File: verilated.h

package info (click to toggle)
verilator 3.864-1
  • links: PTS, VCS
  • area: main
  • in suites: jessie, jessie-kfreebsd
  • size: 12,272 kB
  • ctags: 19,637
  • sloc: cpp: 57,401; perl: 8,764; yacc: 2,559; lex: 1,727; makefile: 658; sh: 175
file content (1868 lines) | stat: -rw-r--r-- 76,283 bytes parent folder | download
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
525
526
527
528
529
530
531
532
533
534
535
536
537
538
539
540
541
542
543
544
545
546
547
548
549
550
551
552
553
554
555
556
557
558
559
560
561
562
563
564
565
566
567
568
569
570
571
572
573
574
575
576
577
578
579
580
581
582
583
584
585
586
587
588
589
590
591
592
593
594
595
596
597
598
599
600
601
602
603
604
605
606
607
608
609
610
611
612
613
614
615
616
617
618
619
620
621
622
623
624
625
626
627
628
629
630
631
632
633
634
635
636
637
638
639
640
641
642
643
644
645
646
647
648
649
650
651
652
653
654
655
656
657
658
659
660
661
662
663
664
665
666
667
668
669
670
671
672
673
674
675
676
677
678
679
680
681
682
683
684
685
686
687
688
689
690
691
692
693
694
695
696
697
698
699
700
701
702
703
704
705
706
707
708
709
710
711
712
713
714
715
716
717
718
719
720
721
722
723
724
725
726
727
728
729
730
731
732
733
734
735
736
737
738
739
740
741
742
743
744
745
746
747
748
749
750
751
752
753
754
755
756
757
758
759
760
761
762
763
764
765
766
767
768
769
770
771
772
773
774
775
776
777
778
779
780
781
782
783
784
785
786
787
788
789
790
791
792
793
794
795
796
797
798
799
800
801
802
803
804
805
806
807
808
809
810
811
812
813
814
815
816
817
818
819
820
821
822
823
824
825
826
827
828
829
830
831
832
833
834
835
836
837
838
839
840
841
842
843
844
845
846
847
848
849
850
851
852
853
854
855
856
857
858
859
860
861
862
863
864
865
866
867
868
869
870
871
872
873
874
875
876
877
878
879
880
881
882
883
884
885
886
887
888
889
890
891
892
893
894
895
896
897
898
899
900
901
902
903
904
905
906
907
908
909
910
911
912
913
914
915
916
917
918
919
920
921
922
923
924
925
926
927
928
929
930
931
932
933
934
935
936
937
938
939
940
941
942
943
944
945
946
947
948
949
950
951
952
953
954
955
956
957
958
959
960
961
962
963
964
965
966
967
968
969
970
971
972
973
974
975
976
977
978
979
980
981
982
983
984
985
986
987
988
989
990
991
992
993
994
995
996
997
998
999
1000
1001
1002
1003
1004
1005
1006
1007
1008
1009
1010
1011
1012
1013
1014
1015
1016
1017
1018
1019
1020
1021
1022
1023
1024
1025
1026
1027
1028
1029
1030
1031
1032
1033
1034
1035
1036
1037
1038
1039
1040
1041
1042
1043
1044
1045
1046
1047
1048
1049
1050
1051
1052
1053
1054
1055
1056
1057
1058
1059
1060
1061
1062
1063
1064
1065
1066
1067
1068
1069
1070
1071
1072
1073
1074
1075
1076
1077
1078
1079
1080
1081
1082
1083
1084
1085
1086
1087
1088
1089
1090
1091
1092
1093
1094
1095
1096
1097
1098
1099
1100
1101
1102
1103
1104
1105
1106
1107
1108
1109
1110
1111
1112
1113
1114
1115
1116
1117
1118
1119
1120
1121
1122
1123
1124
1125
1126
1127
1128
1129
1130
1131
1132
1133
1134
1135
1136
1137
1138
1139
1140
1141
1142
1143
1144
1145
1146
1147
1148
1149
1150
1151
1152
1153
1154
1155
1156
1157
1158
1159
1160
1161
1162
1163
1164
1165
1166
1167
1168
1169
1170
1171
1172
1173
1174
1175
1176
1177
1178
1179
1180
1181
1182
1183
1184
1185
1186
1187
1188
1189
1190
1191
1192
1193
1194
1195
1196
1197
1198
1199
1200
1201
1202
1203
1204
1205
1206
1207
1208
1209
1210
1211
1212
1213
1214
1215
1216
1217
1218
1219
1220
1221
1222
1223
1224
1225
1226
1227
1228
1229
1230
1231
1232
1233
1234
1235
1236
1237
1238
1239
1240
1241
1242
1243
1244
1245
1246
1247
1248
1249
1250
1251
1252
1253
1254
1255
1256
1257
1258
1259
1260
1261
1262
1263
1264
1265
1266
1267
1268
1269
1270
1271
1272
1273
1274
1275
1276
1277
1278
1279
1280
1281
1282
1283
1284
1285
1286
1287
1288
1289
1290
1291
1292
1293
1294
1295
1296
1297
1298
1299
1300
1301
1302
1303
1304
1305
1306
1307
1308
1309
1310
1311
1312
1313
1314
1315
1316
1317
1318
1319
1320
1321
1322
1323
1324
1325
1326
1327
1328
1329
1330
1331
1332
1333
1334
1335
1336
1337
1338
1339
1340
1341
1342
1343
1344
1345
1346
1347
1348
1349
1350
1351
1352
1353
1354
1355
1356
1357
1358
1359
1360
1361
1362
1363
1364
1365
1366
1367
1368
1369
1370
1371
1372
1373
1374
1375
1376
1377
1378
1379
1380
1381
1382
1383
1384
1385
1386
1387
1388
1389
1390
1391
1392
1393
1394
1395
1396
1397
1398
1399
1400
1401
1402
1403
1404
1405
1406
1407
1408
1409
1410
1411
1412
1413
1414
1415
1416
1417
1418
1419
1420
1421
1422
1423
1424
1425
1426
1427
1428
1429
1430
1431
1432
1433
1434
1435
1436
1437
1438
1439
1440
1441
1442
1443
1444
1445
1446
1447
1448
1449
1450
1451
1452
1453
1454
1455
1456
1457
1458
1459
1460
1461
1462
1463
1464
1465
1466
1467
1468
1469
1470
1471
1472
1473
1474
1475
1476
1477
1478
1479
1480
1481
1482
1483
1484
1485
1486
1487
1488
1489
1490
1491
1492
1493
1494
1495
1496
1497
1498
1499
1500
1501
1502
1503
1504
1505
1506
1507
1508
1509
1510
1511
1512
1513
1514
1515
1516
1517
1518
1519
1520
1521
1522
1523
1524
1525
1526
1527
1528
1529
1530
1531
1532
1533
1534
1535
1536
1537
1538
1539
1540
1541
1542
1543
1544
1545
1546
1547
1548
1549
1550
1551
1552
1553
1554
1555
1556
1557
1558
1559
1560
1561
1562
1563
1564
1565
1566
1567
1568
1569
1570
1571
1572
1573
1574
1575
1576
1577
1578
1579
1580
1581
1582
1583
1584
1585
1586
1587
1588
1589
1590
1591
1592
1593
1594
1595
1596
1597
1598
1599
1600
1601
1602
1603
1604
1605
1606
1607
1608
1609
1610
1611
1612
1613
1614
1615
1616
1617
1618
1619
1620
1621
1622
1623
1624
1625
1626
1627
1628
1629
1630
1631
1632
1633
1634
1635
1636
1637
1638
1639
1640
1641
1642
1643
1644
1645
1646
1647
1648
1649
1650
1651
1652
1653
1654
1655
1656
1657
1658
1659
1660
1661
1662
1663
1664
1665
1666
1667
1668
1669
1670
1671
1672
1673
1674
1675
1676
1677
1678
1679
1680
1681
1682
1683
1684
1685
1686
1687
1688
1689
1690
1691
1692
1693
1694
1695
1696
1697
1698
1699
1700
1701
1702
1703
1704
1705
1706
1707
1708
1709
1710
1711
1712
1713
1714
1715
1716
1717
1718
1719
1720
1721
1722
1723
1724
1725
1726
1727
1728
1729
1730
1731
1732
1733
1734
1735
1736
1737
1738
1739
1740
1741
1742
1743
1744
1745
1746
1747
1748
1749
1750
1751
1752
1753
1754
1755
1756
1757
1758
1759
1760
1761
1762
1763
1764
1765
1766
1767
1768
1769
1770
1771
1772
1773
1774
1775
1776
1777
1778
1779
1780
1781
1782
1783
1784
1785
1786
1787
1788
1789
1790
1791
1792
1793
1794
1795
1796
1797
1798
1799
1800
1801
1802
1803
1804
1805
1806
1807
1808
1809
1810
1811
1812
1813
1814
1815
1816
1817
1818
1819
1820
1821
1822
1823
1824
1825
1826
1827
1828
1829
1830
1831
1832
1833
1834
1835
1836
1837
1838
1839
1840
1841
1842
1843
1844
1845
1846
1847
1848
1849
1850
1851
1852
1853
1854
1855
1856
1857
1858
1859
1860
1861
1862
1863
1864
1865
1866
1867
1868
// -*- mode: C++; c-file-style: "cc-mode" -*-
//*************************************************************************
//
// Copyright 2003-2014 by Wilson Snyder. This program is free software; you can
// redistribute it and/or modify it under the terms of either the GNU
// Lesser General Public License Version 3 or the Perl Artistic License.
// Version 2.0.
//
// Verilator is distributed in the hope that it will be useful,
// but WITHOUT ANY WARRANTY; without even the implied warranty of
// MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE.  See the
// GNU General Public License for more details.
//
//*************************************************************************
///
/// \file
/// \brief Verilator: Common include for all Verilated C files
///
///	This file is included automatically by Verilator at the top of
///	all C++ files it generates.  It contains standard macros and
///	classes required by the Verilated code.
///
/// Code available from: http://www.veripool.org/verilator
///
//*************************************************************************


#ifndef _VERILATED_H_
#define _VERILATED_H_ 1 ///< Header Guard

#include "verilated_config.h"
#include "verilatedos.h"

#include <cassert>
#include <cstdarg>
#include <cstdio>
#include <cstdlib>
#include <cstring>
#include <cmath>
// <iostream> avoided to reduce compile time
// <string> avoided and instead in verilated_heavy.h to reduce compile time
using namespace std;

//=============================================================================
// Switches

#if VM_TRACE		// Verilator tracing requested
# define WAVES 1	// Set backward compatibility flag as in systemperl.h
#endif

//=========================================================================
// Basic types

//		     P		// Packed data of bit type (C/S/I/Q/W)
typedef vluint8_t    CData;	///< Verilated pack data, 1-8 bits
typedef vluint16_t   SData;	///< Verilated pack data, 9-16 bits
typedef vluint32_t   IData;	///< Verilated pack data, 17-32 bits
typedef vluint64_t   QData;	///< Verilated pack data, 33-64 bits
typedef vluint32_t   WData;	///< Verilated pack data, >64 bits, as an array
//	float	     F		// No typedef needed; Verilator uses float
//	double	     D		// No typedef needed; Verilator uses double
//	string	     N		// No typedef needed; Verilator uses string

typedef const WData* WDataInP;	///< Array input to a function
typedef       WData* WDataOutP;	///< Array output from a function

typedef void (*VerilatedVoidCb)(void);

class SpTraceVcd;
class SpTraceVcdCFile;
class VerilatedVar;
class VerilatedVarNameMap;
class VerilatedVcd;
class VerilatedVcdC;

enum VerilatedVarType {
    VLVT_UNKNOWN=0,
    VLVT_PTR,		// Pointer to something
    VLVT_UINT8,		// AKA CData
    VLVT_UINT16,	// AKA SData
    VLVT_UINT32,	// AKA IData
    VLVT_UINT64,	// AKA QData
    VLVT_WDATA,		// AKA WData
    VLVT_STRING		// C++ string
};

enum VerilatedVarFlags {
    VLVD_IN=1,		// == vpiInput
    VLVD_OUT=2,		// == vpiOutput
    VLVD_INOUT=3,	// == vpiInOut
    VLVD_NODIR=5,	// == vpiNoDirection
    VLVF_MASK_DIR=7,	// Bit mask for above directions
    // Flags
    VLVF_PUB_RD=(1<<8),	// Public readable
    VLVF_PUB_RW=(1<<9)	// Public writable
};

//=========================================================================
/// Base class for all Verilated module classes

class VerilatedModule {
private:
    const char*		m_namep;	///< Module name
    VerilatedModule();				///< N/A, always use named constructor below
    VerilatedModule(const VerilatedModule& );	///< N/A, no copying modules
public:
    VerilatedModule(const char* namep);	///< Create module with given hierarchy name
    ~VerilatedModule();
    const char* name() const { return m_namep; }	///< Return name of module
};

//=========================================================================
// Declare nets

#ifndef VL_ST_SIG
# define VL_ST_SIG8(name, msb,lsb)	CData name		///< Declare signal, 1-8 bits
# define VL_ST_SIG16(name, msb,lsb)	SData name		///< Declare signal, 9-16 bits
# define VL_ST_SIG64(name, msb,lsb)	QData name		///< Declare signal, 33-64 bits
# define VL_ST_SIG(name, msb,lsb)	IData name		///< Declare signal, 17-32 bits
# define VL_ST_SIGW(name,msb,lsb,words)	WData name[words]	///< Declare signal, 65+ bits
#endif
#ifndef VL_SIG
# define VL_SIG8(name, msb,lsb)		CData name		///< Declare signal, 1-8 bits
# define VL_SIG16(name, msb,lsb)	SData name		///< Declare signal, 9-16 bits
# define VL_SIG64(name, msb,lsb)	QData name		///< Declare signal, 33-64 bits
# define VL_SIG(name, msb,lsb)		IData name		///< Declare signal, 17-32 bits
# define VL_SIGW(name, msb,lsb, words)	WData name[words]	///< Declare signal, 65+ bits
# define VL_IN8(name, msb,lsb)		CData name		///< Declare input signal, 1-8 bits
# define VL_IN16(name, msb,lsb)		SData name		///< Declare input signal, 9-16 bits
# define VL_IN64(name, msb,lsb)		QData name		///< Declare input signal, 33-64 bits
# define VL_IN(name, msb,lsb)		IData name		///< Declare input signal, 17-32 bits
# define VL_INW(name, msb,lsb, words)	WData name[words]	///< Declare input signal, 65+ bits
# define VL_INOUT8(name, msb,lsb)	CData name		///< Declare bidir signal, 1-8 bits
# define VL_INOUT16(name, msb,lsb)	SData name		///< Declare bidir signal, 9-16 bits
# define VL_INOUT64(name, msb,lsb)	QData name		///< Declare bidir signal, 33-64 bits
# define VL_INOUT(name, msb,lsb)	IData name		///< Declare bidir signal, 17-32 bits
# define VL_INOUTW(name, msb,lsb, words) WData name[words]	///< Declare bidir signal, 65+ bits
# define VL_OUT8(name, msb,lsb)		CData name		///< Declare output signal, 1-8 bits
# define VL_OUT16(name, msb,lsb)	SData name		///< Declare output signal, 9-16 bits
# define VL_OUT64(name, msb,lsb)	QData name		///< Declare output signal, 33-64bits
# define VL_OUT(name, msb,lsb)		IData name		///< Declare output signal, 17-32 bits
# define VL_OUTW(name, msb,lsb, words)	WData name[words]	///< Declare output signal, 65+ bits

# define VL_PIN_NOP(instname,pin,port)	///< Connect a pin, ala SP_PIN
# define VL_CELL(instname,type)		///< Declare a cell, ala SP_CELL

/// Declare a module, ala SC_MODULE
# define VL_MODULE(modname)		class modname : public VerilatedModule

/// Constructor, ala SC_CTOR
# define VL_CTOR(modname)		modname(const char* __VCname="")

/// Constructor declaration for C++, ala SP_CTOR_IMPL
# define VL_CTOR_IMP(modname)		modname::modname(const char* __VCname) : VerilatedModule(__VCname)

/// Constructor declaration for SystemC, ala SP_CTOR_IMPL
# define VL_SC_CTOR_IMP(modname)	modname::modname(sc_module_name)

#endif

//=========================================================================
// Functions overridable by user defines

#ifndef VL_PRINTF
# define VL_PRINTF printf	///< Print ala printf; may redefine if desired
#endif
#ifndef VL_VPRINTF
# define VL_VPRINTF vprintf	///< Print ala vprintf; may redefine if desired
#endif

//===========================================================================
/// Verilator symbol table base class

class VerilatedSyms {
    // VerilatedSyms base class exists just so symbol tables have a common pointer type
};

//===========================================================================
/// Verilator global static information class

class VerilatedScope {
    // Fastpath:
    VerilatedSyms*	m_symsp;	///< Symbol table
    void**		m_callbacksp;	///< Callback table pointer (Fastpath)
    int			m_funcnumMax;	///< Maxium function number stored (Fastpath)
    // 4 bytes padding (on -m64), for rent.
    VerilatedVarNameMap* m_varsp;	///< Variable map
    const char* 	m_namep;	///< Scope name (Slowpath)

public:  // But internals only - called from VerilatedModule's
    VerilatedScope();
    ~VerilatedScope();
    void configure(VerilatedSyms* symsp, const char* prefixp, const char* suffixp);
    void exportInsert(int finalize, const char* namep, void* cb);
    void varInsert(int finalize, const char* namep, void* datap,
		   VerilatedVarType vltype, int vlflags, int dims, ...);
    // ACCESSORS
    const char* name() const { return m_namep; }
    inline VerilatedSyms* symsp() const { return m_symsp; }
    VerilatedVar* varFind(const char* namep) const;
    VerilatedVarNameMap* varsp() const { return m_varsp; }
    void* exportFindError(int funcnum) const;
    void* exportFindNullError(int funcnum) const;
    void scopeDump() const;
    inline void* exportFind(int funcnum) const {
	if (VL_UNLIKELY(!this)) return exportFindNullError(funcnum);
	if (VL_LIKELY(funcnum < m_funcnumMax)) {
	    // m_callbacksp must be declared, as Max'es are > 0
	    return m_callbacksp[funcnum];
	} else {
	    return exportFindError(funcnum);
	}
    }
};

//===========================================================================
/// Verilator global static information class

class Verilated {
    // MEMBERS
    // Slow path variables
    static VerilatedVoidCb  s_flushCb;		///< Flush callback function

    static struct Serialized {   // All these members serialized/deserialized
	// Slow path
	int		s_randReset;		///< Random reset: 0=all 0s, 1=all 1s, 2=random
	// Fast path
	int		s_debug;		///< See accessors... only when VL_DEBUG set
	bool		s_calcUnusedSigs;	///< Waves file on, need all signals calculated
	bool		s_gotFinish;		///< A $finish statement executed
	bool		s_assertOn;		///< Assertions are enabled
        bool		s_fatalOnVpiError;	///< Stop on vpi error/unsupported
	Serialized();
    } s_s;

    static VL_THREAD const VerilatedScope* t_dpiScopep;	///< DPI context scope
    static VL_THREAD const char*	t_dpiFilename;	///< DPI context filename
    static VL_THREAD int		t_dpiLineno;	///< DPI context line number

    // no need to be save-restored (serialized) the
    // assumption is that the restore is allowed to pass different arguments
    static struct CommandArgValues {
	int          argc;
	const char** argv;
    } s_args;

public:

    // METHODS - User called

    /// Select initial value of otherwise uninitialized signals.
    ////
    /// 0 = Set to zeros
    /// 1 = Set all bits to one
    /// 2 = Randomize all bits
    static void randReset(int val) { s_s.s_randReset=val; }
    static int  randReset() { return s_s.s_randReset; }	///< Return randReset value

    /// Enable debug of internal verilated code
    static inline void debug(int level) { s_s.s_debug = level; }
#ifdef VL_DEBUG
    static inline int  debug() { return s_s.s_debug; }	///< Return debug value
#else
    static inline int  debug() { return 0; }		///< Constant 0 debug, so C++'s optimizer rips up
#endif
    /// Enable calculation of unused signals
    static void calcUnusedSigs(bool flag) { s_s.s_calcUnusedSigs=flag; }
    static bool calcUnusedSigs() { return s_s.s_calcUnusedSigs; }	///< Return calcUnusedSigs value
    /// Did the simulation $finish?
    static void gotFinish(bool flag) { s_s.s_gotFinish=flag; }
    static bool gotFinish() { return s_s.s_gotFinish; }	///< Return if got a $finish
    /// Allow traces to at some point be enabled (disables some optimizations)
    static void traceEverOn(bool flag) {
	if (flag) { calcUnusedSigs(flag); }
    }
    /// Enable/disable assertions
    static void assertOn(bool flag) { s_s.s_assertOn=flag; }
    static bool assertOn() { return s_s.s_assertOn; }
    /// Enable/disable vpi fatal
    static void fatalOnVpiError(bool flag) { s_s.s_fatalOnVpiError=flag; }
    static bool fatalOnVpiError() { return s_s.s_fatalOnVpiError; }
    /// Flush callback for VCD waves
    static void flushCb(VerilatedVoidCb cb);
    static void flushCall() { if (s_flushCb) (*s_flushCb)(); }

    /// Record command line arguments, for retrieval by $test$plusargs/$value$plusargs
    static void commandArgs(int argc, const char** argv);
    static void commandArgs(int argc, char** argv) { commandArgs(argc,(const char**)argv); }
    static CommandArgValues* getCommandArgs() {return &s_args;}
    static const char* commandArgsPlusMatch(const char* prefixp);

    /// Produce name & version for (at least) VPI
    static const char* productName() { return VERILATOR_PRODUCT; }
    static const char* productVersion() { return VERILATOR_VERSION; }

    /// For debugging, print much of the Verilator internal state.
    /// The output of this function may change in future
    /// releases - contact the authors before production use.
    static void internalsDump();

    /// For debugging, print text list of all scope names with
    /// dpiImport/Export context.  This function may change in future
    /// releases - contact the authors before production use.
    static void scopesDump();

    // METHODS - INTERNAL USE ONLY
    // Internal: Create a new module name by concatenating two strings
    static const char* catName(const char* n1, const char* n2); // Returns new'ed data
    // Internal: Find scope
    static const VerilatedScope* scopeFind(const char* namep);
    // Internal: Get and set DPI context
    static const VerilatedScope* dpiScope() { return t_dpiScopep; }
    static void dpiScope(const VerilatedScope* scopep) { t_dpiScopep=scopep; }
    static void dpiContext(const VerilatedScope* scopep, const char* filenamep, int lineno) {
	t_dpiScopep=scopep; t_dpiFilename=filenamep; t_dpiLineno=lineno; }
    static void dpiClearContext() { t_dpiScopep = NULL; }
    static bool dpiInContext() { return t_dpiScopep != NULL; }
    static const char* dpiFilenamep() { return t_dpiFilename; }
    static int dpiLineno() { return t_dpiLineno; }
    static int exportFuncNum(const char* namep);
    static size_t serializedSize() { return sizeof(s_s); }
    static void* serializedPtr() { return &s_s; }
};

//=========================================================================
// Extern functions -- User may override -- See verilated.cpp

/// Routine to call for $finish
extern void vl_finish (const char* filename, int linenum, const char* hier);
/// Routine to call for $stop
extern void vl_stop   (const char* filename, int linenum, const char* hier);
/// Routine to call for a couple of fatal messages
extern void vl_fatal  (const char* filename, int linenum, const char* hier,
		       const char* msg);

//=========================================================================
// Extern functions -- Slow path

extern IData  VL_RANDOM_I(int obits);	///< Randomize a signal
extern QData  VL_RANDOM_Q(int obits);	///< Randomize a signal
extern WDataOutP VL_RANDOM_W(int obits, WDataOutP outwp);	///< Randomize a signal

/// Init time only, so slow is fine
extern IData  VL_RAND_RESET_I(int obits);	///< Random reset a signal
extern QData  VL_RAND_RESET_Q(int obits);	///< Random reset a signal
extern WDataOutP VL_RAND_RESET_W(int obits, WDataOutP outwp);	///< Random reset a signal
extern WDataOutP VL_ZERO_RESET_W(int obits, WDataOutP outwp);	///< Zero reset a signal

/// Math
extern WDataOutP _vl_moddiv_w(int lbits, WDataOutP owp, WDataInP lwp, WDataInP rwp, bool is_modulus);

/// File I/O
extern IData VL_FGETS_IXI(int obits, void* destp, IData fpi);

extern IData VL_FOPEN_S(const char* filenamep, const char* mode);
extern IData VL_FOPEN_WI(int fnwords, WDataInP ofilename, IData mode);
extern IData VL_FOPEN_QI(QData ofilename, IData mode);
inline IData VL_FOPEN_II(IData ofilename, IData mode) { return VL_FOPEN_QI(ofilename,mode); }

extern void VL_FCLOSE_I(IData fdi);

extern void VL_READMEM_W(bool hex, int width, int depth, int array_lsb, int fnwords,
			 WDataInP ofilename, void* memp, IData start, IData end);
extern void VL_READMEM_Q(bool hex, int width, int depth, int array_lsb, int fnwords,
			 QData ofilename,    void* memp, IData start, IData end);
inline void VL_READMEM_I(bool hex, int width, int depth, int array_lsb, int fnwords,
			 IData ofilename,    void* memp, IData start, IData end) {
    VL_READMEM_Q(hex, width,depth,array_lsb,fnwords, ofilename,memp,start,end); }

extern void VL_WRITEF(const char* formatp, ...);
extern void VL_FWRITEF(IData fpi, const char* formatp, ...);

extern IData VL_FSCANF_IX(IData fpi, const char* formatp, ...);
extern IData VL_SSCANF_IIX(int lbits, IData ld, const char* formatp, ...);
extern IData VL_SSCANF_IQX(int lbits, QData ld, const char* formatp, ...);
extern IData VL_SSCANF_IWX(int lbits, WDataInP lwp, const char* formatp, ...);

extern void VL_SFORMAT_X(int obits, void* destp, const char* formatp, ...);

extern IData VL_SYSTEM_IW(int lhsnwords, WDataInP lhs);
extern IData VL_SYSTEM_IQ(QData lhs);
inline IData VL_SYSTEM_II(IData lhs) { return VL_SYSTEM_IQ(lhs); }

extern IData VL_TESTPLUSARGS_I(const char* formatp);
extern IData VL_VALUEPLUSARGS_IW(int rbits, const char* prefixp, char fmt, WDataOutP rwp);
extern const char* vl_mc_scan_plusargs(const char* prefixp);  // PLIish

//=========================================================================
// Base macros

/// Return true if data[bit] set
#define VL_BITISSET_I(data,bit) (data & (VL_UL(1)<<VL_BITBIT_I(bit)))
#define VL_BITISSET_Q(data,bit) (data & (VL_ULL(1)<<VL_BITBIT_Q(bit)))
#define VL_BITISSET_W(data,bit) (data[VL_BITWORD_I(bit)] & (VL_UL(1)<<VL_BITBIT_I(bit)))
#define VL_BITISSETLIMIT_W(data,width,bit) (((bit)<(width)) && data[VL_BITWORD_I(bit)] & (VL_UL(1)<<VL_BITBIT_I(bit)))

/// Create two 32-bit words from quadword
#define VL_SET_WQ(owp,data)	{ owp[0]=(IData)(data); owp[1]=(IData)((data)>>VL_WORDSIZE); }
#define VL_SET_WI(owp,data)	{ owp[0]=(IData)(data); owp[1]=0; }
#define VL_SET_QW(lwp)		( ((QData)(lwp[0])) | ((QData)(lwp[1])<<((QData)(VL_WORDSIZE)) ))
#define _VL_SET_QII(ld,rd)      ( ((QData)(ld)<<VL_ULL(32)) | (QData)(rd) )

/// Return FILE* from IData
extern FILE*  VL_CVT_I_FP(IData lhs);

// Use a union to avoid cast-to-different-size warnings
/// Return void* from QData
static inline void*  VL_CVT_Q_VP(QData lhs) { union { void* fp; QData q; } u; u.q=lhs; return u.fp; }
/// Return QData from void*
static inline QData  VL_CVT_VP_Q(void* fp) { union { void* fp; QData q; } u; u.q=0; u.fp=fp; return u.q; }
/// Return double from QData (bits, not numerically)
static inline double VL_CVT_D_Q(QData lhs) { union { double d; QData q; } u; u.q=lhs; return u.d; }
/// Return QData from double (bits, not numerically)
static inline QData  VL_CVT_Q_D(double lhs) { union { double d; QData q; } u; u.d=lhs; return u.q; }
/// Return double from QData (numeric)
static inline double VL_ITOR_D_I(IData lhs) { return ((double)((vlsint32_t)(lhs))); }
/// Return QData from double (numeric)
static inline IData  VL_RTOI_I_D(double lhs) { return ((vlsint32_t)(VL_TRUNC(lhs))); }
/// Return QData from double (numeric)
static inline IData  VL_RTOIROUND_I_D(double lhs) { return ((vlsint32_t)(VL_ROUND(lhs))); }

// Sign extend such that if MSB set, we get ffff_ffff, else 0s
// (Requires clean input)
#define VL_SIGN_I(nbits,lhs)      ((lhs) >> VL_BITBIT_I((nbits) - VL_UL(1)))
#define VL_SIGN_Q(nbits,lhs)      ((lhs) >> VL_BITBIT_Q((nbits) - VL_ULL(1)))
#define VL_SIGNONES_I(nbits,lhs)  (-(VL_SIGN_I(nbits,lhs)))

// Sign bit extended up to MSB, doesn't include unsigned portion
// Optimization bug in GCC 3.3 returns different bitmasks to later states for
static inline IData  VL_EXTENDSIGN_I(int lbits, IData lhs) { return (-((lhs)&(VL_UL(1)<<(lbits-1)))); }
static inline QData  VL_EXTENDSIGN_Q(int lbits, QData lhs) { return (-((lhs)&(VL_ULL(1)<<(lbits-1)))); }

// Debugging prints
void _VL_DEBUG_PRINT_W(int lbits, WDataInP iwp);

//=========================================================================
// Pli macros

#ifndef VL_TIME_PRECISION
# define VL_TIME_PRECISION -12	///< Timescale units only for for VPI return - picoseconds
#endif
#ifndef VL_TIME_MULTIPLIER
# define VL_TIME_MULTIPLIER 1
#endif

/// Return current simulation time
#if defined(SYSTEMC_VERSION) && (SYSTEMC_VERSION>20011000)
# define VL_TIME_I() ((IData)(sc_time_stamp().to_default_time_units()*VL_TIME_MULTIPLIER))
# define VL_TIME_Q() ((QData)(sc_time_stamp().to_default_time_units()*VL_TIME_MULTIPLIER))
# define VL_TIME_D() ((double)(sc_time_stamp().to_default_time_units()*VL_TIME_MULTIPLIER))
#else
# define VL_TIME_I() ((IData)(sc_time_stamp()*VL_TIME_MULTIPLIER))
# define VL_TIME_Q() ((QData)(sc_time_stamp()*VL_TIME_MULTIPLIER))
# define VL_TIME_D() ((double)(sc_time_stamp()*VL_TIME_MULTIPLIER))
extern double sc_time_stamp();
#endif

/// Evaluate expression if debug enabled
#ifdef VL_DEBUG
# define VL_DEBUG_IF(text) {if (VL_UNLIKELY(Verilated::debug())) {text}}
#else
# define VL_DEBUG_IF(text)
#endif

/// Collect coverage analysis for this line
#ifndef SP_AUTO_COVER3
# define SP_AUTO_COVER3(what,file,line)
#endif


//=========================================================================
// Functional macros/routines
// These all take the form
//	VL_func_IW(bits,bits,op,op)
//	VL_func_WW(bits,bits,out,op,op)
// The I/W indicates if it's a integer or wide for the output and each operand.
// The bits indicate the bit width of the output and each operand.
// If wide output, a temporary storage location is specified.

//===================================================================
// SETTING OPERATORS

// Output clean
// EMIT_RULE: VL_CLEAN:  oclean=clean; obits=lbits;
#define VL_CLEAN_II(obits,lbits,lhs) ((lhs) & VL_MASK_I(obits))
#define VL_CLEAN_QQ(obits,lbits,lhs) ((lhs) & VL_MASK_Q(obits))

// EMIT_RULE: VL_ASSIGNCLEAN:  oclean=clean; obits==lbits;
#define VL_ASSIGNCLEAN_W(obits,owp,lwp) VL_CLEAN_WW(obits,obits,owp,lwp)
static inline WDataOutP _VL_CLEAN_INPLACE_W(int obits, WDataOutP owp) {
    int words = VL_WORDS_I(obits);
    owp[words-1] &= VL_MASK_I(obits);
    return(owp);
}
static inline WDataOutP VL_CLEAN_WW(int obits, int, WDataOutP owp, WDataInP lwp){
    int words = VL_WORDS_I(obits);
    for (int i=0; (i < (words-1)); i++) owp[i] = lwp[i];
    owp[words-1] = lwp[words-1] & VL_MASK_I(obits);
    return(owp);
}

// EMIT_RULE: VL_ASSIGN:  oclean=rclean; obits==lbits;
// For now, we always have a clean rhs.
// Note: If a ASSIGN isn't clean, use VL_ASSIGNCLEAN instead to do the same thing.
static inline WDataOutP VL_ASSIGN_W(int obits, WDataOutP owp,WDataInP lwp){
    int words = VL_WORDS_I(obits);
    for (int i=0; i < words; i++) owp[i] = lwp[i];
    return(owp);
}

// EMIT_RULE: VL_ASSIGNBIT:  rclean=clean;
static inline void VL_ASSIGNBIT_II(int, int bit, CData& lhsr, IData rhs) {
    lhsr = ((lhsr & ~(VL_UL(1)<<VL_BITBIT_I(bit)))
	    | (rhs<<VL_BITBIT_I(bit)));
}
static inline void VL_ASSIGNBIT_II(int, int bit, SData& lhsr, IData rhs) {
    lhsr = ((lhsr & ~(VL_UL(1)<<VL_BITBIT_I(bit)))
	    | (rhs<<VL_BITBIT_I(bit)));
}
static inline void VL_ASSIGNBIT_II(int, int bit, IData& lhsr, IData rhs) {
    lhsr = ((lhsr & ~(VL_UL(1)<<VL_BITBIT_I(bit)))
	    | (rhs<<VL_BITBIT_I(bit)));
}
static inline void VL_ASSIGNBIT_QI(int, int bit, QData& lhsr, QData rhs) {
    lhsr = ((lhsr & ~(VL_ULL(1)<<VL_BITBIT_Q(bit)))
	    | (rhs<<VL_BITBIT_Q(bit)));
}
static inline void VL_ASSIGNBIT_WI(int, int bit, WDataOutP owp, IData rhs) {
    IData orig = owp[VL_BITWORD_I(bit)];
    owp[VL_BITWORD_I(bit)] = ((orig & ~(VL_UL(1)<<VL_BITBIT_I(bit)))
			      | (rhs<<VL_BITBIT_I(bit)));
}
// Alternative form that is an instruction faster when rhs is constant one.
static inline void VL_ASSIGNBIT_IO(int, int bit, CData& lhsr, IData) {
    lhsr = (lhsr | (VL_UL(1)<<VL_BITBIT_I(bit)));
}
static inline void VL_ASSIGNBIT_IO(int, int bit, SData& lhsr, IData) {
    lhsr = (lhsr | (VL_UL(1)<<VL_BITBIT_I(bit)));
}
static inline void VL_ASSIGNBIT_IO(int, int bit, IData& lhsr, IData) {
    lhsr = (lhsr | (VL_UL(1)<<VL_BITBIT_I(bit)));
}
static inline void VL_ASSIGNBIT_QO(int, int bit, QData& lhsr, IData) {
    lhsr = (lhsr | (VL_ULL(1)<<VL_BITBIT_Q(bit)));
}
static inline void VL_ASSIGNBIT_WO(int, int bit, WDataOutP owp, IData) {
    IData orig = owp[VL_BITWORD_I(bit)];
    owp[VL_BITWORD_I(bit)] = (orig |  (VL_UL(1)<<VL_BITBIT_I(bit)));
}

//===================================================================
// SYSTEMC OPERATORS
// Copying verilog format to systemc integers and bit vectors.
// Get a SystemC variable

#define VL_ASSIGN_ISI(obits,vvar,svar) { (vvar) = VL_CLEAN_II((obits),(obits),(svar).read()); }
#define VL_ASSIGN_QSQ(obits,vvar,svar) { (vvar) = VL_CLEAN_QQ((obits),(obits),(svar).read()); }

#define VL_ASSIGN_ISW(obits,od,svar) { \
    od = (svar.read().get_word(0)) & VL_MASK_I(obits); \
}
#define VL_ASSIGN_QSW(obits,od,svar) { \
    od = (((QData)svar.read().get_word(1))<<VL_WORDSIZE | svar.read().get_word(0)) \
	& VL_MASK_Q(obits); \
}
#define VL_ASSIGN_WSW(obits,owp,svar) { \
    int words = VL_WORDS_I(obits); \
    for (int i=0; i < words; i++) owp[i] = svar.read().get_word(i); \
    owp[words-1] &= VL_MASK_I(obits); \
}

#define VL_ASSIGN_ISU(obits,vvar,svar) { (vvar) = VL_CLEAN_II((obits),(obits),(svar).read().to_uint()); }
#define VL_ASSIGN_QSU(obits,vvar,svar) { (vvar) = VL_CLEAN_QQ((obits),(obits),(svar).read().to_uint64()); }
#define VL_ASSIGN_WSB(obits,owp,svar) {                       \
    int words = VL_WORDS_I(obits);                            \
    sc_biguint<obits> _butemp = (svar).read();                \
    for (int i=0; i < words; i++) {                           \
        int msb = ((i+1)*VL_WORDSIZE) - 1;                    \
        msb = (msb >= obits) ? (obits-1) : msb;               \
        owp[i] = _butemp.range(msb,i*VL_WORDSIZE).to_uint();  \
    }                                                         \
    owp[words-1] &= VL_MASK_I(obits);                         \
}

// Copying verilog format from systemc integers and bit vectors.
// Set a SystemC variable

#define VL_ASSIGN_SII(obits,svar,vvar) { (svar).write(vvar); }
#define VL_ASSIGN_SQQ(obits,svar,vvar) { (svar).write(vvar); }

#define VL_ASSIGN_SWI(obits,svar,rd) { \
    sc_bv<obits> _bvtemp; \
    _bvtemp.set_word(0,rd); \
    svar.write(_bvtemp); \
}
#define VL_ASSIGN_SWQ(obits,svar,rd) { \
    sc_bv<obits> _bvtemp; \
    _bvtemp.set_word(0,rd); \
    _bvtemp.set_word(1,rd>>VL_WORDSIZE); \
    svar.write(_bvtemp); \
}
#define VL_ASSIGN_SWW(obits,svar,rwp) { \
    sc_bv<obits> _bvtemp; \
    for (int i=0; i < VL_WORDS_I(obits); i++) _bvtemp.set_word(i,rwp[i]); \
    svar.write(_bvtemp); \
}

#define VL_ASSIGN_SUI(obits,svar,rd) { (svar).write(rd); }
#define VL_ASSIGN_SUQ(obits,svar,rd) { (svar).write(rd); }
#define VL_ASSIGN_SBI(obits,svar,rd) { (svar).write(rd); }
#define VL_ASSIGN_SBQ(obits,svar,rd) { (svar).write(rd); }
#define VL_ASSIGN_SBW(obits,svar,rwp) {             \
    sc_biguint<obits> _butemp;                      \
    for (int i=0; i < VL_WORDS_I(obits); i++) {     \
        int msb = ((i+1)*VL_WORDSIZE) - 1;          \
        msb = (msb >= obits) ? (obits-1) : msb;     \
        _butemp.range(msb,i*VL_WORDSIZE) = rwp[i];  \
    }                                               \
    svar.write(_butemp);                            \
}

//===================================================================
// Extending sizes

// CAREFUL, we're width changing, so obits!=lbits

// Right must be clean because otherwise size increase would pick up bad bits
// EMIT_RULE: VL_EXTEND:  oclean=clean; rclean==clean;
#define VL_EXTEND_II(obits,lbits,lhs) ((lhs))
#define VL_EXTEND_QI(obits,lbits,lhs) ((QData)(lhs))
#define VL_EXTEND_QQ(obits,lbits,lhs) ((lhs))

static inline WDataOutP VL_EXTEND_WI(int obits, int, WDataOutP owp, IData ld) {
    // Note for extracts that obits != lbits
    owp[0] = ld;
    for (int i=1; i < VL_WORDS_I(obits); i++) owp[i] = 0;
    return(owp);
}
static inline WDataOutP VL_EXTEND_WQ(int obits, int, WDataOutP owp, QData ld) {
    VL_SET_WQ(owp,ld);
    for (int i=2; i < VL_WORDS_I(obits); i++) owp[i] = 0;
    return(owp);
}
static inline WDataOutP VL_EXTEND_WW(int obits, int lbits, WDataOutP owp, WDataInP lwp) {
    for (int i=0; i < VL_WORDS_I(lbits); i++) owp[i] = lwp[i];
    for (int i=VL_WORDS_I(lbits); i < VL_WORDS_I(obits); i++) owp[i] = 0;
    return(owp);
}

// EMIT_RULE: VL_EXTENDS:  oclean=*dirty*; obits=lbits;
// Sign extension; output dirty
static inline IData VL_EXTENDS_II(int, int lbits, IData lhs) {
    return VL_EXTENDSIGN_I(lbits,lhs) | lhs;
}
static inline QData VL_EXTENDS_QI(int, int lbits, QData lhs/*Q_as_need_extended*/) {
    return VL_EXTENDSIGN_Q(lbits,lhs) | lhs;
}
static inline QData VL_EXTENDS_QQ(int, int lbits, QData lhs) {
    return VL_EXTENDSIGN_Q(lbits,lhs) | lhs;
}

static inline WDataOutP VL_EXTENDS_WI(int obits, int lbits, WDataOutP owp, IData ld) {
    IData sign = VL_SIGNONES_I(lbits,ld);
    owp[0] = ld | (sign & ~VL_MASK_I(lbits));
    for (int i=1; i < VL_WORDS_I(obits); i++) owp[i] = sign;
    return(owp);
}
static inline WDataOutP VL_EXTENDS_WQ(int obits, int lbits, WDataOutP owp, QData ld) {
    VL_SET_WQ(owp,ld);
    IData sign = VL_SIGNONES_I(lbits,owp[1]);
    owp[1] |= sign & ~VL_MASK_I(lbits);
    for (int i=2; i < VL_WORDS_I(obits); i++) owp[i] = sign;
    return(owp);
}
static inline WDataOutP VL_EXTENDS_WW(int obits, int lbits, WDataOutP owp, WDataInP lwp) {
    for (int i=0; i < VL_WORDS_I(lbits)-1; i++) owp[i] = lwp[i];
    int lmsw=VL_WORDS_I(lbits)-1;
    IData sign = VL_SIGNONES_I(lbits,lwp[lmsw]);
    owp[lmsw] = lwp[lmsw] | (sign & ~VL_MASK_I(lbits));
    for (int i=VL_WORDS_I(lbits); i < VL_WORDS_I(obits); i++) owp[i] = sign;
    return(owp);
}

//===================================================================
// REDUCTION OPERATORS

// EMIT_RULE: VL_REDAND:  oclean=clean; lclean==clean; obits=1;
#define VL_REDAND_II(obits,lbits,lhs) (lhs == VL_MASK_I(lbits))
#define VL_REDAND_IQ(obits,lbits,lhs) (lhs == VL_MASK_Q(lbits))
static inline IData VL_REDAND_IW(int, int lbits, WDataInP lwp) {
    int words = VL_WORDS_I(lbits);
    IData combine=lwp[0];
    for (int i=1; i < words-1; i++) combine &= lwp[i];
    combine &= ~VL_MASK_I(lbits) | lwp[words-1];
    return ((~combine)==0);
}

// EMIT_RULE: VL_REDOR:  oclean=clean; lclean==clean; obits=1;
#define VL_REDOR_I(lhs) (lhs!=0)
#define VL_REDOR_Q(lhs) (lhs!=0)
static inline IData VL_REDOR_W(int words, WDataInP lwp) {
    IData equal=0;
    for (int i=0; i < words; i++) equal |= lwp[i];
    return(equal!=0);
}

// EMIT_RULE: VL_REDXOR:  oclean=dirty; obits=1;
static inline IData VL_REDXOR_2(IData r) {
    // Experiments show VL_REDXOR_2 is faster than __builtin_parityl
    r=(r^(r>>1));
    return r;
}
static inline IData VL_REDXOR_4(IData r) {
#if defined(__GNUC__) && (__GNUC__ >= 4) && !defined(VL_NO_BUILTINS)
    return __builtin_parityl(r);
#else
    r=(r^(r>>1)); r=(r^(r>>2));
    return r;
#endif
}
static inline IData VL_REDXOR_8(IData r) {
#if defined(__GNUC__) && (__GNUC__ >= 4) && !defined(VL_NO_BUILTINS)
    return __builtin_parityl(r);
#else
    r=(r^(r>>1)); r=(r^(r>>2)); r=(r^(r>>4));
    return r;
#endif
}
static inline IData VL_REDXOR_16(IData r) {
#if defined(__GNUC__) && (__GNUC__ >= 4) && !defined(VL_NO_BUILTINS)
    return __builtin_parityl(r);
#else
    r=(r^(r>>1)); r=(r^(r>>2)); r=(r^(r>>4)); r=(r^(r>>8));
    return r;
#endif
}
static inline IData VL_REDXOR_32(IData r) {
#if defined(__GNUC__) && (__GNUC__ >= 4) && !defined(VL_NO_BUILTINS)
    return __builtin_parityl(r);
#else
    r=(r^(r>>1)); r=(r^(r>>2)); r=(r^(r>>4)); r=(r^(r>>8)); r=(r^(r>>16));
    return r;
#endif
}
static inline IData VL_REDXOR_64(QData r) {
#if defined(__GNUC__) && (__GNUC__ >= 4) && !defined(VL_NO_BUILTINS)
    return __builtin_parityll(r);
#else
    r=(r^(r>>1)); r=(r^(r>>2)); r=(r^(r>>4)); r=(r^(r>>8)); r=(r^(r>>16)); r=(r^(r>>32));
    return (IData)r;
#endif
}
static inline IData VL_REDXOR_W(int words, WDataInP lwp) {
    IData r = lwp[0];
    for (int i=1; i < words; i++) r ^= lwp[i];
    return VL_REDXOR_32(r);
}

// EMIT_RULE: VL_COUNTONES_II:  oclean = false; lhs clean
static inline IData VL_COUNTONES_I(IData lhs) {
    // This is faster than __builtin_popcountl
    IData r = lhs - ((lhs >> 1) & 033333333333) - ((lhs >> 2) & 011111111111);
    r = (r + (r>>3)) & 030707070707;
    r = (r + (r>>6));
    r = (r + (r>>12) + (r>>24)) & 077;
    return r;
}
static inline IData VL_COUNTONES_Q(QData lhs) {
    return VL_COUNTONES_I((IData)lhs) + VL_COUNTONES_I((IData)(lhs>>32));
}
static inline IData VL_COUNTONES_W(int words, WDataInP lwp) {
    IData r = 0;
    for (int i=0; (i < words); i++) r+=VL_COUNTONES_I(lwp[i]);
    return r;
}

static inline IData VL_ONEHOT_I(IData lhs) {
    return (((lhs & (lhs-1))==0) & (lhs!=0));
}
static inline IData VL_ONEHOT_Q(QData lhs) {
    return (((lhs & (lhs-1))==0) & (lhs!=0));
}
static inline IData VL_ONEHOT_W(int words, WDataInP lwp) {
    IData one=0;
    for (int i=0; (i < words); i++) {
	if (lwp[i]) {
	    if (one) return 0;
	    one = 1;
	    if (lwp[i] & (lwp[i]-1)) return 0;
	}
    }
    return one;
}

static inline IData VL_ONEHOT0_I(IData lhs) {
    return ((lhs & (lhs-1))==0);
}
static inline IData VL_ONEHOT0_Q(QData lhs) {
    return ((lhs & (lhs-1))==0);
}
static inline IData VL_ONEHOT0_W(int words, WDataInP lwp) {
    bool one=false;
    for (int i=0; (i < words); i++) {
	if (lwp[i]) {
	    if (one) return 0;
	    one = true;
	    if (lwp[i] & (lwp[i]-1)) return 0;
	}
    }
    return 1;
}

static inline IData VL_CLOG2_I(IData lhs) {
    // There are faster algorithms, or fls GCC4 builtins, but rarely used
    if (VL_UNLIKELY(!lhs)) return 0;
    lhs--;
    int shifts=0;
    for (; lhs!=0; shifts++) lhs = lhs >> 1;
    return shifts;
}
static inline IData VL_CLOG2_Q(QData lhs) {
    if (VL_UNLIKELY(!lhs)) return 0;
    lhs--;
    int shifts=0;
    for (; lhs!=0; shifts++) lhs = lhs >> VL_ULL(1);
    return shifts;
}
static inline IData VL_CLOG2_W(int words, WDataInP lwp) {
    IData adjust = (VL_COUNTONES_W(words,lwp)==1) ? 0 : 1;
    for (int i=words-1; i>=0; i--) {
	if (VL_UNLIKELY(lwp[i])) {  // Shorter worst case if predict not taken
	    for (int bit=31; bit>=0; bit--) {
		if (VL_UNLIKELY(VL_BITISSET_I(lwp[i],bit))) {
		    return i*VL_WORDSIZE + bit + adjust;
		}
	    }
	    // Can't get here - one bit must be set
	}
    }
    return 0;
}

static inline IData VL_MOSTSETBITP1_W(int words, WDataInP lwp) {
    // MSB set bit plus one; similar to FLS.  0=value is zero
    for (int i=words-1; i>=0; i--) {
	if (VL_UNLIKELY(lwp[i])) {  // Shorter worst case if predict not taken
	    for (int bit=31; bit>=0; bit--) {
		if (VL_UNLIKELY(VL_BITISSET_I(lwp[i],bit))) {
		    return i*VL_WORDSIZE + bit + 1;
		}
	    }
	    // Can't get here - one bit must be set
	}
    }
    return 0;
}

//===================================================================
// SIMPLE LOGICAL OPERATORS

// EMIT_RULE: VL_AND:  oclean=lclean||rclean; obits=lbits; lbits==rbits;
static inline WDataOutP VL_AND_W(int words, WDataOutP owp,WDataInP lwp,WDataInP rwp){
    for (int i=0; (i < words); i++) owp[i] = (lwp[i] & rwp[i]);
    return(owp);
}
// EMIT_RULE: VL_OR:   oclean=lclean&&rclean; obits=lbits; lbits==rbits;
static inline WDataOutP VL_OR_W(int words, WDataOutP owp,WDataInP lwp,WDataInP rwp){
    for (int i=0; (i < words); i++) owp[i] = (lwp[i] | rwp[i]);
    return(owp);
}
// EMIT_RULE: VL_CHANGEXOR:  oclean=1; obits=32; lbits==rbits;
static inline IData VL_CHANGEXOR_W(int words, WDataInP lwp,WDataInP rwp){
    IData od = 0;
    for (int i=0; (i < words); i++) od |= (lwp[i] ^ rwp[i]);
    return(od);
}
// EMIT_RULE: VL_XOR:  oclean=lclean&&rclean; obits=lbits; lbits==rbits;
static inline WDataOutP VL_XOR_W(int words, WDataOutP owp,WDataInP lwp,WDataInP rwp){
    for (int i=0; (i < words); i++) owp[i] = (lwp[i] ^ rwp[i]);
    return(owp);
}
// EMIT_RULE: VL_XNOR:  oclean=dirty; obits=lbits; lbits==rbits;
static inline WDataOutP VL_XNOR_W(int words, WDataOutP owp,WDataInP lwp,WDataInP rwp){
    for (int i=0; (i < words); i++) owp[i] = (lwp[i] ^ ~rwp[i]);
    return(owp);
}
// EMIT_RULE: VL_NOT:  oclean=dirty; obits=lbits;
static inline WDataOutP VL_NOT_W(int words, WDataOutP owp,WDataInP lwp) {
    for (int i=0; i < words; i++) owp[i] = ~(lwp[i]);
    return(owp);
}

//=========================================================================
// Logical comparisons

// EMIT_RULE: VL_EQ:  oclean=clean; lclean==clean; rclean==clean; obits=1; lbits==rbits;
// EMIT_RULE: VL_NEQ: oclean=clean; lclean==clean; rclean==clean; obits=1; lbits==rbits;
// EMIT_RULE: VL_LT:  oclean=clean; lclean==clean; rclean==clean; obits=1; lbits==rbits;
// EMIT_RULE: VL_GT:  oclean=clean; lclean==clean; rclean==clean; obits=1; lbits==rbits;
// EMIT_RULE: VL_GTE: oclean=clean; lclean==clean; rclean==clean; obits=1; lbits==rbits;
// EMIT_RULE: VL_LTE: oclean=clean; lclean==clean; rclean==clean; obits=1; lbits==rbits;
#define VL_NEQ_W(words,lwp,rwp)		(!VL_EQ_W(words,lwp,rwp))
#define VL_LT_W(words,lwp,rwp)		(_VL_CMP_W(words,lwp,rwp)<0)
#define VL_LTE_W(words,lwp,rwp)		(_VL_CMP_W(words,lwp,rwp)<=0)
#define VL_GT_W(words,lwp,rwp)		(_VL_CMP_W(words,lwp,rwp)>0)
#define VL_GTE_W(words,lwp,rwp)		(_VL_CMP_W(words,lwp,rwp)>=0)

// Output clean, <lhs> AND <rhs> MUST BE CLEAN
static inline IData VL_EQ_W(int words, WDataInP lwp, WDataInP rwp) {
    int nequal=0;
    for (int i=0; (i < words); i++) nequal |= (lwp[i] ^ rwp[i]);
    return(nequal==0);
}

// Internal usage
static inline int _VL_CMP_W(int words, WDataInP lwp, WDataInP rwp) {
    for (int i=words-1; i>=0; --i) {
	if (lwp[i] > rwp[i]) return 1;
	if (lwp[i] < rwp[i]) return -1;
    }
    return(0); // ==
}

#define VL_LTS_IWW(obits,lbits,rbbits,lwp,rwp)		(_VL_CMPS_W(lbits,lwp,rwp)<0)
#define VL_LTES_IWW(obits,lbits,rbits,lwp,rwp)		(_VL_CMPS_W(lbits,lwp,rwp)<=0)
#define VL_GTS_IWW(obits,lbits,rbits,lwp,rwp)		(_VL_CMPS_W(lbits,lwp,rwp)>0)
#define VL_GTES_IWW(obits,lbits,rbits,lwp,rwp)		(_VL_CMPS_W(lbits,lwp,rwp)>=0)

static inline IData VL_GTS_III(int, int lbits, int, IData lhs, IData rhs) {
    // For lbits==32, this becomes just a single instruction, otherwise ~5.
    // GCC 3.3.4 sign extension bugs on AMD64 architecture force us to use quad logic
    vlsint64_t lhs_signed = VL_EXTENDS_QQ(64, lbits, lhs); //Q for gcc
    vlsint64_t rhs_signed = VL_EXTENDS_QQ(64, lbits, rhs); //Q for gcc
    return lhs_signed > rhs_signed;
}
static inline IData VL_GTS_IQQ(int, int lbits, int, QData lhs, QData rhs) {
    vlsint64_t lhs_signed = VL_EXTENDS_QQ(64, lbits, lhs);
    vlsint64_t rhs_signed = VL_EXTENDS_QQ(64, lbits, rhs);
    return lhs_signed > rhs_signed;
}

static inline IData VL_GTES_III(int, int lbits, int, IData lhs, IData rhs) {
    vlsint64_t lhs_signed = VL_EXTENDS_QQ(64, lbits, lhs); //Q for gcc
    vlsint64_t rhs_signed = VL_EXTENDS_QQ(64, lbits, rhs); //Q for gcc
    return lhs_signed >= rhs_signed;
}
static inline IData VL_GTES_IQQ(int, int lbits, int, QData lhs, QData rhs) {
    vlsint64_t lhs_signed = VL_EXTENDS_QQ(64, lbits, lhs);
    vlsint64_t rhs_signed = VL_EXTENDS_QQ(64, lbits, rhs);
    return lhs_signed >= rhs_signed;
}

static inline IData VL_LTS_III(int, int lbits, int, IData lhs, IData rhs) {
    vlsint64_t lhs_signed = VL_EXTENDS_QQ(64, lbits, lhs); //Q for gcc
    vlsint64_t rhs_signed = VL_EXTENDS_QQ(64, lbits, rhs); //Q for gcc
    return lhs_signed < rhs_signed;
}
static inline IData VL_LTS_IQQ(int, int lbits, int, QData lhs, QData rhs) {
    vlsint64_t lhs_signed = VL_EXTENDS_QQ(64, lbits, lhs);
    vlsint64_t rhs_signed = VL_EXTENDS_QQ(64, lbits, rhs);
    return lhs_signed < rhs_signed;
}

static inline IData VL_LTES_III(int, int lbits, int, IData lhs, IData rhs) {
    vlsint64_t lhs_signed = VL_EXTENDS_QQ(64, lbits, lhs); //Q for gcc
    vlsint64_t rhs_signed = VL_EXTENDS_QQ(64, lbits, rhs); //Q for gcc
    return lhs_signed <= rhs_signed;
}
static inline IData VL_LTES_IQQ(int, int lbits, int, QData lhs, QData rhs) {
    vlsint64_t lhs_signed = VL_EXTENDS_QQ(64, lbits, lhs);
    vlsint64_t rhs_signed = VL_EXTENDS_QQ(64, lbits, rhs);
    return lhs_signed <= rhs_signed;
}

static inline int _VL_CMPS_W(int lbits, WDataInP lwp, WDataInP rwp) {
    int words = VL_WORDS_I(lbits);
    int i=words-1;
    // We need to flip sense if negative comparison
    IData lsign = VL_SIGN_I(lbits,lwp[i]);
    IData rsign = VL_SIGN_I(lbits,rwp[i]);
    if (!lsign && rsign) return  1; // + > -
    if (lsign && !rsign) return -1; // - < +
    for (; i>=0; --i) {
	if (lwp[i] > rwp[i]) return 1;
	if (lwp[i] < rwp[i]) return -1;
    }
    return(0); // ==
}

//=========================================================================
// Math

// EMIT_RULE: VL_MUL:    oclean=dirty; lclean==clean; rclean==clean;
// EMIT_RULE: VL_DIV:    oclean=dirty; lclean==clean; rclean==clean;
// EMIT_RULE: VL_MODDIV: oclean=dirty; lclean==clean; rclean==clean;
#define VL_DIV_III(lbits,lhs,rhs)	(((rhs)==0)?0:(lhs)/(rhs))
#define VL_DIV_QQQ(lbits,lhs,rhs)	(((rhs)==0)?0:(lhs)/(rhs))
#define VL_DIV_WWW(lbits,owp,lwp,rwp)   (_vl_moddiv_w(lbits,owp,lwp,rwp,0))
#define VL_MODDIV_III(lbits,lhs,rhs)	(((rhs)==0)?0:(lhs)%(rhs))
#define VL_MODDIV_QQQ(lbits,lhs,rhs)	(((rhs)==0)?0:(lhs)%(rhs))
#define VL_MODDIV_WWW(lbits,owp,lwp,rwp) (_vl_moddiv_w(lbits,owp,lwp,rwp,1))

static inline WDataOutP VL_ADD_W(int words, WDataOutP owp,WDataInP lwp,WDataInP rwp){
    QData carry = 0;
    for (int i=0; i<words; i++) {
	carry = carry + (QData)(lwp[i]) + (QData)(rwp[i]);
	owp[i] = (carry & VL_ULL(0xffffffff));
	carry = (carry >> VL_ULL(32)) & VL_ULL(0xffffffff);
    }
    return(owp);
}

static inline WDataOutP VL_SUB_W(int words, WDataOutP owp,WDataInP lwp,WDataInP rwp){
    QData carry = 0;
    for (int i=0; i<words; i++) {
	carry = carry + (QData)(lwp[i]) + (QData)(IData)(~rwp[i]);
	if (i==0) carry++;  // Negation of temp2
	owp[i] = (carry & VL_ULL(0xffffffff));
	carry = (carry >> VL_ULL(32)) & VL_ULL(0xffffffff);
    }
    return(owp);
}

// Optimization bug in GCC 2.96 and presumably all-pre GCC 3 versions need this workaround,
// we can't just
//# define VL_NEGATE_I(data) (-(data))
static inline IData  VL_NEGATE_I(IData data) { return -data; }
static inline QData  VL_NEGATE_Q(QData data) { return -data; }

static inline WDataOutP VL_NEGATE_W(int words, WDataOutP owp,WDataInP lwp){
    QData carry = 0;
    for (int i=0; i<words; i++) {
	carry = carry + (QData)(IData)(~lwp[i]);
	if (i==0) carry++;  // Negation of temp2
	owp[i] = (carry & VL_ULL(0xffffffff));
	carry = (carry >> VL_ULL(32)) & VL_ULL(0xffffffff);
    }
    return(owp);
}

static inline WDataOutP VL_MUL_W(int words, WDataOutP owp,WDataInP lwp,WDataInP rwp){
    for (int i=0; i<words; i++) owp[i] = 0;
    for (int lword=0; lword<words; lword++) {
	for (int rword=0; rword<words; rword++) {
	    QData mul = (QData)(lwp[lword]) * (QData)(rwp[rword]);
	    for (int qword=lword+rword; qword<words; qword++) {
		mul += (QData)(owp[qword]);
		owp[qword] = (mul & VL_ULL(0xffffffff));
		mul = (mul >> VL_ULL(32)) & VL_ULL(0xffffffff);
	    }
	}
    }
    // Last output word is dirty
    return(owp);
}

static inline IData VL_MULS_III(int,int lbits,int, IData lhs,IData rhs) {
    vlsint32_t lhs_signed = VL_EXTENDS_II(32, lbits, lhs);
    vlsint32_t rhs_signed = VL_EXTENDS_II(32, lbits, rhs);
    return lhs_signed * rhs_signed;
}
static inline QData VL_MULS_QQQ(int,int lbits,int, QData lhs,QData rhs) {
    vlsint64_t lhs_signed = VL_EXTENDS_QQ(64, lbits, lhs);
    vlsint64_t rhs_signed = VL_EXTENDS_QQ(64, lbits, rhs);
    return lhs_signed * rhs_signed;
}

static inline WDataOutP VL_MULS_WWW(int,int lbits,int, WDataOutP owp,WDataInP lwp,WDataInP rwp){
    int words = VL_WORDS_I(lbits);
    IData lwstore[VL_MULS_MAX_WORDS]; // Fixed size, as MSVC++ doesn't allow [words] here
    IData rwstore[VL_MULS_MAX_WORDS];
    WDataInP lwusp = lwp;
    WDataInP rwusp = rwp;
    IData lneg = VL_SIGN_I(lbits,lwp[words-1]);
    if (lneg) { // Negate lhs
	lwusp = lwstore;
	VL_NEGATE_W(words, lwstore, lwp);
	lwstore[words-1] &= VL_MASK_I(lbits);  // Clean it
    }
    IData rneg = VL_SIGN_I(lbits,rwp[words-1]);
    if (rneg) { // Negate rhs
	rwusp = rwstore;
	VL_NEGATE_W(words, rwstore, rwp);
	rwstore[words-1] &= VL_MASK_I(lbits);  // Clean it
    }
    VL_MUL_W(words,owp,lwusp,rwusp);
    owp[words-1] &= VL_MASK_I(lbits);  // Clean.  Note it's ok for the multiply to overflow into the sign bit
    if ((lneg ^ rneg) & 1) {      // Negate output  (not using NEGATE, as owp==lwp)
	QData carry = 0;
	for (int i=0; i<words; i++) {
	    carry = carry + (QData)(IData)(~owp[i]);
	    if (i==0) carry++;  // Negation of temp2
	    owp[i] = (carry & VL_ULL(0xffffffff));
	    carry = (carry >> VL_ULL(32)) & VL_ULL(0xffffffff);
	}
	//Not needed: owp[words-1] |= 1<<VL_BITBIT_I(lbits-1);  // Set sign bit
    }
    // Last output word is dirty
    return(owp);
}

static inline IData VL_DIVS_III(int lbits, IData lhs,IData rhs) {
    if (VL_UNLIKELY(rhs==0)) return 0;
    vlsint32_t lhs_signed = VL_EXTENDS_II(32, lbits, lhs);
    vlsint32_t rhs_signed = VL_EXTENDS_II(32, lbits, rhs);
    return lhs_signed / rhs_signed;
}
static inline QData VL_DIVS_QQQ(int lbits, QData lhs,QData rhs) {
    if (VL_UNLIKELY(rhs==0)) return 0;
    vlsint64_t lhs_signed = VL_EXTENDS_QQ(64, lbits, lhs);
    vlsint64_t rhs_signed = VL_EXTENDS_QQ(64, lbits, rhs);
    return lhs_signed / rhs_signed;
}
static inline IData VL_MODDIVS_III(int lbits, IData lhs,IData rhs) {
    if (VL_UNLIKELY(rhs==0)) return 0;
    vlsint32_t lhs_signed = VL_EXTENDS_II(32, lbits, lhs);
    vlsint32_t rhs_signed = VL_EXTENDS_II(32, lbits, rhs);
    return lhs_signed % rhs_signed;
}
static inline QData VL_MODDIVS_QQQ(int lbits, QData lhs,QData rhs) {
    if (VL_UNLIKELY(rhs==0)) return 0;
    vlsint64_t lhs_signed = VL_EXTENDS_QQ(64, lbits, lhs);
    vlsint64_t rhs_signed = VL_EXTENDS_QQ(64, lbits, rhs);
    return lhs_signed % rhs_signed;
}

static inline WDataOutP VL_DIVS_WWW(int lbits, WDataOutP owp,WDataInP lwp,WDataInP rwp) {
    int words = VL_WORDS_I(lbits);
    IData lsign = VL_SIGN_I(lbits,lwp[words-1]);
    IData rsign = VL_SIGN_I(lbits,rwp[words-1]);
    IData lwstore[VL_MULS_MAX_WORDS]; // Fixed size, as MSVC++ doesn't allow [words] here
    IData rwstore[VL_MULS_MAX_WORDS];
    WDataInP ltup = lwp;
    WDataInP rtup = rwp;
    if (lsign) { ltup = _VL_CLEAN_INPLACE_W(lbits, VL_NEGATE_W(VL_WORDS_I(lbits), lwstore, lwp)); }
    if (rsign) { rtup = _VL_CLEAN_INPLACE_W(lbits, VL_NEGATE_W(VL_WORDS_I(lbits), rwstore, rwp)); }
    if ((lsign && !rsign) || (!lsign && rsign)) {
	IData qNoSign[VL_MULS_MAX_WORDS];
	VL_DIV_WWW(lbits,qNoSign,ltup,rtup);
	_VL_CLEAN_INPLACE_W(lbits, VL_NEGATE_W(VL_WORDS_I(lbits), owp, qNoSign));
	return owp;
    } else {
	return VL_DIV_WWW(lbits,owp,ltup,rtup);
    }
}
static inline WDataOutP VL_MODDIVS_WWW(int lbits, WDataOutP owp,WDataInP lwp,WDataInP rwp) {
    int words = VL_WORDS_I(lbits);
    IData lsign = VL_SIGN_I(lbits,lwp[words-1]);
    IData rsign = VL_SIGN_I(lbits,rwp[words-1]);
    IData lwstore[VL_MULS_MAX_WORDS]; // Fixed size, as MSVC++ doesn't allow [words] here
    IData rwstore[VL_MULS_MAX_WORDS];
    WDataInP ltup = lwp;
    WDataInP rtup = rwp;
    if (lsign) { ltup = _VL_CLEAN_INPLACE_W(lbits, VL_NEGATE_W(VL_WORDS_I(lbits), lwstore, lwp)); }
    if (rsign) { rtup = _VL_CLEAN_INPLACE_W(lbits, VL_NEGATE_W(VL_WORDS_I(lbits), rwstore, rwp)); }
    if (lsign) {  // Only dividend sign matters for modulus
	IData qNoSign[VL_MULS_MAX_WORDS];
	VL_MODDIV_WWW(lbits,qNoSign,ltup,rtup);
	_VL_CLEAN_INPLACE_W(lbits, VL_NEGATE_W(VL_WORDS_I(lbits), owp, qNoSign));
	return owp;
    } else {
	return VL_MODDIV_WWW(lbits,owp,ltup,rtup);
    }
}

#define VL_POW_QQI(obits,lbits,rbits,lhs,rhs) VL_POW_QQQ(obits,lbits,rbits,lhs,rhs)

static inline IData VL_POW_III(int, int, int rbits, IData lhs, IData rhs) {
    if (VL_UNLIKELY(rhs==0)) return 1;
    if (VL_UNLIKELY(lhs==0)) return 0;
    IData power = lhs;
    IData out = 1;
    for (int i=0; i<rbits; i++) {
	if (i>0) power = power*power;
	if (rhs & (VL_ULL(1)<<i)) out *= power;
    }
    return out;
}
static inline QData VL_POW_QQQ(int, int, int rbits, QData lhs, QData rhs) {
    if (VL_UNLIKELY(rhs==0)) return 1;
    if (VL_UNLIKELY(lhs==0)) return 0;
    QData power = lhs;
    QData out = VL_ULL(1);
    for (int i=0; i<rbits; i++) {
	if (i>0) power = power*power;
	if (rhs & (VL_ULL(1)<<i)) out *= power;
    }
    return out;
}

#define VL_POWSS_QQI(obits,lbits,rbits,lhs,rhs,lsign,rsign) VL_POWSS_QQQ(obits,lbits,rbits,lhs,rhs,lsign,rsign)

static inline IData VL_POWSS_III(int obits, int, int rbits, IData lhs, IData rhs, bool lsign, bool rsign) {
    if (VL_UNLIKELY(rhs==0)) return 1;
    if (rsign && VL_SIGN_I(rbits, rhs)) {
	if (lhs==0) return 0;	// "X"
	else if (lhs==1) return 1;
	else if (lsign && lhs==VL_MASK_I(obits)) {  //-1
	    if (rhs & 1) return VL_MASK_I(obits);  // -1^odd=-1
	    else return 1; // -1^even=1
	}
	return 0;
    }
    return VL_POW_III(obits, obits, rbits, lhs, rhs);
}

static inline QData VL_POWSS_QQQ(int obits, int, int rbits, QData lhs, QData rhs, bool lsign, bool rsign) {
    if (VL_UNLIKELY(rhs==0)) return 1;
    if (rsign && VL_SIGN_I(rbits, rhs)) {
	if (lhs==0) return 0;	// "X"
	else if (lhs==1) return 1;
	else if (lsign && lhs==VL_MASK_I(obits)) {  //-1
	    if (rhs & 1) return VL_MASK_I(obits);  // -1^odd=-1
	    else return 1; // -1^even=1
	}
	return 0;
    }
    return VL_POW_QQQ(obits, obits, rbits, lhs, rhs);
}

//===================================================================
// Concat/replication

// INTERNAL: Stuff LHS bit 0++ into OUTPUT at specified offset
// ld may be "dirty", output is clean
static inline void _VL_INSERT_II(int, CData& lhsr, IData ld, int hbit, int lbit) {
    IData insmask = (VL_MASK_I(hbit-lbit+1))<<lbit;
    lhsr = (lhsr & ~insmask) | ((ld<<lbit) & insmask);
}
static inline void _VL_INSERT_II(int, SData& lhsr, IData ld, int hbit, int lbit) {
    IData insmask = (VL_MASK_I(hbit-lbit+1))<<lbit;
    lhsr = (lhsr & ~insmask) | ((ld<<lbit) & insmask);
}
static inline void _VL_INSERT_II(int, IData& lhsr, IData ld, int hbit, int lbit) {
    IData insmask = (VL_MASK_I(hbit-lbit+1))<<lbit;
    lhsr = (lhsr & ~insmask) | ((ld<<lbit) & insmask);
}
static inline void _VL_INSERT_QQ(int, QData& lhsr, QData ld, int hbit, int lbit) {
    QData insmask = (VL_MASK_Q(hbit-lbit+1))<<lbit;
    lhsr = (lhsr & ~insmask) | ((ld<<lbit) & insmask);
}
static inline void _VL_INSERT_WI(int, WDataOutP owp, IData ld, int hbit, int lbit) {
    int hoffset = VL_BITBIT_I(hbit);
    int loffset = VL_BITBIT_I(lbit);
    if (hoffset==VL_SIZEBITS_I && loffset==0) {
	// Fast and common case, word based insertion
	owp[VL_BITWORD_I(lbit)] = ld;
    }
    else {
	int hword = VL_BITWORD_I(hbit);
	int lword = VL_BITWORD_I(lbit);
	if (hword==lword) {	// know < 32 bits because above checks it
	    IData insmask = (VL_MASK_I(hoffset-loffset+1))<<loffset;
	    owp[lword] = (owp[lword] & ~insmask) | ((ld<<loffset) & insmask);
	} else {
	    IData hinsmask = (VL_MASK_I(hoffset-0+1))<<0;
	    IData linsmask = (VL_MASK_I(31-loffset+1))<<loffset;
	    int nbitsonright = 32-loffset;  // bits that end up in lword
	    owp[lword] = (owp[lword] & ~linsmask) | ((ld<<loffset) & linsmask);
	    owp[hword] = (owp[hword] & ~hinsmask) | ((ld>>nbitsonright) & hinsmask);
	}
    }
}

// INTERNAL: Stuff large LHS bit 0++ into OUTPUT at specified offset
// lwp may be "dirty"
static inline void _VL_INSERT_WW(int, WDataOutP owp, WDataInP lwp, int hbit, int lbit) {
    int hoffset = hbit & VL_SIZEBITS_I;
    int loffset = lbit & VL_SIZEBITS_I;
    int lword = VL_BITWORD_I(lbit);
    int words = VL_WORDS_I(hbit-lbit+1);
    if (hoffset==VL_SIZEBITS_I && loffset==0) {
	// Fast and common case, word based insertion
	for (int i=0; i<words; i++) {
	    owp[lword+i] = lwp[i];
	}
    }
    else if (loffset==0) {
	// Non-32bit, but nicely aligned, so stuff all but the last word
	for (int i=0; i<(words-1); i++) {
	    owp[lword+i] = lwp[i];
	}
	IData hinsmask = (VL_MASK_I(hoffset-0+1)); // Know it's not a full word as above fast case handled it
	owp[lword+words-1] = (owp[words+lword-1] & ~hinsmask) | (lwp[words-1] & hinsmask);
    }
    else {
	IData hinsmask = (VL_MASK_I(hoffset-0+1))<<0;
	IData linsmask = (VL_MASK_I(31-loffset+1))<<loffset;
	int nbitsonright = 32-loffset;  // bits that end up in lword (know loffset!=0)
	// Middle words
	int hword = VL_BITWORD_I(hbit);
	for (int i=0; i<words; i++) {
	    {	// Lower word
		int oword = lword+i;
		IData d = lwp[i]<<loffset;
		IData od = (owp[oword] & ~linsmask) | (d & linsmask);
		if (oword==hword) owp[oword] = (owp[oword] & ~hinsmask) | (od & hinsmask);
		else owp[oword] = od;
	    }
	    {   // Upper word
		int oword = lword+i+1;
		if (oword <= hword) {
		    IData d = lwp[i]>>nbitsonright;
		    IData od = (d & ~linsmask) | (owp[oword] & linsmask);
		    if (oword==hword) owp[oword] = (owp[oword] & ~hinsmask) | (od & hinsmask);
		    else owp[oword] = od;
		}
	    }
	}
    }
}

static inline void _VL_INSERT_WQ(int obits, WDataOutP owp, QData ld, int hbit, int lbit) {
    WData lwp[2]; VL_SET_WQ(lwp,ld);
    _VL_INSERT_WW(obits,owp,lwp,hbit,lbit);
}

// EMIT_RULE: VL_REPLICATE:  oclean=clean>width32, dirty<=width32; lclean=clean; rclean==clean;
// RHS MUST BE CLEAN CONSTANT.
#define VL_REPLICATE_IOI(obits,lbits,rbits, ld, rep) (-(ld))  // Iff lbits==1
#define VL_REPLICATE_QOI(obits,lbits,rbits, ld, rep) (-((QData)ld))  // Iff lbits==1

static inline IData VL_REPLICATE_III(int, int lbits, int, IData ld, IData rep) {
    IData returndata = ld;
    for (unsigned i=1; i < rep; i++){
	returndata = returndata << lbits;
	returndata |= ld;
    }
    return (returndata);
}
static inline QData VL_REPLICATE_QII(int, int lbits, int, IData ld, IData rep) {
    QData returndata = ld;
    for (unsigned i=1; i < rep; i++){
	returndata = returndata << lbits;
	returndata |= (QData)ld;
    }
    return (returndata);
}
static inline WDataOutP VL_REPLICATE_WII(int obits, int lbits, int, WDataOutP owp, IData ld, IData rep) {
    owp[0] = ld;
    for (unsigned i=1; i < rep; i++){
	_VL_INSERT_WI(obits,owp,ld,i*lbits+lbits-1,i*lbits);
    }
    return(owp);
}
static inline WDataOutP VL_REPLICATE_WQI(int obits, int lbits, int, WDataOutP owp, QData ld, IData rep) {
    VL_SET_WQ(owp,ld);
    for (unsigned i=1; i < rep; i++){
	_VL_INSERT_WQ(obits,owp,ld,i*lbits+lbits-1,i*lbits);
    }
    return(owp);
}
static inline WDataOutP VL_REPLICATE_WWI(int obits, int lbits, int, WDataOutP owp, WDataInP lwp, IData rep) {
    for (int i=0; i < VL_WORDS_I(lbits); i++) owp[i] = lwp[i];
    for (unsigned i=1; i < rep; i++){
	_VL_INSERT_WW(obits,owp,lwp,i*lbits+lbits-1,i*lbits);
    }
    return(owp);
}

// Left stream operator. Output will always be clean. LHS and RHS must be clean.
// Special "fast" versions for slice sizes that are a power of 2. These use
// shifts and masks to execute faster than the slower for-loop approach where a
// subset of bits is copied in during each iteration.
static inline IData VL_STREAML_FAST_III(int, int lbits, int, IData ld, IData rd_log2) {
    // Pre-shift bits in most-significant slice:
    //
    // If lbits is not a multiple of the slice size (i.e., lbits % rd != 0),
    // then we end up with a "gap" in our reversed result. For example, if we
    // have a 5-bit Verlilog signal (lbits=5) in an 8-bit C data type:
    //
    //   ld = ---43210
    //
    // (where numbers are the Verilog signal bit numbers and '-' is an unused bit).
    // Executing the switch statement below with a slice size of two (rd=2,
    // rd_log2=1) produces:
    //
    //   ret = 1032-400
    //
    // Pre-shifting the bits in the most-significant slice allows us to avoid
    // this gap in the shuffled data:
    //
    //   ld_adjusted = --4-3210
    //   ret = 10324---
    IData ret = ld;
    if (rd_log2) {
	vluint32_t lbitsFloor = lbits & ~VL_MASK_I(rd_log2); // max multiple of rd <= lbits
	vluint32_t lbitsRem = lbits - lbitsFloor; // number of bits in most-sig slice (MSS)
	IData msbMask = VL_MASK_I(lbitsRem) << lbitsFloor; // mask to sel only bits in MSS
	ret = (ret & ~msbMask) | ((ret & msbMask) << ((VL_UL(1) << rd_log2) - lbitsRem));
    }
    switch (rd_log2) {
	case 0:
	    ret = ((ret >> 1) & VL_UL(0x55555555)) | ((ret & VL_UL(0x55555555)) << 1);    // FALLTHRU
	case 1:
	    ret = ((ret >> 2) & VL_UL(0x33333333)) | ((ret & VL_UL(0x33333333)) << 2);    // FALLTHRU
	case 2:
	    ret = ((ret >> 4) & VL_UL(0x0f0f0f0f)) | ((ret & VL_UL(0x0f0f0f0f)) << 4);    // FALLTHRU
	case 3:
	    ret = ((ret >> 8) & VL_UL(0x00ff00ff)) | ((ret & VL_UL(0x00ff00ff)) << 8);    // FALLTHRU
	case 4:
	    ret = ((ret >> 16) | (ret << 16));
    }
    return ret >> (VL_WORDSIZE - lbits);
}

static inline QData VL_STREAML_FAST_QQI(int, int lbits, int, QData ld, IData rd_log2) {
    // Pre-shift bits in most-significant slice (see comment in VL_STREAML_FAST_III)
    QData ret = ld;
    if (rd_log2) {
        vluint32_t lbitsFloor = lbits & ~VL_MASK_I(rd_log2);
        vluint32_t lbitsRem = lbits - lbitsFloor;
        QData msbMask = VL_MASK_Q(lbitsRem) << lbitsFloor;
        ret = (ret & ~msbMask) | ((ret & msbMask) << ((VL_ULL(1) << rd_log2) - lbitsRem));
    }
    switch (rd_log2) {
	case 0:
	    ret = ((ret >>  1) & VL_ULL(0x5555555555555555)) | ((ret & VL_ULL(0x5555555555555555)) <<  1);    // FALLTHRU
	case 1:
	    ret = ((ret >>  2) & VL_ULL(0x3333333333333333)) | ((ret & VL_ULL(0x3333333333333333)) <<  2);    // FALLTHRU
	case 2:
	    ret = ((ret >>  4) & VL_ULL(0x0f0f0f0f0f0f0f0f)) | ((ret & VL_ULL(0x0f0f0f0f0f0f0f0f)) <<  4);    // FALLTHRU
	case 3:
	    ret = ((ret >>  8) & VL_ULL(0x00ff00ff00ff00ff)) | ((ret & VL_ULL(0x00ff00ff00ff00ff)) <<  8);    // FALLTHRU
	case 4:
	    ret = ((ret >> 16) & VL_ULL(0x0000ffff0000ffff)) | ((ret & VL_ULL(0x0000ffff0000ffff)) << 16);    // FALLTHRU
	case 5:
	    ret = ((ret >> 32) | (ret << 32));
    }
    return ret >> (VL_QUADSIZE - lbits);
}

// Regular "slow" streaming operators
static inline IData VL_STREAML_III(int, int lbits, int, IData ld, IData rd) {
    IData ret = 0;
    // Slice size should never exceed the lhs width
    IData mask = VL_MASK_I(rd);
    for (int istart=0; istart<lbits; istart+=rd) {
	int ostart=lbits-rd-istart;
        ostart = ostart > 0 ? ostart : 0;
        ret |= ((ld >> istart) & mask) << ostart;
    }
    return ret;
}

static inline QData VL_STREAML_QQI(int, int lbits, int, QData ld, IData rd) {
    QData ret = 0;
    // Slice size should never exceed the lhs width
    QData mask = VL_MASK_Q(rd);
    for (int istart=0; istart<lbits; istart+=rd) {
	int ostart=lbits-rd-istart;
        ostart = ostart > 0 ? ostart : 0;
        ret |= ((ld >> istart) & mask) << ostart;
    }
    return ret;
}

static inline WDataOutP VL_STREAML_WWI(int, int lbits, int, WDataOutP owp, WDataInP lwp, IData rd) {
    VL_ZERO_RESET_W(lbits, owp);
    // Slice size should never exceed the lhs width
    int ssize = (rd < (IData)lbits) ? rd : ((IData)lbits);
    for (int istart=0; istart<lbits; istart+=rd) {
	int ostart=lbits-rd-istart;
        ostart = ostart > 0 ? ostart : 0;
	for (int sbit=0; sbit<ssize && sbit<lbits-istart; sbit++) {
            // Extract a single bit from lwp and shift it to the correct
            // location for owp.
            WData bit= ((lwp[VL_BITWORD_I(istart+sbit)] >> VL_BITBIT_I(istart+sbit)) & 1) << VL_BITBIT_I(ostart+sbit);
            owp[VL_BITWORD_I(ostart+sbit)] |= bit;
	}
    }
    return owp;
}

// Because concats are common and wide, it's valuable to always have a clean output.
// Thus we specify inputs must be clean, so we don't need to clean the output.
// Note the bit shifts are always constants, so the adds in these constify out.
// Casts required, as args may be 8 bit entities, and need to shift to appropriate output size
#define VL_CONCAT_III(obits,lbits,rbits,ld,rd)   ((IData)(ld)<<(rbits) | (IData)(rd))
#define VL_CONCAT_QII(obits,lbits,rbits,ld,rd)   ((QData)(ld)<<(rbits) | (QData)(rd))
#define VL_CONCAT_QIQ(obits,lbits,rbits,ld,rd)   ((QData)(ld)<<(rbits) | (QData)(rd))
#define VL_CONCAT_QQI(obits,lbits,rbits,ld,rd)   ((QData)(ld)<<(rbits) | (QData)(rd))
#define VL_CONCAT_QQQ(obits,lbits,rbits,ld,rd)   ((QData)(ld)<<(rbits) | (QData)(rd))

static inline WDataOutP VL_CONCAT_WII(int obits,int lbits,int rbits,WDataOutP owp,IData ld,IData rd) {
    owp[0] = rd;
    for (int i=1; i < VL_WORDS_I(obits); i++) owp[i] = 0;
    _VL_INSERT_WI(obits,owp,ld,rbits+lbits-1,rbits);
    return(owp);
}
static inline WDataOutP VL_CONCAT_WWI(int obits,int lbits,int rbits,WDataOutP owp,WDataInP lwp, IData rd) {
    owp[0] = rd;
    for (int i=1; i < VL_WORDS_I(obits); i++) owp[i] = 0;
    _VL_INSERT_WW(obits,owp,lwp,rbits+lbits-1,rbits);
    return(owp);
}
static inline WDataOutP VL_CONCAT_WIW(int obits,int lbits,int rbits,WDataOutP owp,IData ld, WDataInP rwp) {
    for (int i=0; i < VL_WORDS_I(rbits); i++) owp[i] = rwp[i];
    for (int i=VL_WORDS_I(rbits); i < VL_WORDS_I(obits); i++) owp[i] = 0;
    _VL_INSERT_WI(obits,owp,ld,rbits+lbits-1,rbits);
    return(owp);
}
static inline WDataOutP VL_CONCAT_WIQ(int obits,int lbits,int rbits,WDataOutP owp,IData ld,QData rd) {
    VL_SET_WQ(owp,rd);
    for (int i=2; i < VL_WORDS_I(obits); i++) owp[i] = 0;
    _VL_INSERT_WI(obits,owp,ld,rbits+lbits-1,rbits);
    return(owp);
}
static inline WDataOutP VL_CONCAT_WQI(int obits,int lbits,int rbits,WDataOutP owp,QData ld,IData rd) {
    owp[0] = rd;
    for (int i=1; i < VL_WORDS_I(obits); i++) owp[i] = 0;
    _VL_INSERT_WQ(obits,owp,ld,rbits+lbits-1,rbits);
    return(owp);
}
static inline WDataOutP VL_CONCAT_WQQ(int obits,int lbits,int rbits,WDataOutP owp,QData ld,QData rd) {
    VL_SET_WQ(owp,rd);
    for (int i=2; i < VL_WORDS_I(obits); i++) owp[i] = 0;
    _VL_INSERT_WQ(obits,owp,ld,rbits+lbits-1,rbits);
    return(owp);
}
static inline WDataOutP VL_CONCAT_WWQ(int obits,int lbits,int rbits,WDataOutP owp,WDataInP lwp, QData rd) {
    VL_SET_WQ(owp,rd);
    for (int i=2; i < VL_WORDS_I(obits); i++) owp[i] = 0;
    _VL_INSERT_WW(obits,owp,lwp,rbits+lbits-1,rbits);
    return(owp);
}
static inline WDataOutP VL_CONCAT_WQW(int obits,int lbits,int rbits,WDataOutP owp,QData ld, WDataInP rwp) {
    for (int i=0; i < VL_WORDS_I(rbits); i++) owp[i] = rwp[i];
    for (int i=VL_WORDS_I(rbits); i < VL_WORDS_I(obits); i++) owp[i] = 0;
    _VL_INSERT_WQ(obits,owp,ld,rbits+lbits-1,rbits);
    return(owp);
}
static inline WDataOutP VL_CONCAT_WWW(int obits,int lbits,int rbits,WDataOutP owp,WDataInP lwp, WDataInP rwp) {
    for (int i=0; i < VL_WORDS_I(rbits); i++) owp[i] = rwp[i];
    for (int i=VL_WORDS_I(rbits); i < VL_WORDS_I(obits); i++) owp[i] = 0;
    _VL_INSERT_WW(obits,owp,lwp,rbits+lbits-1,rbits);
    return(owp);
}

//===================================================================
// Shifts

// Static shift, used by internal functions
// The output is the same as the input - it overlaps!
static inline void _VL_SHIFTL_INPLACE_W(int obits,WDataOutP iowp,IData rd/*1 or 4*/) {
    int words = VL_WORDS_I(obits);
    IData linsmask = VL_MASK_I(rd);
    for (int i=words-1; i>=1; i--) {
	iowp[i] = ((iowp[i]<<rd) & ~linsmask) | ((iowp[i-1] >> (32-rd)) & linsmask);
    }
    iowp[0] = ((iowp[0]<<rd) & ~linsmask);
    iowp[VL_WORDS_I(obits)-1] &= VL_MASK_I(obits);
}

// EMIT_RULE: VL_SHIFTL:  oclean=lclean; rclean==clean;
// Important: Unlike most other funcs, the shift might well be a computed
// expression.  Thus consider this when optimizing.  (And perhaps have 2 funcs?)
static inline WDataOutP VL_SHIFTL_WWI(int obits,int,int,WDataOutP owp,WDataInP lwp, IData rd) {
    int word_shift = VL_BITWORD_I(rd);
    int bit_shift = VL_BITBIT_I(rd);
    if (rd >= (IData)obits) {  // rd may be huge with MSB set
	for (int i=0; i < VL_WORDS_I(obits); i++) owp[i] = 0;
    } else if (bit_shift==0) {  // Aligned word shift (<<0,<<32,<<64 etc)
	for (int i=0; i < word_shift; i++) owp[i] = 0;
	for (int i=word_shift; i < VL_WORDS_I(obits); i++) owp[i] = lwp[i-word_shift];
    } else {
	for (int i=0; i < VL_WORDS_I(obits); i++) owp[i] = 0;
	_VL_INSERT_WW(obits,owp,lwp,obits-1,rd);
    }
    return(owp);
}

// EMIT_RULE: VL_SHIFTR:  oclean=lclean; rclean==clean;
// Important: Unlike most other funcs, the shift might well be a computed
// expression.  Thus consider this when optimizing.  (And perhaps have 2 funcs?)
static inline WDataOutP VL_SHIFTR_WWI(int obits,int,int,WDataOutP owp,WDataInP lwp, IData rd) {
    int word_shift = VL_BITWORD_I(rd);  // Maybe 0
    int bit_shift = VL_BITBIT_I(rd);
    if (rd >= (IData)obits) {  // rd may be huge with MSB set
	for (int i=0; i < VL_WORDS_I(obits); i++) owp[i] = 0;
    } else if (bit_shift==0) {  // Aligned word shift (>>0,>>32,>>64 etc)
	int copy_words = (VL_WORDS_I(obits)-word_shift);
	for (int i=0; i < copy_words; i++) owp[i] = lwp[i+word_shift];
	for (int i=copy_words; i < VL_WORDS_I(obits); i++) owp[i] = 0;
    } else {
	int loffset = rd & VL_SIZEBITS_I;
	int nbitsonright = 32-loffset;  // bits that end up in lword (know loffset!=0)
	// Middle words
	int words = VL_WORDS_I(obits-rd);
	for (int i=0; i<words; i++) {
	    owp[i] = lwp[i+word_shift]>>loffset;
	    int upperword = i+word_shift+1;
	    if (upperword < VL_WORDS_I(obits)) {
		owp[i] |= lwp[upperword]<< nbitsonright;
	    }
	}
	for (int i=words; i<VL_WORDS_I(obits); i++) owp[i]=0;
    }
    return(owp);
}

// EMIT_RULE: VL_SHIFTRS:  oclean=false; lclean=clean, rclean==clean;
static inline IData VL_SHIFTRS_III(int obits, int lbits, int, IData lhs, IData rhs) {
    // Note the C standard does not specify the >> operator as a arithmetic shift!
    // IEEE says signed if output signed, but bit position from lbits;
    // must use lbits for sign; lbits might != obits,
    // an EXTEND(SHIFTRS(...)) can became a SHIFTRS(...) within same 32/64 bit word length
    IData sign    = -(lhs >> (lbits-1)); // ffff_ffff if negative
    IData signext = ~(VL_MASK_I(lbits) >> rhs);   // One with bits where we've shifted "past"
    return (lhs >> rhs) | (sign & VL_CLEAN_II(obits,obits,signext));
}
static inline QData VL_SHIFTRS_QQI(int obits, int lbits, int, QData lhs, IData rhs) {
    QData sign    = -(lhs >> (lbits-1));
    QData signext = ~(VL_MASK_Q(lbits) >> rhs);
    return (lhs >> rhs) | (sign & VL_CLEAN_QQ(obits,obits,signext));
}
static inline IData VL_SHIFTRS_IQI(int obits, int lbits, int rbits, QData lhs, IData rhs) {
    return (IData)(VL_SHIFTRS_QQI(obits, lbits, rbits, lhs, rhs));
}
static inline WDataOutP VL_SHIFTRS_WWI(int obits,int lbits,int,WDataOutP owp,WDataInP lwp, IData rd) {
    int word_shift = VL_BITWORD_I(rd);
    int bit_shift = VL_BITBIT_I(rd);
    int lmsw = VL_WORDS_I(obits)-1;
    IData sign = VL_SIGNONES_I(lbits,lwp[lmsw]);
    if (rd >= (IData)obits) {  // Shifting past end, sign in all of lbits
	for (int i=0; i <= lmsw; i++) owp[i] = sign;
	owp[lmsw] &= VL_MASK_I(lbits);
    } else if (bit_shift==0) {  // Aligned word shift (>>0,>>32,>>64 etc)
	int copy_words = (VL_WORDS_I(obits)-word_shift);
	for (int i=0; i < copy_words; i++) owp[i] = lwp[i+word_shift];
	if (copy_words>=0) owp[copy_words-1] |= ~VL_MASK_I(obits) & sign;
	for (int i=copy_words; i < VL_WORDS_I(obits); i++) owp[i] = sign;
	owp[lmsw] &= VL_MASK_I(lbits);
    } else {
	int loffset = rd & VL_SIZEBITS_I;
	int nbitsonright = 32-loffset;  // bits that end up in lword (know loffset!=0)
	// Middle words
	int words = VL_WORDS_I(obits-rd);
	for (int i=0; i<words; i++) {
	    owp[i] = lwp[i+word_shift]>>loffset;
	    int upperword = i+word_shift+1;
	    if (upperword < VL_WORDS_I(obits)) {
		owp[i] |= lwp[upperword]<< nbitsonright;
	    }
	}
	if (words) owp[words-1] |= sign & ~VL_MASK_I(obits-loffset);
	for (int i=words; i<VL_WORDS_I(obits); i++) owp[i] = sign;
	owp[lmsw] &= VL_MASK_I(lbits);
    }
    return(owp);
}

//===================================================================
// Bit selection

// EMIT_RULE: VL_BITSEL:  oclean=dirty; rclean==clean;
#define VL_BITSEL_IIII(obits,lbits,rbits,zbits,lhs,rhs) ((lhs)>>(rhs))
#define VL_BITSEL_QIII(obits,lbits,rbits,zbits,lhs,rhs) ((lhs)>>(rhs))
#define VL_BITSEL_QQII(obits,lbits,rbits,zbits,lhs,rhs) ((lhs)>>(rhs))
#define VL_BITSEL_IQII(obits,lbits,rbits,zbits,lhs,rhs) ((IData)((lhs)>>(rhs)))

static inline IData VL_BITSEL_IWII(int, int lbits, int, int, WDataInP lwp, IData rd) {
    int word = VL_BITWORD_I(rd);
    if (VL_UNLIKELY(rd>(IData)lbits)) {
	return ~0; // Spec says you can go outside the range of a array.  Don't coredump if so.
	// We return all 1's as that's more likely to find bugs (?) than 0's.
    } else {
	return (lwp[word]>>VL_BITBIT_I(rd));
    }
}

// EMIT_RULE: VL_RANGE:  oclean=lclean;  out=dirty
// <msb> & <lsb> MUST BE CLEAN (currently constant)
#define VL_SEL_IIII(obits,lbits,rbits,tbits,lhs,lsb,width) ((lhs)>>(lsb))
#define VL_SEL_QQII(obits,lbits,rbits,tbits,lhs,lsb,width) ((lhs)>>(lsb))
#define VL_SEL_IQII(obits,lbits,rbits,tbits,lhs,lsb,width) ((IData)((lhs)>>(lsb)))

static inline IData VL_SEL_IWII(int, int lbits, int, int, WDataInP lwp, IData lsb, IData width) {
    int msb = lsb+width-1;
    if (VL_UNLIKELY(msb>lbits)) {
	return ~0; // Spec says you can go outside the range of a array.  Don't coredump if so.
    } else if (VL_BITWORD_I(msb)==VL_BITWORD_I((int)lsb)) {
	return (lwp[VL_BITWORD_I(lsb)]>>VL_BITBIT_I(lsb));
    } else {
	// 32 bit extraction may span two words
	int nbitsfromlow = 32-VL_BITBIT_I(lsb);  // bits that come from low word
	return ((lwp[VL_BITWORD_I(msb)]<<nbitsfromlow)
		|(lwp[VL_BITWORD_I(lsb)]>>VL_BITBIT_I(lsb)));
    }
}

static inline QData VL_SEL_QWII(int, int lbits, int, int, WDataInP lwp, IData lsb, IData width) {
    int msb = lsb+width-1;
    if (VL_UNLIKELY(msb>lbits)) {
	return ~0; // Spec says you can go outside the range of a array.  Don't coredump if so.
    } else if (VL_BITWORD_I(msb)==VL_BITWORD_I((int)lsb)) {
	return (lwp[VL_BITWORD_I(lsb)]>>VL_BITBIT_I(lsb));
    } else if (VL_BITWORD_I(msb)==1+VL_BITWORD_I((int)lsb)) {
	int nbitsfromlow = 32-VL_BITBIT_I(lsb);
	QData hi = (lwp[VL_BITWORD_I(msb)]);
	QData lo = (lwp[VL_BITWORD_I(lsb)]>>VL_BITBIT_I(lsb));
	return (hi<<nbitsfromlow) | lo;
    } else {
	// 64 bit extraction may span three words
	int nbitsfromlow = 32-VL_BITBIT_I(lsb);
	QData hi = (lwp[VL_BITWORD_I(msb)]);
	QData mid= (lwp[VL_BITWORD_I(lsb)+1]);
	QData lo = (lwp[VL_BITWORD_I(lsb)]>>VL_BITBIT_I(lsb));
	return (hi<<(nbitsfromlow+32)) | (mid<<nbitsfromlow) | lo;
    }
}

static inline WDataOutP VL_SEL_WWII(int obits,int lbits,int,int,WDataOutP owp,WDataInP lwp, IData lsb, IData width) {
    int msb = lsb+width-1;
    int word_shift = VL_BITWORD_I(lsb);
    if (VL_UNLIKELY(msb>lbits)) { // Outside bounds,
	for (int i=0; i<VL_WORDS_I(obits)-1; i++) owp[i] = ~0;
	owp[VL_WORDS_I(obits)-1] = VL_MASK_I(obits);
    } else if (VL_BITBIT_I(lsb)==0) {
	// Just a word extract
	for (int i=0; i<VL_WORDS_I(obits); i++) owp[i] = lwp[i+word_shift];
    } else {
	// Not a _VL_INSERT because the bits come from any bit number and goto bit 0
	int loffset = lsb & VL_SIZEBITS_I;
	int nbitsfromlow = 32-loffset;  // bits that end up in lword (know loffset!=0)
	// Middle words
	int words = VL_WORDS_I(msb-lsb+1);
	for (int i=0; i<words; i++) {
	    owp[i] = lwp[i+word_shift]>>loffset;
	    int upperword = i+word_shift+1;
	    if (upperword <= (int)VL_BITWORD_I(msb)) {
		owp[i] |= lwp[upperword]<< nbitsfromlow;
	    }
	}
	for (int i=words; i<VL_WORDS_I(obits); i++) owp[i]=0;
    }
    return owp;
}

//======================================================================
// Range assignments

// EMIT_RULE: VL_ASSIGNRANGE:  rclean=dirty;
static inline void VL_ASSIGNSEL_IIII(int obits, int lsb, CData& lhsr, IData rhs) {
    _VL_INSERT_II(obits, lhsr, rhs, lsb+obits-1, lsb);
}
static inline void VL_ASSIGNSEL_IIII(int obits, int lsb, SData& lhsr, IData rhs) {
    _VL_INSERT_II(obits, lhsr, rhs, lsb+obits-1, lsb);
}
static inline void VL_ASSIGNSEL_IIII(int obits, int lsb, IData& lhsr, IData rhs) {
    _VL_INSERT_II(obits, lhsr, rhs, lsb+obits-1, lsb);
}
static inline void VL_ASSIGNSEL_QIII(int obits, int lsb, QData& lhsr, IData rhs) {
    _VL_INSERT_QQ(obits, lhsr, rhs, lsb+obits-1, lsb);
}
static inline void VL_ASSIGNSEL_QQII(int obits, int lsb, QData& lhsr, QData rhs) {
    _VL_INSERT_QQ(obits, lhsr, rhs, lsb+obits-1, lsb);
}
static inline void VL_ASSIGNSEL_QIIQ(int obits, int lsb, QData& lhsr, QData rhs) {
    _VL_INSERT_QQ(obits, lhsr, rhs, lsb+obits-1, lsb);
}
//static inline void VL_ASSIGNSEL_IIIW(int obits, int lsb, IData& lhsr,WDataInP rwp) {
// Illegal, as lhs width >= rhs width
static inline void VL_ASSIGNSEL_WIII(int obits, int lsb, WDataOutP owp, IData rhs) {
    _VL_INSERT_WI(obits, owp, rhs, lsb+obits-1, lsb);
}
static inline void VL_ASSIGNSEL_WIIQ(int obits, int lsb, WDataOutP owp, QData rhs) {
    _VL_INSERT_WQ(obits, owp, rhs, lsb+obits-1, lsb);
}
static inline void VL_ASSIGNSEL_WIIW(int obits, int lsb, WDataOutP owp, WDataInP rwp) {
    _VL_INSERT_WW(obits, owp, rwp, lsb+obits-1, lsb);
}

//======================================================================
// Triops

static inline WDataOutP VL_COND_WIWW(int obits, int, int, int,
				     WDataOutP owp, int cond, WDataInP w1p, WDataInP w2p) {
    int words = VL_WORDS_I(obits);
    for (int i=0; i < words; i++) owp[i] = cond ? w1p[i] : w2p[i];
    return(owp);
}

//======================================================================
// System Functions

inline IData VL_VALUEPLUSARGS_IQ(int rbits, const char* prefixp, char fmt, QData& ldr) {
    WData wd[2]; IData v=VL_VALUEPLUSARGS_IW(rbits,prefixp,fmt,wd); if (v) ldr=VL_SET_QW(wd);
    return v;
}
inline IData VL_VALUEPLUSARGS_II(int rbits, const char* prefixp, char fmt, CData& ldr) {
    QData qd; IData v=VL_VALUEPLUSARGS_IQ(rbits,prefixp,fmt,qd); if (v) ldr=(CData)qd;
    return v;
}
inline IData VL_VALUEPLUSARGS_II(int rbits, const char* prefixp, char fmt, SData& ldr) {
    QData qd; IData v=VL_VALUEPLUSARGS_IQ(rbits,prefixp,fmt,qd); if (v) ldr=(SData)qd;
    return v;
}
inline IData VL_VALUEPLUSARGS_II(int rbits, const char* prefixp, char fmt, IData& ldr) {
    QData qd; IData v=VL_VALUEPLUSARGS_IQ(rbits,prefixp,fmt,qd); if (v) ldr=(IData)qd;
    return v;
}

//======================================================================
// Constification

// VL_CONST_W_#X(int obits, WDataOutP owp, IData data0, .... IData data(#-1))
// Sets wide vector words to specified constant words, zeros upper data.

// If changing the number of functions here, also change EMITCINLINES_NUM_CONSTW

#define _END(obits,wordsSet) \
    for(int i=(wordsSet);i<VL_WORDS_I(obits);i++) o[i] = (IData)0x0; \
    return o

#define VL_HAVE_CONST_W_1X
static inline WDataOutP VL_CONST_W_1X(int obits, WDataOutP o,
				      IData d0) {
    o[0]=d0;
    _END(obits,1);  }
#define VL_HAVE_CONST_W_2X
static inline WDataOutP VL_CONST_W_2X(int obits, WDataOutP o,
				      IData d1,IData d0) {
    o[0]=d0;  o[1]=d1;
    _END(obits,2);  }
#define VL_HAVE_CONST_W_3X
static inline WDataOutP VL_CONST_W_3X(int obits, WDataOutP o,
				      IData d2,IData d1,IData d0) {
    o[0]=d0;  o[1]=d1;  o[2]=d2;
    _END(obits,3);  }
#define VL_HAVE_CONST_W_4X
static inline WDataOutP VL_CONST_W_4X(int obits, WDataOutP o,
				      IData d3,IData d2,IData d1,IData d0) {
    o[0]=d0;  o[1]=d1;  o[2]=d2;  o[3]=d3;
    _END(obits,4);  }
#define VL_HAVE_CONST_W_5X
static inline WDataOutP VL_CONST_W_5X(int obits, WDataOutP o,
				      IData d4,IData d3,IData d2,IData d1,IData d0) {
    o[0]=d0;  o[1]=d1;  o[2]=d2;  o[3]=d3;  o[4]=d4;
    _END(obits,5);  }
#define VL_HAVE_CONST_W_6X
static inline WDataOutP VL_CONST_W_6X(int obits, WDataOutP o,
				      IData d5,IData d4,IData d3,IData d2,IData d1,IData d0) {
    o[0]=d0;  o[1]=d1;  o[2]=d2;  o[3]=d3;  o[4]=d4;  o[5]=d5;
    _END(obits,6);  }
#define VL_HAVE_CONST_W_7X
static inline WDataOutP VL_CONST_W_7X(int obits, WDataOutP o,
				      IData d6,IData d5,IData d4,IData d3,IData d2,IData d1,IData d0) {
    o[0]=d0;  o[1]=d1;  o[2]=d2;  o[3]=d3;  o[4]=d4;  o[5]=d5;  o[6]=d6;
    _END(obits,7);  }
#define VL_HAVE_CONST_W_8X
static inline WDataOutP VL_CONST_W_8X(int obits, WDataOutP o,
				      IData d7,IData d6,IData d5,IData d4,IData d3,IData d2,IData d1,IData d0) {
    o[0]=d0;  o[1]=d1;  o[2]=d2;  o[3]=d3;  o[4]=d4;  o[5]=d5;  o[6]=d6;  o[7]=d7;
    _END(obits,8);  }
#define VL_HAVE_CONST_W_9X
static inline WDataOutP VL_CONST_W_9X(int obits, WDataOutP o,
				      IData d8,
				      IData d7,IData d6,IData d5,IData d4,IData d3,IData d2,IData d1,IData d0) {
    o[0]=d0;  o[1]=d1;  o[2]=d2;  o[3]=d3;  o[4]=d4;  o[5]=d5;  o[6]=d6;  o[7]=d7;
    o[8]=d8;
    _END(obits,9);  }

#undef _END

//======================================================================

#endif /*_VERILATED_H_*/