy));

  Dist  = b1.DistanceToOut(ponzside, vz);
  valid = b1.Normal(ponzside + Dist * vz, normal);
  assert(ApproxEqual<Precision>(Dist, 0) && ApproxEqual(normal, vz));

  Dist  = b1.DistanceToOut(ponzside, vmz);
  valid = b1.Normal(ponzside + Dist * vmz, normal);
  assert(ApproxEqual<Precision>(Dist, 2 * fR) && ApproxEqual(normal, vmz));

  Dist  = b1.DistanceToOut(ponmzside, vz);
  valid = b1.Normal(ponmzside + Dist * vz, normal);
  assert(ApproxEqual<Precision>(Dist, 2 * fR) && ApproxEqual(normal, vz));

  Dist  = b1.DistanceToOut(ponmzside, vmz);
  valid = b1.Normal(ponmzside + Dist * vmz, normal);
  assert(ApproxEqual<Precision>(Dist, 0) && ApproxEqual(normal, vmz));

  // Check Inside
  assert(b1.Inside(pzero) == vecgeom::EInside::kInside);
  assert(b1.Inside(pbigx) == vecgeom::EInside::kOutside);
  assert(b1.Inside(pbigy) == vecgeom::EInside::kOutside);
  assert(b1.Inside(pbigz) == vecgeom::EInside::kOutside);

  assert(b1.Inside(ponxside) == vecgeom::EInside::kSurface);
  assert(b1.Inside(ponyside) == vecgeom::EInside::kSurface);
  assert(b1.Inside(ponzside) == vecgeom::EInside::kSurface);

  assert(b2.Inside(pzero) == vecgeom::EInside::kInside);
  assert(b2.Inside(ponxside) == vecgeom::EInside::kOutside);
  assert(b2.Inside(ponyside) == vecgeom::EInside::kOutside);
  assert(b2.Inside(ponzside) == vecgeom::EInside::kOutside);
  assert(b2.Inside(Vec_t(6, 0, 0)) == vecgeom::EInside::kSurface);
  assert(b2.Inside(Vec_t(0, 6, 0)) == vecgeom::EInside::kSurface);
  assert(b2.Inside(Vec_t(0, 0, 6)) == vecgeom::EInside::kSurface);

  // SafetyToOut(P)
  Dist = b1.SafetyToOut(pzero);
  assert(ApproxEqual<Precision>(Dist, fR));
  Dist = b1.SafetyToOut(vx);
  assert(ApproxEqual<Precision>(Dist, fR - 1));
  Dist = b1.SafetyToOut(vy);
  assert(ApproxEqual<Precision>(Dist, fR - 1));
  Dist = b1.SafetyToOut(vz);
  assert(ApproxEqual<Precision>(Dist, fR - 1));

  // SafetyToIn(P)
  Dist = b1.SafetyToIn(pbigx);
  assert(ApproxEqual<Precision>(Dist, 100 - fR));
  Dist = b1.SafetyToIn(pbigmx);
  assert(ApproxEqual<Precision>(Dist, 100 - fR));
  Dist = b1.SafetyToIn(pbigy);
  assert(ApproxEqual<Precision>(Dist, 100 - fR));
  Dist = b1.SafetyToIn(pbigmy);
  assert(ApproxEqual<Precision>(Dist, 100 - fR));
  Dist = b1.SafetyToIn(pbigz);
  assert(ApproxEqual<Precision>(Dist, 100 - fR));
  Dist = b1.SafetyToIn(pbigmz);
  assert(ApproxEqual<Precision>(Dist, 100 - fR));

  // DistanceToIn(P,V)
  Dist = b1.DistanceToIn(pbigx, vmx);
  assert(ApproxEqual<Precision>(Dist, 100 - fR));
  Dist = b1.DistanceToIn(pbigmx, vx);
  assert(ApproxEqual<Precision>(Dist, 100 - fR));
  Dist = b1.DistanceToIn(pbigy, vmy);
  assert(ApproxEqual<Precision>(Dist, 100 - fR));
  Dist = b1.DistanceToIn(pbigmy, vy);
  assert(ApproxEqual<Precision>(Dist, 100 - fR));
  Dist = b1.DistanceToIn(pbigz, vmz);
  assert(ApproxEqual<Precision>(Dist, 100 - fR));
  Dist = b1.DistanceToIn(pbigmz, vz);
  assert(ApproxEqual<Precision>(Dist, 100 - fR));

  Dist = b1.DistanceToIn(pbigx, vxy);
  if (Dist >= kInfLength) Dist = kInfLength;
  assert(ApproxEqual<Precision>(Dist, kInfLength));

  Dist = b1.DistanceToIn(pbigmx, vxy);
  if (Dist >= kInfLength) Dist = kInfLength;
  assert(ApproxEqual<Precision>(Dist, kInfLength));

  Vec_t pJohnXZ(9, 0, 12);
  Dist = b2.DistanceToIn(pJohnXZ, vxmz);
  if (Dist >= kInfLength) Dist = kInfLength;
  assert(ApproxEqual<Precision>(Dist, kInfLength));

  Vec_t pJohnXY(12, 9, 0);
  Dist = b2.DistanceToIn(pJohnXY, vmxy);
  if (Dist >= kInfLength) Dist = kInfLength;
  assert(ApproxEqual<Precision>(Dist, kInfLength));

  Dist = b2.DistanceToIn(pJohnXY, vmx);
  if (Dist >= kInfLength) Dist = kInfLength;
  assert(ApproxEqual<Precision>(Dist, kInfLength));

  Vec_t pJohnX(8, 0, 0);
  Dist = b2.DistanceToIn(pJohnX, vmx);
  assert(ApproxEqual<Precision>(Dist, 2));

  Vec_t p2JohnXY(7, 5, 0);
  Dist = b2.DistanceToIn(p2JohnXY, vmx);
  assert(ApproxEqual<Precision>(Dist, 3.6833752));

  Dist = b1.DistanceToIn(Vec_t(-25, -35, 0), vx);
  if (Dist >= kInfLength) Dist = kInfLength;
  assert(ApproxEqual<Precision>(Dist, kInfLength));

  Dist = b1.DistanceToIn(Vec_t(-25, -35, 0), vy);
  if (Dist >= kInfLength) Dist = kInfLength;
  assert(ApproxEqual<Precision>(Dist, kInfLength));

  Vec_t pointO(-8.363470934547895, 2.754420966126675, -2.665617952433236);
  Vec_t dirO(-8.363470934547895 / 9.2, 2.754420966126675 / 9.2, -2.665617952433236 / 9.2);
  Dist = b1.DistanceToIn(pointO, dirO);
  if (Dist >= kInfLength) Dist = kInfLength;
  assert(ApproxEqual<Precision>(Dist, kInfLength));

  Dist = b1.DistanceToOut(pointO, dirO);
  if (verbose) std::cout << "DistanceToOut is : " << Dist << std::endl;
  assert(Dist <= 0.);

  if (verbose) std::cout << " Now testing point out directing in " << std::endl;
  Vec_t dirI(8.363470934547895 / 9.2, -2.754420966126675 / 9.2, 2.665617952433236 / 9.2);
  Dist = b1.DistanceToIn(pointO, dirI);
  assert(ApproxEqual<Precision>(Dist, 0.2));
  if (verbose) std::cout << "DistanceToIn PODI is : " << Dist << std::endl;

  Dist = b1.DistanceToOut(pointO, dirO);
  assert(Dist <= 0.);
  if (verbose) std::cout << "DistanceToOut PODI is : " << Dist << std::endl;

  // Point inside outer tolerance and directing out
  if (verbose) std::cout << "Testing point inside outer tolerance and directing out" << std::endl;
  Vec_t pointOTol(8.884242447222299, 0.134875592787852, -1.432495973274375);
  Vec_t dirOTol(8.884242447222299 / 9, 0.134875592787852 / 9, -1.432495973274375 / 9);
  Dist = b1.DistanceToIn(pointOTol, dirOTol);
  if (Dist >= kInfLength) Dist = kInfLength;
  assert(ApproxEqual<Precision>(Dist, kInfLength));
  if (verbose) std::cout << "DistanceToIn for point inside outer tolerance and directing out: " << Dist << std::endl;

  // Point inside outer tolerance and directing in
  if (verbose) std::cout << "Testing point inside outer tolerance and directing IN" << std::endl;
  Vec_t dirOTolI(-8.884242447222299 / 9, -0.134875592787852 / 9, 1.432495973274375 / 9);
  Dist = b1.DistanceToIn(pointOTol, dirOTolI);
  assert(ApproxEqual<Precision>(Dist, 0));
  if (verbose) std::cout << "DistanceToIn for point inside outer tolerance and directing IN: " << Dist << std::endl;

  // Point inside  and directing out
  if (verbose) std::cout << "Testing point inside and directing OUT" << std::endl;
  Vec_t pointI(-3.618498437781364, 2.401810108299175, -6.718465394675017);
  Vec_t dirIO(-3.618498437781364 / 8, 2.401810108299175 / 8, -6.718465394675017 / 8);
  Dist = b1.DistanceToIn(pointI, dirIO);
  if (Dist >= kInfLength) Dist = kInfLength;
  // assert(ApproxEqual<Precision>(Dist,kInfLength));
  assert(Dist < 0.);
  if (verbose) std::cout << "DistanceToIn for point inside and directing OUT: " << Dist << std::endl;

  Dist = b1.DistanceToOut(pointI, dirIO);
  assert(ApproxEqual<Precision>(Dist, 1));
  if (verbose) std::cout << "DistanceToOut for point inside and directing OUT: " << Dist << std::endl;

  // Point inside and directing in
  if (verbose) std::cout << "Testing point inside and directing IN" << std::endl;
  Vec_t dirII(3.618498437781364 / 8, -2.401810108299175 / 8, 6.718465394675017 / 8);
  Dist = b1.DistanceToIn(pointI, dirII);
  if (Dist >= kInfLength) Dist = kInfLength;
  // assert(ApproxEqual<Precision>(Dist,kInfLength));
  assert(Dist < 0.);

  Dist = b1.DistanceToOut(pointI, dirII);
  assert(ApproxEqual<Precision>(Dist, 17));

  // Testing Surface point generated by shape tester with Random direction
  Orb_t b3("Solid VecGeomOrb #3", 3);
  Vec_t tSrPoint(-1.704652541027918744, 0.92532982039202238411, -2.2886512267834184797);
  Vec_t tSrDir(0.55992127966252225324, -0.73207465430510332283, 0.38801399601708530529);
  Dist = b3.DistanceToIn(tSrPoint, tSrDir);
  assert(ApproxEqual<Precision>(Dist, 0));

  // Testing TAD Unqualified points by shape tester
  Orb_t b4("Solid VecGeomOrb #4", 3);

  // Trying T0  points by shape tester
  // Direction is random
  Orb_t b5("Solid VecGeomOrb #5", 10.);
  Vec_t t0UQualPoint(-89.066635313481228309, -125.66666807765292901, 105.36991856050774174);
  Vec_t t0UQualDir(0.45467415240829972545, 0.6924777322970485649, -0.56013034679843187735);
  double shiftDist = b5.DistanceToIn(t0UQualPoint, t0UQualDir);
  Vec_t t0UPoint(t0UQualPoint + shiftDist * t0UQualDir);
  Dist = b5.DistanceToIn(t0UPoint, t0UQualDir);
  assert(ApproxEqual<Precision>(Dist, 0));

  // Trying T0 Test of Shape tester.
  // Inside point chosen is 0.,0.,0.
  Vec_t t0KnownPoint(-89.066635313481228309, -125.66666807765292901, 105.36991856050774174);
  double vecLen = t0KnownPoint.Mag();
  Vec_t t0Dir((1 / vecLen) * (t0KnownPoint * (-1)));
  shiftDist = b5.DistanceToIn(t0KnownPoint, t0Dir);
  Vec_t t0Point(t0KnownPoint + shiftDist * t0Dir);
  Dist = b5.DistanceToIn(t0Point, t0Dir);
  assert(ApproxEqual<Precision>(Dist, 0));

  // Trying T0 test of Shape Tester
  Orb_t b6("Solid VecGeomOrb #6", 50.);
  Vec_t t0KnownPoint2(725.77514262389081523, -745.20572125476428482, 778.25732374796621116);
  vecLen = t0KnownPoint2.Mag();
  Vec_t t0Dir2((1 / vecLen) * (t0KnownPoint2 * (-1)));
  // Propagate to the solid first
  shiftDist = b6.GetUnplacedVolume()->ApproachSolid(t0KnownPoint2, 1 / t0Dir2);
  Vec_t t0Point2(t0KnownPoint2 + shiftDist * t0Dir2);
  double shiftDist2 = b6.DistanceToIn(t0Point2, t0Dir2);
  Vec_t t0Point3(t0Point2 + shiftDist2 * t0Dir2);
  Dist = b6.DistanceToIn(t0Point3, t0Dir2);
  assert(ApproxEqual<Precision>(Dist, 0));

  // Trying TS test of Shape Tester
  Vec_t tSKnownPoint(-46.418969559619192466, -17.038092391528927294, 7.4150301880992222081);
  Vec_t tSDir(0.84546676256780450842, -0.33558962646945966757, -0.41541010579811871173);
  Dist = b6.DistanceToIn(tSKnownPoint, tSDir);
  assert(ApproxEqual<Precision>(Dist, 0));

  return true;
}

int main(int argc, char *argv[])
{
  assert(TestOrb<vecgeom::SimpleOrb>());
  std::cout << "VecGeomOrb passed\n";

  return 0;
}