File: TestPolycone.cpp

package info (click to toggle)
vecgeom 1.2.8%2Bdfsg-2
  • links: PTS, VCS
  • area: main
  • in suites: sid, trixie
  • size: 24,016 kB
  • sloc: cpp: 88,803; ansic: 6,888; python: 1,035; sh: 582; sql: 538; makefile: 23
file content (560 lines) | stat: -rw-r--r-- 23,961 bytes parent folder | download | duplicates (2)
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
525
526
527
528
529
530
531
532
533
534
535
536
537
538
539
540
541
542
543
544
545
546
547
548
549
550
551
552
553
554
555
556
557
558
559
560
//
// File:    TestPolycone.cpp
// Purpose: Unit tests for the polycone
//

//.. ensure asserts are compiled in
#undef NDEBUG
#include "VecGeom/base/FpeEnable.h"

#include "VecGeom/base/Vector3D.h"
#include "VecGeom/volumes/Polycone.h"
#include "VecGeom/volumes/Cone.h"
#include "VecGeom/volumes/LogicalVolume.h"
#include "VecGeom/volumes/PlacedVolume.h"
#include "ApproxEqual.h"
#include <cmath>
#include "VecGeom/management/GeoManager.h"

using namespace vecgeom;

template <class Polycone_t, class Vec_t = vecgeom::Vector3D<vecgeom::Precision>>
bool TestPolycone()
{
  Precision RMINVec[8]  = {30, 30, 0, 0, 0, 0, 40, 40};
  Precision RMAXVec[8]  = {70, 70, 70, 40, 40, 80, 80, 60};
  Precision Z_Values[8] = {-20, -10, -10, 0, 10, 20, 30, 40};
  Precision Phi_Values[2];
  Phi_Values[0]       = -10. * kPi / 180.;
  Phi_Values[1]       = 10. * kPi / 180.;
  Polycone_t *MyPCone = new Polycone_t("MyPCone", Phi_Values[0], Phi_Values[1], 8, Z_Values, RMINVec, RMAXVec);

  Precision RMIN[3]   = {0, 0, 0};
  Precision RMAX[3]   = {70, 70, 80};
  Precision Z_Val2[3] = {-10, 0, 10};
  Polycone_t Simple("SimpleTube+Cone", 0, 360. * kPi / 180., 3, Z_Val2, RMIN, RMAX);

  Precision z1[8]    = {-2935., -1899., -1899., -1899., 1899., 1899., 1899., 2935.};
  Precision rmin1[8] = {74., 34., 31., 31., 31., 31., 34., 74.};
  Precision rmax1[8] = {1233., 1233., 1233., 1233., 1233., 1233., 1233., 1233.};
  Polycone_t cms_TRAK("oldcms_TRAK", 0, 360. * kPi / 180., 8, z1, rmin1, rmax1);

  int Nz = 4;
  // a few cones
  Precision rmin[] = {0.1, 0.0, 0.0, 0.4};
  Precision rmax[] = {1., 2., 2., 1.5};
  Precision z[]    = {-1, -0.5, 0.5, 2};

  //  UnplacedPolycone poly1(0.,                /* initial phi starting angle */
  //                         360. * kPi / 180., // kTwoPi,    /* total phi angle */
  //                         Nz,                /* number corners in r,z space */
  //                         z,                 /* z coordinates */
  //                         rmin,              /* r coordinate of these corners */
  //                         rmax);

  auto poly1 = GeoManager::MakeInstance<UnplacedPolycone>(0.,                /* initial phi starting angle */
                                                          360. * kPi / 180., // kTwoPi,    /* total phi angle */
                                                          Nz,                /* number corners in r,z space */
                                                          z,                 /* z coordinates */
                                                          rmin,              /* r coordinate of these corners */
                                                          rmax);

  // poly1->Print();

  // let's make external separate cones representing the sections
  SUnplacedCone<ConeTypes::UniversalCone> section0(rmin[0], rmax[0], rmin[1], rmax[1], (z[1] - z[0]) / 2., 0, kTwoPi);
  SUnplacedCone<ConeTypes::UniversalCone> section1(rmin[1], rmax[1], rmin[2], rmax[2], (z[2] - z[1]) / 2., 0, kTwoPi);
  SUnplacedCone<ConeTypes::UniversalCone> section2(rmin[2], rmax[2], rmin[3], rmax[3], (z[3] - z[2]) / 2., 0, kTwoPi);

  assert(poly1->GetNz() == 4);
  assert(poly1->GetNSections() == 3);
  assert(poly1->GetSectionIndex(-0.8) == 0);
  assert(poly1->GetSectionIndex(0.51) == 2);
  assert(poly1->GetSectionIndex(0.) == 1);
  assert(poly1->GetSectionIndex(-2.) == -1);
  assert(poly1->GetSectionIndex(3.) == -2);
  assert(poly1->GetStartPhi() == 0.);
  assert((std::fabs(poly1->GetDeltaPhi() - kTwoPi)) < 1e-10);

  assert(poly1->GetStruct().fZs[0] == z[0]);
  assert(poly1->GetStruct().fZs[poly1->GetNSections()] == z[Nz - 1]);
  assert(poly1->Capacity() > 0);
  assert(std::fabs(poly1->Capacity() - (section0.Capacity() + section1.Capacity() + section2.Capacity())) < 1e-6);

  // create a placed version
  VPlacedVolume const *placedpoly1 = (new LogicalVolume("poly1", poly1))->Place(new Transformation3D());

  // test contains/inside
  assert(placedpoly1->Contains(Vec_t(0., 0., 0.)) == true);
  assert(placedpoly1->Contains(Vec_t(0., 0., -2.)) == false);
  assert(placedpoly1->Contains(Vec_t(0., 0., -0.8)) == false);
  assert(placedpoly1->Contains(Vec_t(0., 0., -1.8)) == false);
  assert(placedpoly1->Contains(Vec_t(0., 0., 10)) == false);
  assert(placedpoly1->Contains(Vec_t(0., 0., 1.8)) == false);

  // test DistanceToIn
  assert(placedpoly1->DistanceToIn(Vec_t(0., 0., -3.), Vec_t(0., 0., 1.)) == 2.5);
  assert(placedpoly1->DistanceToIn(Vec_t(0., 0., -2.), Vec_t(0., 0., -1.)) == kInfLength);
  assert(placedpoly1->DistanceToIn(Vec_t(0., 0., 3), Vec_t(0., 0., -1.)) == 2.5);
  assert(placedpoly1->DistanceToIn(Vec_t(0., 0., 3), Vec_t(0., 0., 1.)) == kInfLength);
  assert(placedpoly1->DistanceToIn(Vec_t(3., 0., 0), Vec_t(-1., 0., 0.)) == 1);
  assert(std::fabs(placedpoly1->DistanceToIn(Vec_t(0., 0., 1.9999999), Vec_t(1., 0., 0.)) - 0.4) <
         1000. * kTolerance);

  // test SafetyToIn
  assert(placedpoly1->SafetyToIn(Vec_t(0., 0., -3.)) == 2.);
  assert(placedpoly1->SafetyToIn(Vec_t(0.5, 0., -1.)) == 0.);
  assert(placedpoly1->SafetyToIn(Vec_t(0., 0., 3)) == 1);
  assert(placedpoly1->SafetyToIn(Vec_t(2., 0., 0.1)) == 0);

  // test SafetyToOut
  assert(placedpoly1->SafetyToOut(Vec_t(0., 0., 0.)) == 0.5);
  assert(placedpoly1->SafetyToOut(Vec_t(0., 0., 0.5)) == 0.);
  assert(std::fabs(placedpoly1->SafetyToOut(Vec_t(1.9, 0., 0.0)) - 0.1) < 1000. * kTolerance);
  assert(placedpoly1->SafetyToOut(Vec_t(0.2, 0., -1)) == 0.);
  assert(placedpoly1->SafetyToOut(Vec_t(1.4, 0., 2)) == 0.);

  // test DistanceToOut
  assert(placedpoly1->DistanceToOut(Vec_t(0., 0., 0.), Vec_t(0., 0., 1.)) == 0.5);
  assert(placedpoly1->DistanceToOut(Vec_t(0., 0., 0.), Vec_t(0., 0., -1.)) == 0.5);
  assert(placedpoly1->DistanceToOut(Vec_t(2., 0., 0.), Vec_t(1., 0., 0.)) == 0.);
  assert(placedpoly1->DistanceToOut(Vec_t(2., 0., 0.), Vec_t(-1., 0., 0.)) == 4.);

  assert(placedpoly1->DistanceToOut(Vec_t(1., 0., 2), Vec_t(0., 0., 1.)) == 0.);
  assert(placedpoly1->DistanceToOut(Vec_t(0.5, 0., -1), Vec_t(0., 0., -1.)) == 0.);
  assert(placedpoly1->DistanceToOut(Vec_t(0.5, 0., -1), Vec_t(0., 0., 1.)) == 3.);

  // Check Cubic volume
  Precision vol, volCheck;
  vol      = Simple.Capacity();
  volCheck = kPi * (70 * 70 * 10 + 10 * (70 * 70 + 80 * 80 + 70 * 80) / 3.);
  assert(ApproxEqual<Precision>(vol, volCheck));

  // Check Surface area
  vol      = Simple.SurfaceArea();
  volCheck = kPi * (70 * 70 + 80 * 80 + (70 + 80) * std::sqrt(10 * 10 + 10 * 10) + 10 * 2 * 70);
  assert(ApproxEqual<Precision>(vol, volCheck));

  // Check Inside
  Vec_t pzero(0, 0, 0);
  Vec_t ponxside(70, 0, -5), ponyside(0, 70, -5), ponzside(70, 0, 10);
  Vec_t ponmxside(-70, 0, -5), ponmyside(0, -70, -5), ponmzside(0, 0, -10);
  Vec_t ponzsidey(0, 25, 0), ponmzsidey(4, 25, 0);

  Vec_t pbigx(100, 0, 0), pbigy(0, 100, 0), pbigz(0, 0, 100);
  Vec_t pbigmx(-100, 0, 0), pbigmy(0, -100, 0), pbigmz(0, 0, -100);

  Vec_t vx(1, 0, 0), vy(0, 1, 0), vz(0, 0, 1);
  Vec_t vmx(-1, 0, 0), vmy(0, -1, 0), vmz(0, 0, -1);
  Vec_t vxy(1 / std::sqrt(2.0), 1 / std::sqrt(2.0), 0);
  Vec_t vmxy(-1 / std::sqrt(2.0), 1 / std::sqrt(2.0), 0);
  Vec_t vmxmy(-1 / std::sqrt(2.0), -1 / std::sqrt(2.0), 0);
  Vec_t vxmy(1 / std::sqrt(2.0), -1 / std::sqrt(2.0), 0);

  Precision Dist;
  Vec_t normal;
  bool valid;
  assert(Simple.Inside(pzero) == vecgeom::EInside::kInside);
  assert(Simple.Inside(pbigz) == vecgeom::EInside::kOutside);
  assert(Simple.Inside(pbigx) == vecgeom::EInside::kOutside);
  assert(Simple.Inside(pbigy) == vecgeom::EInside::kOutside);
  assert(Simple.Inside(ponxside) == vecgeom::EInside::kSurface);
  assert(Simple.Inside(ponyside) == vecgeom::EInside::kSurface);
  assert(Simple.Inside(ponzside) == vecgeom::EInside::kSurface);

  assert(Simple.Inside(ponmxside) == vecgeom::EInside::kSurface);
  assert(Simple.Inside(ponmyside) == vecgeom::EInside::kSurface);
  assert(Simple.Inside(ponmzside) == vecgeom::EInside::kSurface);
  assert(Simple.Inside(ponzsidey) == vecgeom::EInside::kInside);
  assert(Simple.Inside(ponmzsidey) == vecgeom::EInside::kInside);

  // check that Normal() returns valid=false and a non-zero normal for points away from the surface

  Vec_t point(70, 70, -5);
  if ((valid = Simple.Normal(point, normal)) || !ApproxEqual<Precision>(normal.Mag2(), 1))
    std::cout << "Simple.Normal() normal not checked: Line " << __LINE__ << ", p=" << point << ", normal=" << normal
              << ", valid=" << valid << "\n";
  point.z() = -10;
  if ((valid = Simple.Normal(point, normal)) || !ApproxEqual<Precision>(normal.Mag2(), 1))
    std::cout << "Simple.Normal() normal not checked: Line " << __LINE__ << ", p=" << point << ", normal=" << normal
              << ", valid=" << valid << "\n";
  if ((valid = Simple.Normal(pbigz, normal)) || !ApproxEqual<Precision>(normal.Mag2(), 1))
    std::cout << "Simple.Normal() normal not checked: Line " << __LINE__ << ", p=" << pbigz << ", normal=" << normal
              << ", valid=" << valid << "\n";
  if ((valid = Simple.Normal(pbigmz, normal)) || !ApproxEqual<Precision>(normal.Mag2(), 1))
    std::cout << "Simple.Normal() normal not checked: Line " << __LINE__ << ", p=" << pbigmz << ", normal=" << normal
              << ", valid=" << valid << "\n";

  // Check Surface Normal

  valid = Simple.Normal(ponxside, normal);
  assert(ApproxEqual(normal, Vec_t(1, 0, 0)) && valid);
  valid = Simple.Normal(ponmxside, normal);
  assert(ApproxEqual(normal, Vec_t(-1, 0, 0)));
  valid = Simple.Normal(ponyside, normal);
  assert(ApproxEqual(normal, Vec_t(0, 1, 0)));
  valid = Simple.Normal(Vec_t(0, 0, 10), normal);
  assert(ApproxEqual(normal, Vec_t(0, 0, 1)));
  valid = Simple.Normal(Vec_t(0, 0, -10), normal);
  assert(ApproxEqual(normal, Vec_t(0, 0, -1)));

  // Normals on Edges

  Vec_t edgeXZ(80.0, 0.0, 10.0);
  Vec_t edgeYZ(0., 80.0, 10.0);
  Vec_t edgeXmZ(70.0, 0.0, -10.0);
  Vec_t edgeYmZ(0.0, 70.0, -10.0);
  Vec_t edgemXZ(-80.0, 0.0, 10.0);
  Vec_t edgemYZ(0., -80.0, 10.0);
  Vec_t edgemXmZ(-70.0, 0.0, -10.0);
  Vec_t edgemYmZ(0.0, -70.0, -10.0);
  // Precision invSqrt2 = 1.0 / std::sqrt(2.0);
  // Precision invSqrt3 = 1.0 / std::sqrt( 3.0);

  valid = Simple.Normal(edgeXmZ, normal);
  // assert(ApproxEqual(normal, Vec_t(invSqrt2, 0.0, -invSqrt2)));
  valid = Simple.Normal(edgemXmZ, normal);
  // assert(ApproxEqual(normal, Vec_t(-invSqrt2, 0.0, -invSqrt2)));
  valid = Simple.Normal(edgeYmZ, normal);
  // assert(ApproxEqual(normal, Vec_t(0.0, invSqrt2, -invSqrt2)));
  valid = Simple.Normal(edgemYmZ, normal);
  // assert(ApproxEqual(normal, Vec_t(0.0, -invSqrt2, -invSqrt2)));

  const Precision xyn = 0.92388, zn = 0.382683;
  valid = Simple.Normal(edgeXZ, normal);
  std::cout << "Simple.Normal(): p=" << edgeXZ << ", normal=" << normal << ", valid=" << valid << std::endl;
  assert(ApproxEqual(normal, Vec_t(xyn, 0, zn)));
  valid = Simple.Normal(edgemXZ, normal);
  assert(ApproxEqual(normal, Vec_t(-xyn, 0, zn)));
  valid = Simple.Normal(edgeYZ, normal);
  assert(ApproxEqual(normal, Vec_t(0, xyn, zn)));
  valid = Simple.Normal(edgemYZ, normal);
  assert(ApproxEqual(normal, Vec_t(0, -xyn, zn)));

  // SafetyToOut(P)
  Dist = Simple.SafetyToOut(Vec_t(5, 5, -5));
  assert(ApproxEqual<Precision>(Dist, 5));
  Dist = Simple.SafetyToOut(Vec_t(5, 5, 7));
  assert(ApproxEqual<Precision>(Dist, 3));
  Dist = Simple.SafetyToOut(Vec_t(69, 0, -5));
  assert(ApproxEqual<Precision>(Dist, 1));
  Dist = Simple.SafetyToOut(Vec_t(-3, -3, 8));
  assert(ApproxEqual<Precision>(Dist, 2));

  // DistanceToOut(P,V)

  Dist  = Simple.DistanceToOut(pzero, vx);
  valid = Simple.Normal(pzero + Dist * vx, normal);
  std::cout << "D2O normal not checked: Line " << __LINE__ << ", p=" << pzero << ", dir=" << vx << ", norm=" << normal
            << "\n";
  assert(ApproxEqual<Precision>(Dist, 70)); // && ApproxEqual(normal,vx));
  Dist  = Simple.DistanceToOut(pzero, vmx);
  valid = Simple.Normal(pzero + Dist * vmx, normal);
  std::cout << "D2O normal not checked: Line " << __LINE__ << ", p=" << pzero << ", dir=" << vmx << ", norm=" << normal
            << "\n";
  assert(ApproxEqual<Precision>(Dist, 70)); // && ApproxEqual(normal,vmx));
  Dist  = Simple.DistanceToOut(pzero, vy);
  valid = Simple.Normal(pzero + Dist * vy, normal);
  std::cout << "D2O normal not checked: Line " << __LINE__ << ", p=" << pzero << ", dir=" << vy << ", norm=" << normal
            << "\n";
  assert(ApproxEqual<Precision>(Dist, 70)); // &&ApproxEqual(normal,vy));
  Dist  = Simple.DistanceToOut(pzero, vmy);
  valid = Simple.Normal(pzero + Dist * vmy, normal);
  std::cout << "D2O normal not checked: Line " << __LINE__ << ", p=" << pzero << ", dir=" << vmy << ", norm=" << normal
            << "\n";
  assert(ApproxEqual<Precision>(Dist, 70)); // &&ApproxEqual(normal,vmy));
  Dist  = Simple.DistanceToOut(pzero, vz);
  valid = Simple.Normal(pzero + Dist * vz, normal);
  // std::cout<<Dist<< " " <<norm<<"\n";
  assert(ApproxEqual<Precision>(Dist, 10) && ApproxEqual(normal, vz));
  Dist  = Simple.DistanceToOut(Vec_t(70, 0, -10), vx);
  valid = Simple.Normal(Vec_t(70, 0, -10) + Dist * vx, normal);
  std::cout << "D2O normal not checked: Line " << __LINE__ << ", p=" << pzero << ", dir=" << vx << ", dist=" << Dist
            << ", norm=" << normal << "\n";
  // assert(ApproxEqual<Precision>(Dist,0)&&ApproxEqual(normal,(vx-vz)/(vx-vz).Mag()));
  Dist = Simple.DistanceToOut(Vec_t(-70, 0, -1), vmx);
  assert(ApproxEqual<Precision>(Dist, 0)); // && ApproxEqual(normal, vmx));
  Dist = Simple.DistanceToOut(Vec_t(0, 70, -10), vy);
  std::cout << "D2O normal not checked: Line " << __LINE__ << ", p=" << Vec_t(0, 70, -10) << ", dir=" << vy
            << ", dist=" << Dist << ", norm=" << normal << "\n";
  assert(ApproxEqual<Precision>(Dist, 0)); //&&ApproxEqual(normal,vy));
  Dist = Simple.DistanceToOut(Vec_t(0, -70, -1), vmy);
  assert(ApproxEqual<Precision>(Dist, 0)); //&& ApproxEqual(normal, vmy));

  // SafetyToIn(P)

  Dist = Simple.SafetyToIn(pbigx);
  std::cout << "S2O unverified: Line " << __LINE__ << ", p=" << pbigx << ", safety=" << Dist << "\n";
  // assert(ApproxEqual<Precision>(Dist,20));
  Dist = Simple.SafetyToIn(pbigmx);
  std::cout << "S2O unverified: Line " << __LINE__ << ", p=" << pbigmx << ", safety=" << Dist << "\n";
  // assert(ApproxEqual<Precision>(Dist,20));
  Dist = Simple.SafetyToIn(pbigy);
  std::cout << "S2O unverified: Line " << __LINE__ << ", p=" << pbigmx << ", safety=" << Dist << "\n";
  // assert(ApproxEqual<Precision>(Dist,20));
  Dist = Simple.SafetyToIn(pbigmy);
  std::cout << "S2O unverified: Line " << __LINE__ << ", p=" << pbigmx << ", safety=" << Dist << "\n";
  // assert(ApproxEqual<Precision>(Dist,20));
  Dist = Simple.SafetyToIn(pbigz);
  std::cout << "S2O unverified: Line " << __LINE__ << ", p=" << pbigmx << ", safety=" << Dist << "\n";
  // assert(ApproxEqual<Precision>(Dist,80));
  Dist = Simple.SafetyToIn(pbigmz);
  std::cout << "S2O unverified: Line " << __LINE__ << ", p=" << pbigmx << ", safety=" << Dist << "\n";
  // assert(ApproxEqual<Precision>(Dist,80));

  // DistanceToIn(P,V)

  Dist = Simple.DistanceToIn(Vec_t(100, 0, -1), vmx);
  assert(ApproxEqual<Precision>(Dist, 30));
  Dist = Simple.DistanceToIn(Vec_t(-100, 0, -1), vx);
  assert(ApproxEqual<Precision>(Dist, 30));
  Dist = Simple.DistanceToIn(Vec_t(0, 100, -5), vmy);
  assert(ApproxEqual<Precision>(Dist, 30));
  Dist = Simple.DistanceToIn(Vec_t(0, -100, -5), vy);
  assert(ApproxEqual<Precision>(Dist, 30));
  Dist = Simple.DistanceToIn(pbigz, vmz);
  assert(ApproxEqual<Precision>(Dist, 90));
  Dist = Simple.DistanceToIn(pbigmz, vz);
  assert(ApproxEqual<Precision>(Dist, 90));
  Dist = Simple.DistanceToIn(pbigx, vxy);
  // std::cout <<"D2I unverified: Line "<< __LINE__ <<", p="<< pbigx <<", dir="<< vxy <<", dist="<<Dist<<"\n";
  assert(ApproxEqual<Precision>(Dist, kInfLength));
  Dist = Simple.DistanceToIn(pbigmx, vmxy);
  // std::cout <<"D2I unverified: Line "<< __LINE__ <<", p="<< pbigx <<", dir="<< vxy <<", dist="<<Dist<<"\n";
  assert(ApproxEqual<Precision>(Dist, kInfLength));

  // Check Extent and cached BBox
  Vec_t minExtent, maxExtent;
  Vec_t minBBox, maxBBox;
  Simple.Extent(minExtent, maxExtent);
  Simple.GetUnplacedVolume()->GetBBox(minBBox, maxBBox);
  // std::cout<<" min="<<minExtent<<" max="<<maxExtent<<std::endl;
  assert(ApproxEqual(minExtent, Vec_t(-80, -80, -10)));
  assert(ApproxEqual(maxExtent, Vec_t(80, 80, 10)));
  assert(ApproxEqual(minExtent, minBBox));
  assert(ApproxEqual(maxExtent, maxBBox));
  MyPCone->Extent(minExtent, maxExtent);
  MyPCone->GetUnplacedVolume()->GetBBox(minBBox, maxBBox);
  // std::cout<<" min="<<minExtent<<" max="<<maxExtent<<std::endl;
  // assert(ApproxEqual(minExtent, Vec_t(-80, -80, -20)));
  // assert(ApproxEqual(maxExtent, Vec_t(80, 80, 40)));
  assert(ApproxEqual(minExtent, minBBox));
  assert(ApproxEqual(maxExtent, maxBBox));

#ifdef SCAN_SOLID

  std::cout << "\n=======     Polycone SCAN test      ========";
  std::cout << "\n\nPCone created ! " << std::endl;
  // -> Check methods :
  //  - Inside
  //  - DistanceToIn
  //  - DistanceToOut

  vecgeom::EnumInside in;

  std::cout << "\n\n==================================================";
  Vec_t pt(0, -100, 24);
  int y;
  for (y = -100; y <= 100; y += 10) {
    // pt.setY(y);
    pt.Set(0, y, 24);
    in = MyPCone->Inside(pt);

    std::cout << "\nx=" << pt.x() << "  y=" << pt.y() << "  z=" << pt.z();

    if (in == vecgeom::EInside::kInside)
      std::cout << " is inside";
    else if (in == vecgeom::EInside::kOutside)
      std::cout << " is outside";
    else
      std::cout << " is on the surface";
  }

  std::cout << "\n\n==================================================";
  Vec_t start(0, 0, -30);
  Vec_t dir(1. / std::sqrt(2.), 1. / std::sqrt(2.), 0), normal;
  Precision d;
  int z;

  std::cout << "\nPdep is (0, 0, z)";
  std::cout << "\nDir is (1, 1, 0)\n";

  for (z = -30; z <= 50; z += 5) {
    // start.setZ(z);
    start.Set(0, 0, z);

    in = MyPCone->Inside(start);
    std::cout << "x=" << start.x() << "  y=" << start.y() << "  z=" << start.z();

    if (in == vecgeom::EInside::kInside) {
      std::cout << " is inside";

      d = MyPCone->DistanceToOut(start, dir);
      std::cout << "  distance to out=" << d;
      d = MyPCone->SafetyToOut(start);
      std::cout << "  closest distance to out=" << d << std::endl;
    } else if (in == vecgeom::EInside::kOutside) {
      std::cout << " is outside";

      d = MyPCone->DistanceToIn(start, dir);
      std::cout << "  distance to in=" << d;
      d = MyPCone->SafetyToIn(start);
      std::cout << "  closest distance to in=" << d << std::endl;
    } else
      std::cout << " is on the surface" << std::endl;
  }

  std::cout << "\n\n==================================================";
  Vec_t start2(0, -100, -30);
  Vec_t dir2(0, 1, 0);
  Precision d2;

  std::cout << "\nPdep is (0, -100, z)";
  std::cout << "\nDir is (0, 1, 0)\n";

  for (z = -30; z <= 50; z += 5) {
    std::cout << "  z=" << z;
    // start2.setZ(z);
    start2.Set(0, -100, z);
    d2 = MyPCone->DistanceToIn(start2, dir2);
    std::cout << "  distance to in=" << d2;
    d2 = MyPCone->SafetyToIn(start2);
    std::cout << "  distance to in=" << d2 << std::endl;
  }

  std::cout << "\n\n==================================================";
  Vec_t start3(0, 0, -50);
  Vec_t dir3(0, 0, 1);
  Precision d3;

  std::cout << "\nPdep is (0, y, -50)";
  std::cout << "\nDir is (0, 0, 1)\n";

  for (y = -0; y <= 90; y += 5) {
    std::cout << "  y=" << y;
    // start3.setY(y);
    start3.Set(0, y, -50);
    d3 = MyPCone->DistanceToIn(start3, dir3);
    std::cout << "  distance to in=" << d3 << std::endl;
  }
  //
  // Add checks in Phi direction
  // Point move in Phi direction for differents Z
  //
  std::cout << "\n\n==================================================";
  Vec_t start4;
  for (z = -10; z <= 50; z += 5) {
    std::cout << "\n\n===================Z=" << z << "==============================";
    // Vec_t start4( 0, 0, z-0.00001);
    // Vec_t start4( 0, 0, z);
    start4.Set(0, 0, z);
    // G4double phi=pi/180.*rad;
    //  G4double phi=0.0000000001*pi/180.*rad;
    Precision phi = -kPi / 180. * kPi / 180.;
    Vec_t dir4(std::cos(phi), std::sin(phi), 0);
    Precision d4;

    std::cout << "\nPdep is (0<<R<<50, phi, z)";
    std::cout << "\nDir is (std::cos(phi), std::sin(phi), 0)\n";
    std::cout << "Ndirection is=" << dir4 << std::endl;

    for (y = -0; y <= 50; y += 5) {

      // start4.setX(y*std::cos(phi));
      // start4.setY(y*std::sin(phi));
      start4.Set(y * std::cos(phi), y * std::sin(phi), z);
      std::cout << "  R=" << y << " with Start" << start4;
      in = MyPCone->Inside(start4);
      if (in == vecgeom::EInside::kInside) {
        std::cout << " is inside";
        d4 = MyPCone->DistanceToOut(start4, dir4);
        std::cout << "  distance to out=" << d4;
        d4 = MyPCone->SafetyToOut(start4);
        std::cout << " closest distance to out=" << d4 << std::endl;
      } else if (in == vecgeom::EInside::kOutside) {
        std::cout << " is outside";
        d4 = MyPCone->DistanceToIn(start4, dir4);
        std::cout << "  distance to in=" << d4;
        d4 = MyPCone->SafetyToIn(start4);
        std::cout << " closest distance to in=" << d4 << std::endl;
      } else {
        std::cout << " is on the surface";
        d4 = MyPCone->DistanceToIn(start4, dir4);
        std::cout << "  distance to in=" << d4;
        d4 = MyPCone->SafetyToIn(start4);
        std::cout << " closest distance to in=" << d4 << std::endl;
      }
    }
  }
  //
  // Add checks in Phi direction
  // Point move in X direction for differents Z
  // and 'schoot' on rhi edge
  std::cout << "\n\n==================================================";
  Vec_t start5;
  for (z = -10; z <= 50; z += 5) {
    std::cout << "\n\n===================Z=" << z << "==============================";
    // Vec_t start5( 0., 0.000000000001, z);
    // Vec_t start5( 0., 1, z);
    start5.Set(0, 1, z);
    Vec_t dir5(0, -1, 0);
    Precision d5;

    std::cout << "\nPdep is (0<<X<<50, 1, z)";
    std::cout << "\nDir is (0, -1, 0)\n";
    std::cout << "Ndirection is=" << dir5 << std::endl;

    for (y = -0; y <= 50; y += 5) {

      // start5.setX(y);
      start5.Set(0, y, z);
      std::cout << " Start" << start5;
      in = MyPCone->Inside(start5);
      if (in == vecgeom::EInside::kInside) {
        std::cout << " is inside";
        d5 = MyPCone->DistanceToOut(start5, dir5);
        std::cout << "  distance to out=" << d5;
        d5 = MyPCone->SafetyToOut(start5);
        std::cout << " closest distance to out=" << d5 << std::endl;
      } else if (in == vecgeom::EInside::kOutside) {
        std::cout << " is outside";
        d5 = MyPCone->DistanceToIn(start5, dir5);
        std::cout << "  distance to in=" << d5;
        d5 = MyPCone->SafetyToIn(start5);
        std::cout << " closest distance to in=" << d5 << std::endl;
      } else {
        std::cout << " is on the surface";
        d5 = MyPCone->DistanceToIn(start5, dir5);
        std::cout << "  distance to in=" << d5;
        d5 = MyPCone->SafetyToIn(start5);
        std::cout << " closest distance to in=" << d5 << std::endl;
      }
    }
  }

#endif

  // Jira-175 test - old CMS volume SBSC
  const int Nz3        = 6;
  Precision rmin3[Nz3] = {53, 53, 53, 53, 114, 114};
  Precision rmax3[Nz3] = {54, 54, 115, 115, 115, 115};
  Precision z3[Nz3]    = {71, 121.5, 121.5, 122.5, 122.5, 282};
  Polycone_t pcon175("PCone175", 0, 360. * kPi / 180., Nz3, z3, rmin3, rmax3);

  Vec_t point175a{-18.1079855387881, -54.3917837284389, 121.5};

  assert(pcon175.Inside(point175a) == vecgeom::EInside::kSurface);

  Vec_t norm175;
  bool valid175 = pcon175.Normal(point175a, norm175);
  assert(ApproxEqual(norm175, Vec_t(0, 0, -1)) && valid175);

  return true;
}

int main(int argc, char *argv[])
{
  TestPolycone<vecgeom::SimplePolycone>();
  std::cout << "VecGeomPolycone passed\n";
  return 0;
}