1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 300 301 302 303 304 305 306 307 308 309 310 311 312 313 314 315 316 317 318 319 320 321 322 323 324 325 326 327 328 329 330 331 332 333 334 335 336 337 338 339 340 341 342 343 344 345 346 347 348 349 350 351 352 353 354 355 356 357 358 359 360 361 362 363 364 365 366 367 368 369 370 371 372 373 374 375 376 377 378 379 380 381 382 383 384 385 386 387 388 389 390 391 392 393 394 395 396 397 398 399 400 401 402 403 404 405 406 407 408 409 410 411 412 413 414 415 416 417 418 419 420 421 422 423 424 425 426 427 428 429 430 431 432 433 434 435 436 437 438 439 440 441 442 443 444 445 446 447 448 449 450 451 452 453 454 455 456 457 458 459 460 461 462 463 464 465 466 467 468 469 470 471 472 473 474 475 476 477 478 479 480 481 482 483 484 485 486 487 488 489 490 491 492 493 494 495 496 497 498 499 500 501 502 503 504 505 506 507 508 509 510 511 512 513 514 515 516 517 518 519 520 521 522 523 524 525 526 527 528 529 530 531 532 533 534 535 536 537 538 539 540 541 542 543 544 545 546 547 548 549 550 551 552 553 554 555 556 557 558 559 560 561 562 563 564 565 566 567 568 569 570 571 572 573 574 575 576 577 578 579 580 581 582 583 584 585 586 587 588 589 590 591 592 593 594 595 596 597 598 599 600 601 602 603 604 605 606 607 608 609 610 611 612 613 614 615 616 617 618 619 620 621 622 623 624 625 626 627 628 629 630 631 632 633 634 635 636 637 638 639 640 641
|
// -*- mode: C++; c-file-style: "cc-mode" -*-
//=============================================================================
//
// THIS MODULE IS PUBLICLY LICENSED
//
// Copyright 2001-2020 by Wilson Snyder. This program is free software; you
// can redistribute it and/or modify it under the terms of either the GNU
// Lesser General Public License Version 3 or the Perl Artistic License
// Version 2.0.
// SPDX-License-Identifier: LGPL-3.0-only OR Artistic-2.0
//
//=============================================================================
///
/// \file
/// \brief Implementation of tracing functionality common to all trace formats
///
//=============================================================================
// SPDIFF_OFF
// clang-format off
#ifndef VL_DERIVED_T
# error "This file should be included in trace format implementations"
#endif
#include "verilated_intrinsics.h"
#include "verilated_trace.h"
#if 0
# include <iostream>
# define VL_TRACE_THREAD_DEBUG(msg) std::cout << "TRACE THREAD: " << msg << std::endl
#else
# define VL_TRACE_THREAD_DEBUG(msg)
#endif
// clang-format on
//=============================================================================
// Static utility functions
static double timescaleToDouble(const char* unitp) {
char* endp = NULL;
double value = strtod(unitp, &endp);
// On error so we allow just "ns" to return 1e-9.
if (value == 0.0 && endp == unitp) value = 1;
unitp = endp;
for (; *unitp && isspace(*unitp); unitp++) {}
switch (*unitp) {
case 's': value *= 1e1; break;
case 'm': value *= 1e-3; break;
case 'u': value *= 1e-6; break;
case 'n': value *= 1e-9; break;
case 'p': value *= 1e-12; break;
case 'f': value *= 1e-15; break;
case 'a': value *= 1e-18; break;
}
return value;
}
static std::string doubleToTimescale(double value) {
const char* suffixp = "s";
// clang-format off
if (value >= 1e0) { suffixp = "s"; value *= 1e0; }
else if (value >= 1e-3 ) { suffixp = "ms"; value *= 1e3; }
else if (value >= 1e-6 ) { suffixp = "us"; value *= 1e6; }
else if (value >= 1e-9 ) { suffixp = "ns"; value *= 1e9; }
else if (value >= 1e-12) { suffixp = "ps"; value *= 1e12; }
else if (value >= 1e-15) { suffixp = "fs"; value *= 1e15; }
else if (value >= 1e-18) { suffixp = "as"; value *= 1e18; }
// clang-format on
char valuestr[100];
sprintf(valuestr, "%3.0f%s", value, suffixp);
return valuestr; // Gets converted to string, so no ref to stack
}
#ifdef VL_TRACE_THREADED
//=========================================================================
// Buffer management
template <> vluint32_t* VerilatedTrace<VL_DERIVED_T>::getTraceBuffer() {
vluint32_t* bufferp;
// Some jitter is expected, so some number of alternative trace buffers are
// required, but don't allocate more than 8 buffers.
if (m_numTraceBuffers < 8) {
// Allocate a new buffer if none is available
if (!m_buffersFromWorker.tryGet(bufferp)) {
++m_numTraceBuffers;
// Note: over allocate a bit so pointer comparison is well defined
// if we overflow only by a small amount
bufferp = new vluint32_t[m_traceBufferSize + 16];
}
} else {
// Block until a buffer becomes available
bufferp = m_buffersFromWorker.get();
}
return bufferp;
}
template <> void VerilatedTrace<VL_DERIVED_T>::waitForBuffer(const vluint32_t* buffp) {
// Slow path code only called on flush/shutdown, so use a simple algorithm.
// Collect buffers from worker and stash them until we get the one we want.
std::deque<vluint32_t*> stash;
do { stash.push_back(m_buffersFromWorker.get()); } while (stash.back() != buffp);
// Now put them back in the queue, in the original order.
while (!stash.empty()) {
m_buffersFromWorker.put_front(stash.back());
stash.pop_back();
}
}
//=========================================================================
// Worker thread
template <> void VerilatedTrace<VL_DERIVED_T>::workerThreadMain() {
bool shutdown = false;
do {
vluint32_t* const bufferp = m_buffersToWorker.get();
VL_TRACE_THREAD_DEBUG("");
VL_TRACE_THREAD_DEBUG("Got buffer: " << bufferp);
const vluint32_t* readp = bufferp;
while (true) {
const vluint32_t cmd = readp[0];
const vluint32_t top = cmd >> 4;
// Always set this up, as it is almost always needed
vluint32_t* const oldp = m_sigs_oldvalp + readp[1];
// Note this increment needs to be undone on commands which do not
// actually contain a code, but those are the rare cases.
readp += 2;
switch (cmd & 0xF) {
//===
// CHG_* commands
case VerilatedTraceCommand::CHG_BIT_0:
VL_TRACE_THREAD_DEBUG("Command CHG_BIT_0 " << top);
chgBitImpl(oldp, 0);
continue;
case VerilatedTraceCommand::CHG_BIT_1:
VL_TRACE_THREAD_DEBUG("Command CHG_BIT_1 " << top);
chgBitImpl(oldp, 1);
continue;
case VerilatedTraceCommand::CHG_CDATA:
VL_TRACE_THREAD_DEBUG("Command CHG_CDATA " << top);
// Bits stored in bottom byte of command
chgCDataImpl(oldp, *readp, top);
readp += 1;
continue;
case VerilatedTraceCommand::CHG_SDATA:
VL_TRACE_THREAD_DEBUG("Command CHG_SDATA " << top);
// Bits stored in bottom byte of command
chgSDataImpl(oldp, *readp, top);
readp += 1;
continue;
case VerilatedTraceCommand::CHG_IDATA:
VL_TRACE_THREAD_DEBUG("Command CHG_IDATA " << top);
// Bits stored in bottom byte of command
chgIDataImpl(oldp, *readp, top);
readp += 1;
continue;
case VerilatedTraceCommand::CHG_QDATA:
VL_TRACE_THREAD_DEBUG("Command CHG_QDATA " << top);
// Bits stored in bottom byte of command
chgQDataImpl(oldp, *reinterpret_cast<const QData*>(readp), top);
readp += 2;
continue;
case VerilatedTraceCommand::CHG_WDATA:
VL_TRACE_THREAD_DEBUG("Command CHG_WDATA " << top);
chgWDataImpl(oldp, readp, top);
readp += VL_WORDS_I(top);
continue;
case VerilatedTraceCommand::CHG_DOUBLE:
VL_TRACE_THREAD_DEBUG("Command CHG_DOUBLE " << top);
chgDoubleImpl(oldp, *reinterpret_cast<const double*>(readp));
readp += 2;
continue;
//===
// Rare commands
case VerilatedTraceCommand::TIME_CHANGE:
VL_TRACE_THREAD_DEBUG("Command TIME_CHANGE " << top);
readp -= 1; // No code in this command, undo increment
emitTimeChange(*reinterpret_cast<const vluint64_t*>(readp));
readp += 2;
continue;
//===
// Commands ending this buffer
case VerilatedTraceCommand::END: VL_TRACE_THREAD_DEBUG("Command END"); break;
case VerilatedTraceCommand::SHUTDOWN:
VL_TRACE_THREAD_DEBUG("Command SHUTDOWN");
shutdown = true;
break;
//===
// Unknown command
default: { // LCOV_EXCL_START
VL_TRACE_THREAD_DEBUG("Command UNKNOWN");
VL_PRINTF_MT("Trace command: 0x%08x\n", cmd);
VL_FATAL_MT(__FILE__, __LINE__, "", "Unknown trace command");
break;
} // LCOV_EXCL_STOP
}
// The above switch will execute 'continue' when necessary,
// so if we ever reach here, we are done with the buffer.
break;
}
VL_TRACE_THREAD_DEBUG("Returning buffer");
// Return buffer
m_buffersFromWorker.put(bufferp);
} while (VL_LIKELY(!shutdown));
}
template <> void VerilatedTrace<VL_DERIVED_T>::shutdownWorker() {
// If the worker thread is not running, done..
if (!m_workerThread) return;
// Hand an buffer with a shutdown command to the worker thread
vluint32_t* const bufferp = getTraceBuffer();
bufferp[0] = VerilatedTraceCommand::SHUTDOWN;
m_buffersToWorker.put(bufferp);
// Wait for it to return
waitForBuffer(bufferp);
// Join the thread and delete it
m_workerThread->join();
m_workerThread.reset(nullptr);
}
#endif
//=============================================================================
// Life cycle
template <> void VerilatedTrace<VL_DERIVED_T>::close() {
#ifdef VL_TRACE_THREADED
shutdownWorker();
while (m_numTraceBuffers) {
delete[] m_buffersFromWorker.get();
m_numTraceBuffers--;
}
#endif
}
template <> void VerilatedTrace<VL_DERIVED_T>::flush() {
#ifdef VL_TRACE_THREADED
// Hand an empty buffer to the worker thread
vluint32_t* const bufferp = getTraceBuffer();
*bufferp = VerilatedTraceCommand::END;
m_buffersToWorker.put(bufferp);
// Wait for it to be returned. As the processing is in-order,
// this ensures all previous buffers have been processed.
waitForBuffer(bufferp);
#endif
}
//=============================================================================
// Callbacks to run on global events
template <> void VerilatedTrace<VL_DERIVED_T>::onFlush(void* selfp) {
// Note this calls 'flush' on the derived class
reinterpret_cast<VL_DERIVED_T*>(selfp)->flush();
}
template <> void VerilatedTrace<VL_DERIVED_T>::onExit(void* selfp) {
// Note this calls 'close' on the derived class
reinterpret_cast<VL_DERIVED_T*>(selfp)->close();
}
//=============================================================================
// VerilatedTrace
template <>
VerilatedTrace<VL_DERIVED_T>::VerilatedTrace()
: m_sigs_oldvalp(NULL)
, m_timeLastDump(0)
, m_fullDump(true)
, m_nextCode(0)
, m_numSignals(0)
, m_maxBits(0)
, m_scopeEscape('.')
, m_timeRes(1e-9)
, m_timeUnit(1e-9)
#ifdef VL_TRACE_THREADED
, m_numTraceBuffers(0)
#endif
{
set_time_unit(Verilated::timeunitString());
set_time_resolution(Verilated::timeprecisionString());
}
template <> VerilatedTrace<VL_DERIVED_T>::~VerilatedTrace() {
if (m_sigs_oldvalp) VL_DO_CLEAR(delete[] m_sigs_oldvalp, m_sigs_oldvalp = NULL);
Verilated::removeFlushCb(VerilatedTrace<VL_DERIVED_T>::onFlush, this);
Verilated::removeExitCb(VerilatedTrace<VL_DERIVED_T>::onExit, this);
#ifdef VL_TRACE_THREADED
close();
#endif
}
//=========================================================================
// Internals available to format specific implementations
template <> void VerilatedTrace<VL_DERIVED_T>::traceInit() VL_MT_UNSAFE {
m_assertOne.check();
// Note: It is possible to re-open a trace file (VCD in particular),
// so we must reset the next code here, but it must have the same number
// of codes on re-open
const vluint32_t expectedCodes = nextCode();
m_nextCode = 1;
m_numSignals = 0;
m_maxBits = 0;
// Call all initialize callbacks, which will:
// - Call decl* for each signal
// - Store the base code
for (vluint32_t i = 0; i < m_initCbs.size(); ++i) {
const CallbackRecord& cbr = m_initCbs[i];
cbr.m_initCb(cbr.m_userp, self(), nextCode());
}
if (expectedCodes && nextCode() != expectedCodes) {
VL_FATAL_MT(__FILE__, __LINE__, "",
"Reopening trace file with different number of signals");
}
// Now that we know the number of codes, allocate space for the buffer
// holding previous signal values.
if (!m_sigs_oldvalp) m_sigs_oldvalp = new vluint32_t[nextCode()];
// Set callback so flush/abort will flush this file
Verilated::addFlushCb(VerilatedTrace<VL_DERIVED_T>::onFlush, this);
Verilated::addExitCb(VerilatedTrace<VL_DERIVED_T>::onExit, this);
#ifdef VL_TRACE_THREADED
// Compute trace buffer size. we need to be able to store a new value for
// each signal, which is 'nextCode()' entries after the init callbacks
// above have been run, plus up to 2 more words of metadata per signal,
// plus fixed overhead of 1 for a termination flag and 3 for a time stamp
// update.
m_traceBufferSize = nextCode() + numSignals() * 2 + 4;
// Start the worker thread
m_workerThread.reset(new std::thread(&VerilatedTrace<VL_DERIVED_T>::workerThreadMain, this));
#endif
}
template <>
void VerilatedTrace<VL_DERIVED_T>::declCode(vluint32_t code, vluint32_t bits, bool tri) {
if (!code) {
VL_FATAL_MT(__FILE__, __LINE__, "", "Internal: internal trace problem, code 0 is illegal");
}
// Note: The tri-state flag is not used by Verilator, but is here for
// compatibility with some foreign code.
int codesNeeded = VL_WORDS_I(bits);
if (tri) codesNeeded *= 2;
m_nextCode = std::max(m_nextCode, code + codesNeeded);
++m_numSignals;
m_maxBits = std::max(m_maxBits, bits);
}
//=========================================================================
// Internals available to format specific implementations
template <> std::string VerilatedTrace<VL_DERIVED_T>::timeResStr() const {
return doubleToTimescale(m_timeRes);
}
template <> std::string VerilatedTrace<VL_DERIVED_T>::timeUnitStr() const {
return doubleToTimescale(m_timeUnit);
}
//=========================================================================
// External interface to client code
template <> void VerilatedTrace<VL_DERIVED_T>::set_time_unit(const char* unitp) {
m_timeUnit = timescaleToDouble(unitp);
}
template <> void VerilatedTrace<VL_DERIVED_T>::set_time_unit(const std::string& unit) {
set_time_unit(unit.c_str());
}
template <> void VerilatedTrace<VL_DERIVED_T>::set_time_resolution(const char* unitp) {
m_timeRes = timescaleToDouble(unitp);
}
template <> void VerilatedTrace<VL_DERIVED_T>::set_time_resolution(const std::string& unit) {
set_time_resolution(unit.c_str());
}
template <> void VerilatedTrace<VL_DERIVED_T>::dump(vluint64_t timeui) {
m_assertOne.check();
if (VL_UNCOVERABLE(m_timeLastDump && timeui <= m_timeLastDump)) { // LCOV_EXCL_START
VL_PRINTF_MT("%%Warning: previous dump at t=%" VL_PRI64 "u, requesting t=%" VL_PRI64
"u, dump call ignored\n",
m_timeLastDump, timeui);
return;
} // LCOV_EXCL_STOP
m_timeLastDump = timeui;
Verilated::quiesce();
// Call hook for format specific behaviour
if (VL_UNLIKELY(m_fullDump)) {
if (!preFullDump()) return;
} else {
if (!preChangeDump()) return;
}
#ifdef VL_TRACE_THREADED
// Currently only incremental dumps run on the worker thread
vluint32_t* bufferp = nullptr;
if (VL_LIKELY(!m_fullDump)) {
// Get the trace buffer we are about to fill
bufferp = getTraceBuffer();
m_traceBufferWritep = bufferp;
m_traceBufferEndp = bufferp + m_traceBufferSize;
// Tell worker to update time point
m_traceBufferWritep[0] = VerilatedTraceCommand::TIME_CHANGE;
*reinterpret_cast<vluint64_t*>(m_traceBufferWritep + 1) = timeui;
m_traceBufferWritep += 3;
} else {
// Update time point
flush();
emitTimeChange(timeui);
}
#else
// Update time point
emitTimeChange(timeui);
#endif
// Run the callbacks
if (VL_UNLIKELY(m_fullDump)) {
m_fullDump = false; // No more need for next dump to be full
for (vluint32_t i = 0; i < m_fullCbs.size(); ++i) {
const CallbackRecord& cbr = m_fullCbs[i];
cbr.m_dumpCb(cbr.m_userp, self());
}
} else {
for (vluint32_t i = 0; i < m_chgCbs.size(); ++i) {
const CallbackRecord& cbr = m_chgCbs[i];
cbr.m_dumpCb(cbr.m_userp, self());
}
}
for (vluint32_t i = 0; i < m_cleanupCbs.size(); ++i) {
const CallbackRecord& cbr = m_cleanupCbs[i];
cbr.m_dumpCb(cbr.m_userp, self());
}
#ifdef VL_TRACE_THREADED
if (VL_LIKELY(bufferp)) {
// Mark end of the trace buffer we just filled
*m_traceBufferWritep++ = VerilatedTraceCommand::END;
// Assert no buffer overflow
assert(m_traceBufferWritep - bufferp <= m_traceBufferSize);
// Pass it to the worker thread
m_buffersToWorker.put(bufferp);
}
#endif
}
//=============================================================================
// Non-hot path internal interface to Verilator generated code
template <>
void VerilatedTrace<VL_DERIVED_T>::addCallbackRecord(std::vector<CallbackRecord>& cbVec,
CallbackRecord& cbRec) {
m_assertOne.check();
if (VL_UNCOVERABLE(timeLastDump() != 0)) { // LCOV_EXCL_START
std::string msg = (std::string("Internal: ") + __FILE__ + "::" + __FUNCTION__
+ " called with already open file");
VL_FATAL_MT(__FILE__, __LINE__, "", msg.c_str());
} // LCOV_EXCL_STOP
cbVec.push_back(cbRec);
}
template <> void VerilatedTrace<VL_DERIVED_T>::addInitCb(initCb_t cb, void* userp) {
CallbackRecord cbr(cb, userp);
addCallbackRecord(m_initCbs, cbr);
}
template <> void VerilatedTrace<VL_DERIVED_T>::addFullCb(dumpCb_t cb, void* userp) {
CallbackRecord cbr(cb, userp);
addCallbackRecord(m_fullCbs, cbr);
}
template <> void VerilatedTrace<VL_DERIVED_T>::addChgCb(dumpCb_t cb, void* userp) {
CallbackRecord cbr(cb, userp);
addCallbackRecord(m_chgCbs, cbr);
}
template <> void VerilatedTrace<VL_DERIVED_T>::addCleanupCb(dumpCb_t cb, void* userp) {
CallbackRecord cbr(cb, userp);
addCallbackRecord(m_cleanupCbs, cbr);
}
//=========================================================================
// Hot path internal interface to Verilator generated code
// These functions must write the new value back into the old value store,
// and subsequently call the format specific emit* implementations. Note
// that this file must be included in the format specific implementation, so
// the emit* functions can be inlined for performance.
template <> void VerilatedTrace<VL_DERIVED_T>::fullBit(vluint32_t* oldp, CData newval) {
*oldp = newval;
self()->emitBit(oldp - m_sigs_oldvalp, newval);
}
template <>
void VerilatedTrace<VL_DERIVED_T>::fullCData(vluint32_t* oldp, CData newval, int bits) {
*oldp = newval;
self()->emitCData(oldp - m_sigs_oldvalp, newval, bits);
}
template <>
void VerilatedTrace<VL_DERIVED_T>::fullSData(vluint32_t* oldp, SData newval, int bits) {
*oldp = newval;
self()->emitSData(oldp - m_sigs_oldvalp, newval, bits);
}
template <>
void VerilatedTrace<VL_DERIVED_T>::fullIData(vluint32_t* oldp, IData newval, int bits) {
*oldp = newval;
self()->emitIData(oldp - m_sigs_oldvalp, newval, bits);
}
template <>
void VerilatedTrace<VL_DERIVED_T>::fullQData(vluint32_t* oldp, QData newval, int bits) {
*reinterpret_cast<QData*>(oldp) = newval;
self()->emitQData(oldp - m_sigs_oldvalp, newval, bits);
}
template <>
void VerilatedTrace<VL_DERIVED_T>::fullWData(vluint32_t* oldp, const WData* newvalp, int bits) {
for (int i = 0; i < VL_WORDS_I(bits); ++i) oldp[i] = newvalp[i];
self()->emitWData(oldp - m_sigs_oldvalp, newvalp, bits);
}
template <> void VerilatedTrace<VL_DERIVED_T>::fullDouble(vluint32_t* oldp, double newval) {
// cppcheck-suppress invalidPointerCast
*reinterpret_cast<double*>(oldp) = newval;
self()->emitDouble(oldp - m_sigs_oldvalp, newval);
}
//=========================================================================
// Primitives converting binary values to strings...
// All of these take a destination pointer where the string will be emitted,
// and a value to convert. There are a couple of variants for efficiency.
inline static void cvtCDataToStr(char* dstp, CData value) {
#ifdef VL_HAVE_SSE2
// Similar to cvtSDataToStr but only the bottom 8 byte lanes are used
const __m128i a = _mm_cvtsi32_si128(value);
const __m128i b = _mm_unpacklo_epi8(a, a);
const __m128i c = _mm_shufflelo_epi16(b, 0);
const __m128i m = _mm_set1_epi64x(0x0102040810204080);
const __m128i d = _mm_cmpeq_epi8(_mm_and_si128(c, m), m);
const __m128i result = _mm_sub_epi8(_mm_set1_epi8('0'), d);
_mm_storel_epi64(reinterpret_cast<__m128i*>(dstp), result);
#else
dstp[0] = '0' | static_cast<char>((value >> 7) & 1);
dstp[1] = '0' | static_cast<char>((value >> 6) & 1);
dstp[2] = '0' | static_cast<char>((value >> 5) & 1);
dstp[3] = '0' | static_cast<char>((value >> 4) & 1);
dstp[4] = '0' | static_cast<char>((value >> 3) & 1);
dstp[5] = '0' | static_cast<char>((value >> 2) & 1);
dstp[6] = '0' | static_cast<char>((value >> 1) & 1);
dstp[7] = '0' | static_cast<char>(value & 1);
#endif
}
inline static void cvtSDataToStr(char* dstp, SData value) {
#ifdef VL_HAVE_SSE2
// We want each bit in the 16-bit input value to end up in a byte lane
// within the 128-bit XMM register. Note that x86 is little-endian and we
// want the MSB of the input at the low address, so we will bit-reverse
// at the same time.
// Put value in bottom of 128-bit register a[15:0] = value
const __m128i a = _mm_cvtsi32_si128(value);
// Interleave bytes with themselves
// b[15: 0] = {2{a[ 7:0]}} == {2{value[ 7:0]}}
// b[31:16] = {2{a[15:8]}} == {2{value[15:8]}}
const __m128i b = _mm_unpacklo_epi8(a, a);
// Shuffle bottom 64 bits, note swapping high bytes with low bytes
// c[31: 0] = {2{b[31:16]}} == {4{value[15:8}}
// c[63:32] = {2{b[15: 0]}} == {4{value[ 7:0}}
const __m128i c = _mm_shufflelo_epi16(b, 0x05);
// Shuffle whole register
// d[ 63: 0] = {2{c[31: 0]}} == {8{value[15:8}}
// d[126:54] = {2{c[63:32]}} == {8{value[ 7:0}}
const __m128i d = _mm_shuffle_epi32(c, 0x50);
// Test each bit within the bytes, this sets each byte lane to 0
// if the bit for that lane is 0 and to 0xff if the bit is 1.
const __m128i m = _mm_set1_epi64x(0x0102040810204080);
const __m128i e = _mm_cmpeq_epi8(_mm_and_si128(d, m), m);
// Convert to ASCII by subtracting the masks from ASCII '0':
// '0' - 0 is '0', '0' - -1 is '1'
const __m128i result = _mm_sub_epi8(_mm_set1_epi8('0'), e);
// Store the 16 characters to the un-aligned buffer
_mm_storeu_si128(reinterpret_cast<__m128i*>(dstp), result);
#else
cvtCDataToStr(dstp, value >> 8);
cvtCDataToStr(dstp + 8, value);
#endif
}
inline static void cvtIDataToStr(char* dstp, IData value) {
#ifdef VL_HAVE_AVX2
// Similar to cvtSDataToStr but the bottom 16-bits are processed in the
// top half of the YMM registerss
const __m256i a = _mm256_insert_epi32(_mm256_undefined_si256(), value, 0);
const __m256i b = _mm256_permute4x64_epi64(a, 0);
const __m256i s = _mm256_set_epi8(0, 0, 0, 0, 0, 0, 0, 0, 1, 1, 1, 1, 1, 1, 1, 1, 2, 2, 2, 2,
2, 2, 2, 2, 3, 3, 3, 3, 3, 3, 3, 3);
const __m256i c = _mm256_shuffle_epi8(b, s);
const __m256i m = _mm256_set1_epi64x(0x0102040810204080);
const __m256i d = _mm256_cmpeq_epi8(_mm256_and_si256(c, m), m);
const __m256i result = _mm256_sub_epi8(_mm256_set1_epi8('0'), d);
_mm256_storeu_si256(reinterpret_cast<__m256i*>(dstp), result);
#else
cvtSDataToStr(dstp, value >> 16);
cvtSDataToStr(dstp + 16, value);
#endif
}
inline static void cvtQDataToStr(char* dstp, QData value) {
cvtIDataToStr(dstp, value >> 32);
cvtIDataToStr(dstp + 32, value);
}
#define cvtEDataToStr cvtIDataToStr
|