File: TestTorus2.cpp

package info (click to toggle)
vecgeom 1.2.8%2Bdfsg-2
  • links: PTS, VCS
  • area: main
  • in suites: sid, trixie
  • size: 24,016 kB
  • sloc: cpp: 88,803; ansic: 6,888; python: 1,035; sh: 582; sql: 538; makefile: 23
file content (353 lines) | stat: -rw-r--r-- 14,564 bytes parent folder | download | duplicates (2)
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
//
//
// TestTorus

//.. ensure asserts are compiled in
#undef NDEBUG
#include "VecGeom/base/FpeEnable.h"

#include "VecGeom/base/Global.h"
#include "VecGeom/base/Vector3D.h"
#include "ApproxEqual.h"
#include "VecGeom/volumes/Torus2.h"

#include <cmath>
using vecgeom::kPi;

template <class Torus_t, class Vec_t = vecgeom::Vector3D<vecgeom::Precision>>
bool testTorus()
{
  int i;
  Precision Rtor = 100;
  Precision Rmax = Rtor * 0.9;
  Precision Rmin = Rtor * 0.1;
  Precision x;
  Precision z;

  Precision Dist, dist, vol, volCheck;
  Vec_t normal;
  bool valid;

  Precision tolerance = 1e-9;

  Vec_t pzero(0, 0, 0);

  Vec_t pbigx(240, 0, 0), pbigy(0, 240, 0), pbigz(0, 0, 240);
  Vec_t pbigmx(-240, 0, 0), pbigmy(0, -240, 0), pbigmz(0, 0, -240);

  Vec_t ponrmax(190, 0, 0);
  Vec_t ponrmin(0, 110, 0);
  Vec_t ponrtor(0, 100, 0);
  Vec_t ponphi1(100 / std::sqrt(2.), 100 / std::sqrt(2.), 0);
  Vec_t ponphi2(-100 / std::sqrt(2.), 100 / std::sqrt(2.), 0);
  Vec_t ponphi12(190 / std::sqrt(2.), 190 / std::sqrt(2.), 0);
  Vec_t ponphi22(-120 / std::sqrt(2.), 120 / std::sqrt(2.), 0);
  Vec_t ponphi23(-120 / std::sqrt(2.) + 0.5, 120 / std::sqrt(2.), 0);

  Vec_t vx(1, 0, 0), vy(0, 1, 0), vz(0, 0, 1);
  Vec_t vmx(-1, 0, 0), vmy(0, -1, 0), vmz(0, 0, -1);
  Vec_t vxy(1 / std::sqrt(2.0), 1 / std::sqrt(2.0), 0);
  Vec_t vmxy(-1 / std::sqrt(2.0), 1 / std::sqrt(2.0), 0);
  Vec_t vmxmy(-1 / std::sqrt(2.0), -1 / std::sqrt(2.0), 0);
  Vec_t vxmy(1 / std::sqrt(2.0), -1 / std::sqrt(2.0), 0);

  Vec_t pstart((Rtor + Rmax) / std::sqrt(2.0), (Rtor + Rmax) / std::sqrt(2.0), 0);
  Vec_t vdirect(1 / std::sqrt(2.0), -1 / std::sqrt(2.0), 0);

  Vec_t pother(90, 0, 0);
  vdirect = vdirect.Unit();
  Vec_t p1;
  Vec_t v1(1, 0, 0);
  v1 = v1.Unit();

  std::cout << "Starting Torus unit test..." << std::endl;
  // Check torus roots

  Torus_t t1("Solid Torus #1", 0, Rmax, Rtor, 0, vecgeom::kTwoPi);
  Torus_t t2("Hole cutted Torus #2", Rmin, Rmax, Rtor, 0, kPi / 2.); // kPi/4., kPi/2.);
  Torus_t tn2("tn2", Rmin, Rmax, Rtor, vecgeom::kPi / 2., vecgeom::kPi / 2.);
  Torus_t tn3("tn3", Rmin, Rmax, Rtor, vecgeom::kPi / 2., 3 * vecgeom::kPi / 2.);
  Torus_t t3("Hole cutted Torus #3", 4 * Rmin, Rmax, Rtor, vecgeom::kPi / 2. - vecgeom::kPi / 24, vecgeom::kPi / 12);
  Torus_t t4("Solid Torus #4", 0, Rtor - 2.e3 * tolerance, Rtor, 0, vecgeom::kTwoPi);
  Torus_t t5("Solid cutted Torus #5", 0, Rtor - 2.e3 * tolerance, Rtor, vecgeom::kPi / 4, vecgeom::kPi / 2);
  Torus_t *aTub = new Torus_t("Ring1", 0, 100, 1000, 0, vecgeom::kTwoPi);
  Torus_t t6("t6", 100, 150, 200, 0, vecgeom::kPi / 3);
  Torus_t *clad = new Torus_t("clad", 0., 10., 100., 0., vecgeom::kPi); // external
  Torus_t *core = new Torus_t("core", 0., 5, 100, 0., vecgeom::kPi);    // internal

  Torus_t *cmsEECool3 = new Torus_t("cmsEECool3", 0, 6, 1640, 0.09599, 1.4312);
  Vec_t temp1         = Vec_t(-0.646752, -0.762700, -0.000012);
  temp1               = temp1 / (temp1.Mag());

  // std::cout << "Dout=" << cmsEECool3->DistanceToOut(Vec_t(1230.993171, 1078.075896, -2.947036), temp1)
  //          << std::endl; //: inf / inf / inf / 1.57856
  // std::cout<<"In="<<cmsEECool3->Inside(Vec_t(1230.993171, 1078.075896, -2.947036))<<"
  // Rtor="<<std::sqrt(1230.99*1230.99+1078.07*1078.07)<<std::endl;
  assert(cmsEECool3->Inside(Vec_t(1230.993171, 1078.075896, -2.947036)) == vecgeom::EInside::kInside);

  Vec_t p1t6(60.73813233071262, -27.28494547459707, 37.47827539879173);

  Vec_t vt6(0.3059312222729116, 0.8329513862588347, -0.461083588265824);

  Vec_t p2t6(70.75950555416668, -3.552713678800501e-15, 22.37458414788935);

  // Check cubic volume

  vol      = t1.Capacity();
  volCheck = vecgeom::kTwoPi * vecgeom::kPi * Rtor * (Rmax * Rmax);
  assert(ApproxEqual<Precision>(vol, volCheck));

  vol      = t2.Capacity();
  volCheck = vecgeom::kPi / 2. * vecgeom::kPi * Rtor * (Rmax * Rmax - Rmin * Rmin);

  assert(ApproxEqual<Precision>(vol, volCheck));

  // Check Inside
  // std::cout<<t1.Inside(pzero)<<std::endl;
  assert(t1.Inside(pzero) == vecgeom::EInside::kOutside);
  assert(t1.Inside(pbigx) == vecgeom::EInside::kOutside);
  assert(t1.Inside(ponrmax) == vecgeom::EInside::kSurface);
  assert(t2.Inside(ponrmin) == vecgeom::EInside::kSurface);
  assert(t2.Inside(pbigx) == vecgeom::EInside::kOutside);
  assert(t2.Inside(pbigy) == vecgeom::EInside::kOutside);
  assert(t2.Inside(ponphi1) == vecgeom::EInside::kOutside);
  assert(t2.Inside(ponphi2) == vecgeom::EInside::kOutside);
  assert(t2.Inside(Vec_t(20, 0, 0)) == vecgeom::EInside::kSurface);
  assert(t2.Inside(Vec_t(0, 20, 0)) == vecgeom::EInside::kSurface);

  vecgeom::EnumInside side;
  side = t6.Inside(p1t6);
  // std::cout << "t6.Inside(p1t6) = " << side << std::endl;
  side = t6.Inside(p2t6);
  // std::cout << "t6.Inside(p2t6) = " << side << std::endl;
  assert(t6.Inside(p2t6) == vecgeom::EInside::kSurface);
  assert(side == vecgeom::EInside::kSurface);
  // Check Surface Normal

  Precision p2 = 1. / std::sqrt(2.); // ,p3=1./std::sqrt(3.);

  valid = t1.Normal(ponrmax, normal);
  assert(ApproxEqual(normal, vx) && valid);
  valid = t1.Normal(Vec_t(0., 190., 0.), normal);
  assert(ApproxEqual(normal, vy));
  valid = tn2.Normal(Vec_t(0., Rtor + Rmax, 0.), normal);
  assert(ApproxEqual(normal, Vec_t(p2, p2, 0.)));
  valid = tn2.Normal(Vec_t(0., Rtor + Rmin, 0.), normal);
  assert(ApproxEqual(normal, Vec_t(p2, -p2, 0.)));
  valid = tn2.Normal(Vec_t(0., Rtor - Rmin, 0.), normal);
  assert(ApproxEqual(normal, Vec_t(p2, p2, 0.)));
  valid = tn2.Normal(Vec_t(0., Rtor - Rmax, 0.), normal);
  assert(ApproxEqual(normal, Vec_t(p2, -p2, 0.)));
  valid = tn3.Normal(Vec_t(Rtor, 0., Rmax), normal);
  assert(ApproxEqual(normal, Vec_t(0., p2, p2)));
  valid = tn3.Normal(Vec_t(0., Rtor, Rmax), normal);
  assert(ApproxEqual(normal, Vec_t(p2, 0., p2)));

  valid = t2.Normal(ponrmin, normal);
  // std::cout<<" normal="<<normal<<std::endl;
  assert(ApproxEqual(normal, vmxmy));
  valid = t2.Normal(Vec_t(20., 0., 0.), normal);
  assert(ApproxEqual(normal, vmy));
  valid = t2.Normal(Vec_t(0, 20, 0), normal);
  assert(ApproxEqual(normal, vmx));

  // SafetyToOut(P)
  Dist = t1.SafetyToOut(ponrmin);
  assert(ApproxEqual<Precision>(Dist, 80));
  Dist = t1.SafetyToOut(ponrmax);
  assert(ApproxEqual<Precision>(Dist, 0));
  // later: why it was introduced, while they are outside (see above)
  Dist = t2.SafetyToOut(Vec_t(20, 0, 0));
  assert(ApproxEqual<Precision>(Dist, 0));
  Dist = t2.SafetyToOut(Vec_t(0, 20, 0));
  assert(ApproxEqual<Precision>(Dist, 0));

  // DistanceToOut(P,V)
  Dist = t1.DistanceToOut(ponrmax, vx);
  // std::cout << "t1.DistanceToOut(p,vx...) = " << Dist << " norm=" << normal << std::endl;
  valid = t1.Normal(ponrmax + Dist * vx, normal);
  assert(ApproxEqual<Precision>(Dist, 0) && ApproxEqual(normal, vx));

  Vec_t ptest = Vec_t(130, 0, 0);
  Dist        = t1.DistanceToOut(ptest, vx);
  // Dist=t1.DistanceToOut(Vec_t(130,0.00001,0.00001),Vec_t(1,0.001,0.001).Unit(),normal,convex);
  // std::cout << "t1.DistanceToOut(ponphi1,vz,...) = " << Dist << " n=" << normal << std::endl;
  valid = t1.Normal(ptest + Dist * vx, normal);
  assert(ApproxEqual<Precision>(Dist, 60) && ApproxEqual(normal, vx));

  Dist  = t1.DistanceToOut(ponrmin, vy);
  valid = t1.Normal(ponrmin + Dist * vy, normal);
  assert(ApproxEqual<Precision>(Dist, 80) && ApproxEqual(normal, vy));
  Dist  = t1.DistanceToOut(ponrmin, vmy);
  valid = t1.Normal(ponrmin + Dist * vmy, normal);
  assert(ApproxEqual<Precision>(Dist, 100));

  // std::cout << "(vz + Vec_t(0.00001, 0.000001, 0): " << (vz + Vec_t(0.00001, 0.000001, 0)) << '\n';
  // std::cout << "Vec_t(0.00001, 0.000001, 0)).Unit() = " << (vz + Vec_t(0.00001, 0.000001, 0)).Unit() << '\n';
  Dist = t1.DistanceToOut(Vec_t(100, 0, 0), (vz + Vec_t(0.00001, 0.000001, 0)).Unit());
  // std::cout << "t1.DistanceToOut(100,0,0,vz,...) = " << Dist << " n=" << norm << std::endl;
  assert(ApproxEqual<Precision>(Dist, 90));
  // std::cout << "Dist=t2.DistanceToOut(ponphi12,vy) = " << Dist << ", n=" << norm << ", -vy = " << -vy << std::endl;
  // std::cout << "norm: " << norm << '\n';
  Dist = t2.DistanceToOut(Vec_t(7.07106781186547524400844362, 7.07106781186547524400844362, 0), vmx);
  // std::cout << "Dist = t2.DistanceToOut(Vec_t(7.07106781186547524400844362, 7.07106781186547524400844362, 0), vmx,
  // normal, convex) = " << Dist << std::endl;
  assert(ApproxEqual<Precision>(Dist, 0));

  Vec_t test(0., 0., 1);
  for (int i = 1; i < 5; i++) {
    Dist = t1.DistanceToOut(Vec_t(90, 0, 0), test);
    // std::cout << " i=" << i << " Dist=t2.DistanceToOut(90,test) = " << Dist << " n=" << norm << std::endl;
    test = test + Vec_t(0.00001, 0.00001, 0);
    test = test.Unit();
  }

  // SafetyToIn(P)
  Dist = t1.SafetyToIn(pbigx);
  assert(ApproxEqual<Precision>(Dist, 50));
  Dist = t1.SafetyToIn(pbigmx);
  assert(ApproxEqual<Precision>(Dist, 50));
  Dist = t1.SafetyToIn(pbigy);
  assert(ApproxEqual<Precision>(Dist, 50));
  Dist = t1.SafetyToIn(pbigmy);
  assert(ApproxEqual<Precision>(Dist, 50));
  Dist = t1.SafetyToIn(pbigz);
  //    std::cout<<"Dist=t1.SafetyToIn (pbigz) = "<<Dist<<std::endl;
  //    assert(ApproxEqual<Precision>(Dist,50));
  Dist = t1.SafetyToIn(pbigmz);
  //    std::cout<<"Dist=t1.SafetyToIn (pbigmz) = "<<Dist<<std::endl;
  //    assert(ApproxEqual<Precision>(Dist,50));

  // DistanceToIn(P,V)
  // std::cout << "LOGT pbigx: " << pbigx << '\n';
  // std::cout << "LOGT vmx: " << vmx << '\n';
  Dist = t1.DistanceToIn(pbigx, vmx);
  // std::cout << "LOGT Dist = t1.DistanceToIn(pbigx, vmx): " << Dist << '\n';
  assert(ApproxEqual<Precision>(Dist, 50));
  Dist = t1.DistanceToIn(pbigmx, vx);
  assert(ApproxEqual<Precision>(Dist, 50));
  Dist = t1.DistanceToIn(pbigy, vmy);
  assert(ApproxEqual<Precision>(Dist, 50));
  Dist = t1.DistanceToIn(pbigmy, vy);
  assert(ApproxEqual<Precision>(Dist, 50));
  Dist = t1.DistanceToIn(pbigz, vmz);
  assert(ApproxEqual<Precision>(Dist, vecgeom::kInfLength));
  Dist = t1.DistanceToIn(pbigmz, vz);
  assert(ApproxEqual<Precision>(Dist, vecgeom::kInfLength));
  Dist = t1.DistanceToIn(pbigx, vxy);
  assert(ApproxEqual<Precision>(Dist, vecgeom::kInfLength));
  Dist = t1.DistanceToIn(ponrmax, vx);
  // std::cout << "Dist=t1.DIN (p,v) = " << Dist << std::endl;
  // assert(ApproxEqual<Precision>(Dist,vecgeom::kInfLength));
  Dist = t1.DistanceToIn(ponrmax, vmx);
  // std::cout << "Dist=t1.DIN (p,v) = " << Dist << std::endl;
  // assert(ApproxEqual<Precision>(Dist,0));

  // Vec_t vnew(1,0,0) ;
  // vnew.rotateZ(pi/4-5*1e-9) ;    // old test: check pzero with vxy
  // Dist=t2.DistanceToIn(pzero,vnew);
  // assert(ApproxEqual<Precision>(Dist,vecgeom::kInfLength));
  // std::cout << "Dist=t2.DIN (p,v) = " << Dist << std::endl;
  Dist = t2.DistanceToIn(pzero, vy);
  assert(ApproxEqual<Precision>(Dist, 10));
  Dist = t2.DistanceToIn(ponphi12, vy);
  // std::cout << "Dist = t2.DistanceToIn(ponphi12, vy) = " << Dist << ", ponphi12 = " << ponphi12 << ", vy = " << vy <<
  // std::endl;
  assert(ApproxEqual<Precision>(Dist, vecgeom::kInfLength));
  Dist = t2.DistanceToIn(ponphi12, vmy);
  assert(ApproxEqual<Precision>(Dist, 0));
  Dist = t2.DistanceToIn(ponphi1, vy);
  assert(ApproxEqual<Precision>(Dist, 13.550819613108856743)); // Not sure about this
  // Torus t2 is ends at pi/2 rad, we expect infinity
  Dist = t2.DistanceToIn(ponrmin, vy);
  assert(ApproxEqual<Precision>(Dist, vecgeom::kInfLength));
  Dist = t2.DistanceToIn(ponrmin, vmy);
  assert(ApproxEqual<Precision>(Dist, vecgeom::kInfLength));

  Dist = t3.DistanceToIn(ponrtor, vy);
  assert(ApproxEqual<Precision>(Dist, 40));
  Dist = t3.DistanceToIn(ponrtor, vmy);
  assert(ApproxEqual<Precision>(Dist, 40));
  Dist = t3.DistanceToIn(ponrtor, vz);
  assert(ApproxEqual<Precision>(Dist, 40));
  Dist = t3.DistanceToIn(ponrtor, vmz);
  assert(ApproxEqual<Precision>(Dist, 40));
  Dist = t3.DistanceToIn(ponrtor, vx);
  assert(ApproxEqual<Precision>(Dist, vecgeom::kInfLength));
  Dist = t3.DistanceToIn(ponrtor, vmx);
  assert(ApproxEqual<Precision>(Dist, vecgeom::kInfLength));

  Dist = t6.DistanceToIn(p1t6, vt6);
  // std::cout<<"t6.DistanceToIn(p1t6,vt6) = "<<Dist<<std::endl;

  // Bug 810

  Vec_t pTmp(0., 0., 0.);

  dist = clad->DistanceToIn(pTmp, vy);
  pTmp += dist * vy;
  // std::cout << "pTmpX = " << pTmp.x() << ";  pTmpY = " << pTmp.y() << ";  pTmpZ = " << pTmp.z() << std::endl;
  side = core->Inside(pTmp);
  // std::cout << "core->Inside(pTmp) = " << side << std::endl;
  side = clad->Inside(pTmp);
  // std::cout << "clad->Inside(pTmp) = " << side << std::endl;

  dist = core->DistanceToIn(pTmp, vy);
  pTmp += dist * vy;
  // std::cout << "pTmpX = " << pTmp.x() << ";  pTmpY = " << pTmp.y() << ";  pTmpZ = " << pTmp.z() << std::endl;
  side = core->Inside(pTmp);
  // std::cout << "core->Inside(pTmp) = " << side << std::endl;
  side = clad->Inside(pTmp);
  // std::cout << "clad->Inside(pTmp) = " << side << std::endl;

  dist = core->DistanceToOut(pTmp, vy);
  pTmp += dist * vy;
  // std::cout << "pTmpX = " << pTmp.x() << ";  pTmpY = " << pTmp.y() << ";  pTmpZ = " << pTmp.z() << std::endl;
  side = core->Inside(pTmp);
  // std::cout << "core->Inside(pTmp) = " << side << std::endl;
  side = clad->Inside(pTmp);
  // std::cout << "clad->Inside(pTmp) = " << side << std::endl;

  dist = clad->DistanceToOut(pTmp, vy);
  pTmp += dist * vy;
  // std::cout << "pTmpX = " << pTmp.x() << ";  pTmpY = " << pTmp.y() << ";  pTmpZ = " << pTmp.z() << std::endl;
  side = core->Inside(pTmp);
  // std::cout << "core->Inside(pTmp) = " << side << std::endl;
  side = clad->Inside(pTmp);
  // std::cout << "clad->Inside(pTmp) = " << side << std::endl;

  // Check for Distance to In ( start from an external point )

  for (i = 0; i < 12; i++) {
    x  = -1200;
    z  = Precision(i) / 10;
    p1 = Vec_t(x, 0, z);
    //     std::cout << p1 << " - " << v1 << std::endl;

    Dist = aTub->DistanceToIn(p1, v1);
    //     std::cout << "Distance to in dir: " << Dist ;

    Dist = aTub->DistanceToOut(p1, v1);
    //     std::cout << "   Distance to out dir: " << Dist << std::endl ;

    // std::cout << "Distance to in : " << aTub->DistanceToIn (p1);
    //  std::cout << "   Distance to out : " << aTub->DistanceToOut (p1)
    //    << std::endl;
    //     std::cout << "   Inside : " << aTub->Inside (p1);
    //     std::cout << std::endl;
  }

  // CalculateExtent
  std::cout << "Test passed." << std::endl;

  return true;
}

int main()
{
#ifdef NDEBUG
  G4Exception("FAIL: *** Assertions must be compiled in! ***");
#endif
  assert(testTorus<vecgeom::SimpleTorus2>());
  return 0;
}