1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 300 301 302 303 304 305 306 307 308 309 310 311 312 313 314 315 316 317 318 319 320 321 322 323 324 325 326 327 328 329 330 331 332 333 334 335 336 337 338 339 340 341 342 343 344 345 346 347 348 349 350 351 352 353 354 355 356 357 358 359 360 361 362 363 364 365 366 367 368 369 370 371 372 373 374 375 376 377 378 379 380 381 382 383 384 385 386 387 388 389 390 391 392 393 394 395 396
|
// This file is part of VecGeom and is distributed under the
// conditions in the file LICENSE.txt in the top directory.
// For the full list of authors see CONTRIBUTORS.txt and `git log`.
/// \brief Unit test for the Orb.
/// \file test/unit_tests/TestOrb.cpp
/// \author Raman Sehgal
// ensure asserts are compiled in
#undef NDEBUG
#include "VecGeom/base/FpeEnable.h"
#include "VecGeom/base/Global.h"
#include "VecGeom/base/Vector3D.h"
#include "VecGeom/volumes/Orb.h"
#include "ApproxEqual.h"
#include <cmath>
bool testvecgeom = false;
using vecgeom::kInfLength;
using vecgeom::kPi;
using vecgeom::Precision;
template <class Orb_t, class Vec_t = vecgeom::Vector3D<vecgeom::Precision>>
bool TestOrb()
{
int verbose = 0;
vecgeom::Precision fR = 9.;
Vec_t pzero(0, 0, 0);
Vec_t pbigx(100, 0, 0), pbigy(0, 100, 0), pbigz(0, 0, 100);
Vec_t pbigmx(-100, 0, 0), pbigmy(0, -100, 0), pbigmz(0, 0, -100);
Vec_t ponx(fR, 0., 0.); // point on surface on X axis
Vec_t ponmx(-fR, 0., 0.); // point on surface on minus X axis
Vec_t pony(0., fR, 0.); // point on surface on Y axis
Vec_t ponmy(0., -fR, 0.); // point on surface on minus Y axis
Vec_t ponz(0., 0., fR); // point on surface on Z axis
Vec_t ponmz(0., 0., -fR); // point on surface on minus Z axis
Vec_t ponxside(fR, 0, 0), ponyside(0, fR, 0), ponzside(0, 0, fR);
Vec_t ponmxside(-fR, 0, 0), ponmyside(0, -fR, 0), ponmzside(0, 0, -fR);
Vec_t vx(1, 0, 0), vy(0, 1, 0), vz(0, 0, 1);
Vec_t vmx(-1, 0, 0), vmy(0, -1, 0), vmz(0, 0, -1);
Vec_t vxy(1 / std::sqrt(2.0), 1 / std::sqrt(2.0), 0);
Vec_t vmxy(-1 / std::sqrt(2.0), 1 / std::sqrt(2.0), 0);
Vec_t vmxmy(-1 / std::sqrt(2.0), -1 / std::sqrt(2.0), 0);
Vec_t vxmy(1 / std::sqrt(2.0), -1 / std::sqrt(2.0), 0);
Vec_t vxmz(1 / std::sqrt(2.0), 0, -1 / std::sqrt(2.0));
Orb_t b1("Solid VecGeomOrb #1", fR);
Orb_t b2("Solid VecGeomOrb #2", 6);
// Check cubic volume
assert(ApproxEqual<Precision>(b1.Capacity(), (4 * kPi / 3) * fR * fR * fR));
assert(ApproxEqual<Precision>(b2.Capacity(), (4 * kPi / 3) * 6 * 6 * 6));
// Check Surface area
assert(ApproxEqual<Precision>(b1.SurfaceArea(), ((4 * kPi) * fR * fR)));
assert(ApproxEqual<Precision>(b2.SurfaceArea(), ((4 * kPi) * 6 * 6)));
// Check Extent and cached BBox
Vec_t minExtent, maxExtent;
Vec_t minBBox, maxBBox;
b1.Extent(minExtent, maxExtent);
b1.GetUnplacedVolume()->GetBBox(minBBox, maxBBox);
assert(ApproxEqual(minExtent, Vec_t(-fR, -fR, -fR)));
assert(ApproxEqual(maxExtent, Vec_t(fR, fR, fR)));
assert(ApproxEqual(minExtent, minBBox));
assert(ApproxEqual(maxExtent, maxBBox));
b2.Extent(minExtent, maxExtent);
b2.GetUnplacedVolume()->GetBBox(minBBox, maxBBox);
assert(ApproxEqual(minExtent, Vec_t(-6, -6, -6)));
assert(ApproxEqual(maxExtent, Vec_t(6, 6, 6)));
assert(ApproxEqual(minExtent, minBBox));
assert(ApproxEqual(maxExtent, maxBBox));
// Check Surface Normal
Vec_t normal;
bool valid;
double Dist;
valid = b1.Normal(ponx, normal);
assert(ApproxEqual(normal, Vec_t(1, 0, 0)));
assert(valid);
valid = b1.Normal(pony, normal);
assert(ApproxEqual(normal, Vec_t(0, 1, 0)));
assert(valid);
valid = b1.Normal(ponz, normal);
assert(ApproxEqual(normal, Vec_t(0, 0, 1)));
assert(valid);
valid = b1.Normal(ponmx, normal);
assert(ApproxEqual(normal, Vec_t(-1, 0, 0)));
assert(valid);
valid = b1.Normal(ponmy, normal);
assert(ApproxEqual(normal, Vec_t(0, -1, 0)));
assert(valid);
valid = b1.Normal(ponmz, normal);
assert(ApproxEqual(normal, Vec_t(0, 0, -1)));
assert(valid);
// DistanceToOut(P,V) with asserts for norm and convex
Dist = b1.DistanceToOut(pzero, vx);
valid = b1.Normal(pzero + Dist * vx, normal);
assert(ApproxEqual<Precision>(Dist, fR) && ApproxEqual(normal, vx));
Dist = b1.DistanceToOut(pzero, vmx);
valid = b1.Normal(pzero + Dist * vmx, normal);
assert(ApproxEqual<Precision>(Dist, fR) && ApproxEqual(normal, vmx));
Dist = b1.DistanceToOut(pzero, vy);
valid = b1.Normal(pzero + Dist * vy, normal);
assert(ApproxEqual<Precision>(Dist, fR) && ApproxEqual(normal, vy));
Dist = b1.DistanceToOut(pzero, vmy);
valid = b1.Normal(pzero + Dist * vmy, normal);
assert(ApproxEqual<Precision>(Dist, fR) && ApproxEqual(normal, vmy));
Dist = b1.DistanceToOut(pzero, vz);
valid = b1.Normal(pzero + Dist * vz, normal);
assert(ApproxEqual<Precision>(Dist, fR) && ApproxEqual(normal, vz));
Dist = b1.DistanceToOut(pzero, vmz);
valid = b1.Normal(pzero + Dist * vmz, normal);
assert(ApproxEqual<Precision>(Dist, fR) && ApproxEqual(normal, vmz));
Dist = b1.DistanceToOut(ponxside, vx);
valid = b1.Normal(ponxside + Dist * vx, normal);
assert(ApproxEqual<Precision>(Dist, 0) && ApproxEqual(normal, vx));
Dist = b1.DistanceToOut(ponxside, vmx);
valid = b1.Normal(ponxside + Dist * vmx, normal);
assert(ApproxEqual<Precision>(Dist, 2 * fR) && ApproxEqual(normal, vmx));
Dist = b1.DistanceToOut(ponmxside, vx);
valid = b1.Normal(ponmxside + Dist * vx, normal);
assert(ApproxEqual<Precision>(Dist, 2 * fR) && ApproxEqual(normal, vx));
Dist = b1.DistanceToOut(ponmxside, vmx);
valid = b1.Normal(ponmxside + Dist * vmx, normal);
assert(ApproxEqual<Precision>(Dist, 0) && ApproxEqual(normal, vmx));
Dist = b1.DistanceToOut(ponyside, vy);
valid = b1.Normal(ponyside + Dist * vy, normal);
assert(ApproxEqual<Precision>(Dist, 0) && ApproxEqual(normal, vy));
Dist = b1.DistanceToOut(ponyside, vmy);
valid = b1.Normal(ponyside + Dist * vmy, normal);
assert(ApproxEqual<Precision>(Dist, 2 * fR) && ApproxEqual(normal, vmy));
Dist = b1.DistanceToOut(ponmyside, vy);
valid = b1.Normal(ponmyside + Dist * vy, normal);
assert(ApproxEqual<Precision>(Dist, 2 * fR) && ApproxEqual(normal, vy));
Dist = b1.DistanceToOut(ponmyside, vmy);
valid = b1.Normal(ponmyside + Dist * vmy, normal);
assert(ApproxEqual<Precision>(Dist, 0) && ApproxEqual(normal, vmy));
Dist = b1.DistanceToOut(ponzside, vz);
valid = b1.Normal(ponzside + Dist * vz, normal);
assert(ApproxEqual<Precision>(Dist, 0) && ApproxEqual(normal, vz));
Dist = b1.DistanceToOut(ponzside, vmz);
valid = b1.Normal(ponzside + Dist * vmz, normal);
assert(ApproxEqual<Precision>(Dist, 2 * fR) && ApproxEqual(normal, vmz));
Dist = b1.DistanceToOut(ponmzside, vz);
valid = b1.Normal(ponmzside + Dist * vz, normal);
assert(ApproxEqual<Precision>(Dist, 2 * fR) && ApproxEqual(normal, vz));
Dist = b1.DistanceToOut(ponmzside, vmz);
valid = b1.Normal(ponmzside + Dist * vmz, normal);
assert(ApproxEqual<Precision>(Dist, 0) && ApproxEqual(normal, vmz));
// Check Inside
assert(b1.Inside(pzero) == vecgeom::EInside::kInside);
assert(b1.Inside(pbigx) == vecgeom::EInside::kOutside);
assert(b1.Inside(pbigy) == vecgeom::EInside::kOutside);
assert(b1.Inside(pbigz) == vecgeom::EInside::kOutside);
assert(b1.Inside(ponxside) == vecgeom::EInside::kSurface);
assert(b1.Inside(ponyside) == vecgeom::EInside::kSurface);
assert(b1.Inside(ponzside) == vecgeom::EInside::kSurface);
assert(b2.Inside(pzero) == vecgeom::EInside::kInside);
assert(b2.Inside(ponxside) == vecgeom::EInside::kOutside);
assert(b2.Inside(ponyside) == vecgeom::EInside::kOutside);
assert(b2.Inside(ponzside) == vecgeom::EInside::kOutside);
assert(b2.Inside(Vec_t(6, 0, 0)) == vecgeom::EInside::kSurface);
assert(b2.Inside(Vec_t(0, 6, 0)) == vecgeom::EInside::kSurface);
assert(b2.Inside(Vec_t(0, 0, 6)) == vecgeom::EInside::kSurface);
// SafetyToOut(P)
Dist = b1.SafetyToOut(pzero);
assert(ApproxEqual<Precision>(Dist, fR));
Dist = b1.SafetyToOut(vx);
assert(ApproxEqual<Precision>(Dist, fR - 1));
Dist = b1.SafetyToOut(vy);
assert(ApproxEqual<Precision>(Dist, fR - 1));
Dist = b1.SafetyToOut(vz);
assert(ApproxEqual<Precision>(Dist, fR - 1));
// SafetyToIn(P)
Dist = b1.SafetyToIn(pbigx);
assert(ApproxEqual<Precision>(Dist, 100 - fR));
Dist = b1.SafetyToIn(pbigmx);
assert(ApproxEqual<Precision>(Dist, 100 - fR));
Dist = b1.SafetyToIn(pbigy);
assert(ApproxEqual<Precision>(Dist, 100 - fR));
Dist = b1.SafetyToIn(pbigmy);
assert(ApproxEqual<Precision>(Dist, 100 - fR));
Dist = b1.SafetyToIn(pbigz);
assert(ApproxEqual<Precision>(Dist, 100 - fR));
Dist = b1.SafetyToIn(pbigmz);
assert(ApproxEqual<Precision>(Dist, 100 - fR));
// DistanceToIn(P,V)
Dist = b1.DistanceToIn(pbigx, vmx);
assert(ApproxEqual<Precision>(Dist, 100 - fR));
Dist = b1.DistanceToIn(pbigmx, vx);
assert(ApproxEqual<Precision>(Dist, 100 - fR));
Dist = b1.DistanceToIn(pbigy, vmy);
assert(ApproxEqual<Precision>(Dist, 100 - fR));
Dist = b1.DistanceToIn(pbigmy, vy);
assert(ApproxEqual<Precision>(Dist, 100 - fR));
Dist = b1.DistanceToIn(pbigz, vmz);
assert(ApproxEqual<Precision>(Dist, 100 - fR));
Dist = b1.DistanceToIn(pbigmz, vz);
assert(ApproxEqual<Precision>(Dist, 100 - fR));
Dist = b1.DistanceToIn(pbigx, vxy);
if (Dist >= kInfLength) Dist = kInfLength;
assert(ApproxEqual<Precision>(Dist, kInfLength));
Dist = b1.DistanceToIn(pbigmx, vxy);
if (Dist >= kInfLength) Dist = kInfLength;
assert(ApproxEqual<Precision>(Dist, kInfLength));
Vec_t pJohnXZ(9, 0, 12);
Dist = b2.DistanceToIn(pJohnXZ, vxmz);
if (Dist >= kInfLength) Dist = kInfLength;
assert(ApproxEqual<Precision>(Dist, kInfLength));
Vec_t pJohnXY(12, 9, 0);
Dist = b2.DistanceToIn(pJohnXY, vmxy);
if (Dist >= kInfLength) Dist = kInfLength;
assert(ApproxEqual<Precision>(Dist, kInfLength));
Dist = b2.DistanceToIn(pJohnXY, vmx);
if (Dist >= kInfLength) Dist = kInfLength;
assert(ApproxEqual<Precision>(Dist, kInfLength));
Vec_t pJohnX(8, 0, 0);
Dist = b2.DistanceToIn(pJohnX, vmx);
assert(ApproxEqual<Precision>(Dist, 2));
Vec_t p2JohnXY(7, 5, 0);
Dist = b2.DistanceToIn(p2JohnXY, vmx);
assert(ApproxEqual<Precision>(Dist, 3.6833752));
Dist = b1.DistanceToIn(Vec_t(-25, -35, 0), vx);
if (Dist >= kInfLength) Dist = kInfLength;
assert(ApproxEqual<Precision>(Dist, kInfLength));
Dist = b1.DistanceToIn(Vec_t(-25, -35, 0), vy);
if (Dist >= kInfLength) Dist = kInfLength;
assert(ApproxEqual<Precision>(Dist, kInfLength));
Vec_t pointO(-8.363470934547895, 2.754420966126675, -2.665617952433236);
Vec_t dirO(-8.363470934547895 / 9.2, 2.754420966126675 / 9.2, -2.665617952433236 / 9.2);
Dist = b1.DistanceToIn(pointO, dirO);
if (Dist >= kInfLength) Dist = kInfLength;
assert(ApproxEqual<Precision>(Dist, kInfLength));
Dist = b1.DistanceToOut(pointO, dirO);
if (verbose) std::cout << "DistanceToOut is : " << Dist << std::endl;
assert(Dist <= 0.);
if (verbose) std::cout << " Now testing point out directing in " << std::endl;
Vec_t dirI(8.363470934547895 / 9.2, -2.754420966126675 / 9.2, 2.665617952433236 / 9.2);
Dist = b1.DistanceToIn(pointO, dirI);
assert(ApproxEqual<Precision>(Dist, 0.2));
if (verbose) std::cout << "DistanceToIn PODI is : " << Dist << std::endl;
Dist = b1.DistanceToOut(pointO, dirO);
assert(Dist <= 0.);
if (verbose) std::cout << "DistanceToOut PODI is : " << Dist << std::endl;
// Point inside outer tolerance and directing out
if (verbose) std::cout << "Testing point inside outer tolerance and directing out" << std::endl;
Vec_t pointOTol(8.884242447222299, 0.134875592787852, -1.432495973274375);
Vec_t dirOTol(8.884242447222299 / 9, 0.134875592787852 / 9, -1.432495973274375 / 9);
Dist = b1.DistanceToIn(pointOTol, dirOTol);
if (Dist >= kInfLength) Dist = kInfLength;
assert(ApproxEqual<Precision>(Dist, kInfLength));
if (verbose) std::cout << "DistanceToIn for point inside outer tolerance and directing out: " << Dist << std::endl;
// Point inside outer tolerance and directing in
if (verbose) std::cout << "Testing point inside outer tolerance and directing IN" << std::endl;
Vec_t dirOTolI(-8.884242447222299 / 9, -0.134875592787852 / 9, 1.432495973274375 / 9);
Dist = b1.DistanceToIn(pointOTol, dirOTolI);
assert(ApproxEqual<Precision>(Dist, 0));
if (verbose) std::cout << "DistanceToIn for point inside outer tolerance and directing IN: " << Dist << std::endl;
// Point inside and directing out
if (verbose) std::cout << "Testing point inside and directing OUT" << std::endl;
Vec_t pointI(-3.618498437781364, 2.401810108299175, -6.718465394675017);
Vec_t dirIO(-3.618498437781364 / 8, 2.401810108299175 / 8, -6.718465394675017 / 8);
Dist = b1.DistanceToIn(pointI, dirIO);
if (Dist >= kInfLength) Dist = kInfLength;
// assert(ApproxEqual<Precision>(Dist,kInfLength));
assert(Dist < 0.);
if (verbose) std::cout << "DistanceToIn for point inside and directing OUT: " << Dist << std::endl;
Dist = b1.DistanceToOut(pointI, dirIO);
assert(ApproxEqual<Precision>(Dist, 1));
if (verbose) std::cout << "DistanceToOut for point inside and directing OUT: " << Dist << std::endl;
// Point inside and directing in
if (verbose) std::cout << "Testing point inside and directing IN" << std::endl;
Vec_t dirII(3.618498437781364 / 8, -2.401810108299175 / 8, 6.718465394675017 / 8);
Dist = b1.DistanceToIn(pointI, dirII);
if (Dist >= kInfLength) Dist = kInfLength;
// assert(ApproxEqual<Precision>(Dist,kInfLength));
assert(Dist < 0.);
Dist = b1.DistanceToOut(pointI, dirII);
assert(ApproxEqual<Precision>(Dist, 17));
// Testing Surface point generated by shape tester with Random direction
Orb_t b3("Solid VecGeomOrb #3", 3);
Vec_t tSrPoint(-1.704652541027918744, 0.92532982039202238411, -2.2886512267834184797);
Vec_t tSrDir(0.55992127966252225324, -0.73207465430510332283, 0.38801399601708530529);
Dist = b3.DistanceToIn(tSrPoint, tSrDir);
assert(ApproxEqual<Precision>(Dist, 0));
// Testing TAD Unqualified points by shape tester
Orb_t b4("Solid VecGeomOrb #4", 3);
// Trying T0 points by shape tester
// Direction is random
Orb_t b5("Solid VecGeomOrb #5", 10.);
Vec_t t0UQualPoint(-89.066635313481228309, -125.66666807765292901, 105.36991856050774174);
Vec_t t0UQualDir(0.45467415240829972545, 0.6924777322970485649, -0.56013034679843187735);
double shiftDist = b5.DistanceToIn(t0UQualPoint, t0UQualDir);
Vec_t t0UPoint(t0UQualPoint + shiftDist * t0UQualDir);
Dist = b5.DistanceToIn(t0UPoint, t0UQualDir);
assert(ApproxEqual<Precision>(Dist, 0));
// Trying T0 Test of Shape tester.
// Inside point chosen is 0.,0.,0.
Vec_t t0KnownPoint(-89.066635313481228309, -125.66666807765292901, 105.36991856050774174);
double vecLen = t0KnownPoint.Mag();
Vec_t t0Dir((1 / vecLen) * (t0KnownPoint * (-1)));
shiftDist = b5.DistanceToIn(t0KnownPoint, t0Dir);
Vec_t t0Point(t0KnownPoint + shiftDist * t0Dir);
Dist = b5.DistanceToIn(t0Point, t0Dir);
assert(ApproxEqual<Precision>(Dist, 0));
// Trying T0 test of Shape Tester
Orb_t b6("Solid VecGeomOrb #6", 50.);
Vec_t t0KnownPoint2(725.77514262389081523, -745.20572125476428482, 778.25732374796621116);
vecLen = t0KnownPoint2.Mag();
Vec_t t0Dir2((1 / vecLen) * (t0KnownPoint2 * (-1)));
// Propagate to the solid first
shiftDist = b6.GetUnplacedVolume()->ApproachSolid(t0KnownPoint2, 1 / t0Dir2);
Vec_t t0Point2(t0KnownPoint2 + shiftDist * t0Dir2);
double shiftDist2 = b6.DistanceToIn(t0Point2, t0Dir2);
Vec_t t0Point3(t0Point2 + shiftDist2 * t0Dir2);
Dist = b6.DistanceToIn(t0Point3, t0Dir2);
assert(ApproxEqual<Precision>(Dist, 0));
// Trying TS test of Shape Tester
Vec_t tSKnownPoint(-46.418969559619192466, -17.038092391528927294, 7.4150301880992222081);
Vec_t tSDir(0.84546676256780450842, -0.33558962646945966757, -0.41541010579811871173);
Dist = b6.DistanceToIn(tSKnownPoint, tSDir);
assert(ApproxEqual<Precision>(Dist, 0));
return true;
}
int main(int argc, char *argv[])
{
assert(TestOrb<vecgeom::SimpleOrb>());
std::cout << "VecGeomOrb passed\n";
return 0;
}
|