1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217
|
///
/// file: TestUtils3D.cpp
/// purpose: Unit tests for the 3D geometry utilities
///
//-- ensure asserts are compiled in
#ifdef NDEBUG
#undef NDEBUG
#endif
#include "VecGeom/base/Utils3D.h"
#include "ApproxEqual.h"
#include "VecGeom/volumes/Box.h"
#include "test/benchmark/ArgParser.h"
#ifdef VECGEOM_ROOT
#include "VecGeomTest/Visualizer.h"
#include "TPolyMarker3D.h"
#include "TPolyLine3D.h"
#endif
using vecgeom::Precision;
bool ValidXing(vecgeom::Vector3D<Precision> const &point, vecgeom::Vector3D<Precision> const &dir,
vecgeom::Vector3D<Precision> const &n1, Precision p1, vecgeom::Vector3D<Precision> const &n2,
Precision p2)
{
bool valid_dir = ApproxEqual<Precision>(dir.Dot(n1), 0.) && ApproxEqual<Precision>(dir.Dot(n2), 0.);
bool valid_point = ApproxEqual<Precision>(point.Dot(n1 - n2) + (p1 - p2), 0.);
return valid_point & valid_dir;
}
#ifdef VECGEOM_ROOT
void DrawPolygon(vecgeom::Utils3D::Polygon const &poly, vecgeom::Visualizer &visualizer, size_t color)
{
using namespace vecgeom;
using Vec_t = Vector3D<Precision>;
TPolyLine3D pl(poly.fN + 1);
pl.SetLineColor(color);
for (size_t i = 0; i < poly.fN; ++i)
pl.SetNextPoint(poly.GetVertex(i).x(), poly.GetVertex(i).y(), poly.GetVertex(i).z());
pl.SetNextPoint(poly.GetVertex(0).x(), poly.GetVertex(0).y(), poly.GetVertex(0).z());
visualizer.AddLine(pl);
// Compute center of polygon
Vec_t center;
for (size_t i = 0; i < poly.fN; ++i)
center += poly.GetVertex(i);
center *= 1. / poly.fN;
TPolyLine3D plnorm(2);
plnorm.SetLineColor(color);
plnorm.SetNextPoint(center[0], center[1], center[2]);
plnorm.SetNextPoint(center[0] + poly.fNorm[0], center[1] + poly.fNorm[1], center[2] + poly.fNorm[2]);
visualizer.AddLine(plnorm);
}
void DrawPolyhedron(vecgeom::Utils3D::Polyhedron &polyh, vecgeom::Visualizer &visualizer, size_t color)
{
using namespace vecgeom;
for (size_t i = 0; i < polyh.GetNpolygons(); ++i)
DrawPolygon(polyh.GetPolygon(i), visualizer, color);
}
#endif
int main(int argc, char *argv[])
{
using namespace vecgeom;
using namespace vecCore::math;
using Vec_t = Vector3D<Precision>;
using vecgeom::Utils3D::Line;
using vecgeom::Utils3D::Plane;
using vecgeom::Utils3D::Polygon;
using vecgeom::Utils3D::Polyhedron;
const Vec_t dirx(1., 0., 0.);
const Vec_t diry(0., 1., 0.);
const Vec_t dirz(0., 0., 1.);
#ifdef VECGEOM_ROOT
OPTION_INT(vis, 0);
#endif
///* Plane transformations */
Plane pl1(Vec_t(1., 0., 0.), -10.);
Transformation3D transf1(10., 0., 0., 0., 0., 180.);
pl1.Transform(transf1);
assert(ApproxEqual<Precision>(pl1.fNorm[0], -1.) && ApproxEqual<Precision>(pl1.fDist, 0.));
// Polygon intersection
Utils3D::vector_t<Vec_t> pvec1 = {{10., 4., 6.}, {10., -4., 6.}, {10., -4., -6.}, {10., 4., -6.}};
Polygon poly1(4, pvec1, Vec_t(1., 0., 0.));
poly1.fInd = {0, 1, 2, 3};
poly1.Init();
Utils3D::vector_t<Vec_t> pvec2 = {{7.75736, -3.17423, 10.5854},
{7.75736, -7.17423, 3.65722},
{16.2426, 0.174235, -0.585422},
{16.2426, 4.17423, 6.34278}};
Polygon poly2(4, pvec2, true);
poly2.fInd = {0, 1, 2, 3};
poly2.Init();
Line line1;
assert(Utils3D::PolygonXing(poly1, poly2, &line1) == Utils3D::kOverlapping);
///* Test plane crossings */
Vector3D<Precision> point, direction;
Vector3D<Precision> n1, n2;
Precision p1, p2;
// identical planes
n1.Set(0., 0., 1.);
n2.Set(0., 0., 1.);
p1 = -3.;
p2 = -3.;
assert(Utils3D::PlaneXing(Plane(n1, p1), Plane(n2, p2), point, direction) == Utils3D::kIdentical);
// identical planes with opposite normals
n1.Set(0., 0., 1.);
n2.Set(0., 0., -1.);
p1 = -3.;
p2 = 3.;
assert(Utils3D::PlaneXing(Plane(n1, p1), Plane(n2, p2), point, direction) == Utils3D::kIdentical);
// opposite planes with opposite normals
n1.Set(0., 0., 1.);
n2.Set(0., 0., -1.);
p1 = -3;
p2 = -3;
assert(Utils3D::PlaneXing(Plane(n1, p1), Plane(n2, p2), point, direction) == Utils3D::kParallel);
// opposite planes with identical normal
n1.Set(0., 0., 1.);
n2.Set(0., 0., 1.);
p1 = -3;
p2 = 3;
assert(Utils3D::PlaneXing(Plane(n1, p1), Plane(n2, p2), point, direction) == Utils3D::kParallel);
// arbitrary parallel planes
n1.Set(1., 2., 3.);
n1.Normalize();
n2 = -n1;
p1 = 1;
p2 = -2;
assert(Utils3D::PlaneXing(Plane(n1, p1), Plane(n2, p2), point, direction) == Utils3D::kParallel);
// +z face of a box with +x face of the same box
n1.Set(0., 0., 1.);
n2.Set(1., 0., 0.);
p1 = -3;
p2 = -2;
assert(Utils3D::PlaneXing(Plane(n1, p1), Plane(n2, p2), point, direction) == Utils3D::kIntersecting);
assert(ValidXing(point, direction, n1, p1, n2, p2));
// same as above but 1 face has opposite normal
n2 = -n2;
p2 = -p2;
assert(Utils3D::PlaneXing(Plane(n1, p1), Plane(n2, p2), point, direction) == Utils3D::kIntersecting);
assert(ValidXing(point, direction, n1, p1, n2, p2));
///* Test box crossings */
Vec_t box1(1., 2., 3.);
Vec_t box2(2., 3., 4.);
Polyhedron polyh1, polyh2;
Utils3D::FillBoxPolyhedron(box1, polyh1);
Utils3D::FillBoxPolyhedron(box2, polyh2);
Transformation3D tr1, tr2, tr3;
// Touching boxes
tr1 = Transformation3D(0., 0., 0.);
tr2 = Transformation3D(3., 5., 0.);
assert(Utils3D::BoxCollision(box1, tr1, box2, tr2) == Utils3D::kTouching);
// Disjoint boxes
tr1 = Transformation3D(0., 0., 0.);
tr2 = Transformation3D(2.5, 4.5, 10.2);
assert(Utils3D::BoxCollision(box1, tr1, box2, tr2) == Utils3D::kDisjoint);
// Overlapping boxes
tr1 = Transformation3D(0., 0., 0.);
tr2 = Transformation3D(2.5, 4.5, 6.5);
assert(Utils3D::BoxCollision(box1, tr1, box2, tr2) == Utils3D::kOverlapping);
tr1 = Transformation3D(-1, -0.5, 0.5);
tr2 = Transformation3D(-3., -0.5, 0.5);
tr3 = Transformation3D(1., 2., 3., 0., 45., 45.);
polyh1.Transform(tr1);
polyh2.Transform(tr3);
assert(Utils3D::BoxCollision(box1, tr1, box2, tr3) == Utils3D::kOverlapping &&
Utils3D::BoxCollision(box1, tr2, box2, tr3) == Utils3D::kDisjoint);
std::cout << "TestUtils3D passed\n";
#ifdef VECGEOM_ROOT
if (vis == 0) return 0;
Visualizer visualizer;
SimpleBox boxshape("box", 7, 7, 7);
visualizer.AddVolume(boxshape);
Utils3D::vector_t<Utils3D::Line> lines;
DrawPolyhedron(polyh1, visualizer, kBlue);
DrawPolyhedron(polyh2, visualizer, kGreen);
if (PolyhedronXing(polyh1, polyh2, lines) == Utils3D::kOverlapping) {
TPolyLine3D pl(2);
pl.SetLineColor(kRed);
for (auto line : lines) {
pl.SetNextPoint(line.fPts[0].x(), line.fPts[0].y(), line.fPts[0].z());
pl.SetNextPoint(line.fPts[1].x(), line.fPts[1].y(), line.fPts[1].z());
visualizer.AddLine(pl);
}
}
visualizer.Show();
#endif
return 0;
}
|