File: verilated_unordered_set_map.h

package info (click to toggle)
verilator 4.038-1
  • links: PTS, VCS
  • area: main
  • in suites: bullseye
  • size: 29,596 kB
  • sloc: cpp: 90,585; perl: 15,101; ansic: 8,573; yacc: 3,626; lex: 1,616; makefile: 1,101; sh: 175; python: 145
file content (501 lines) | stat: -rw-r--r-- 17,585 bytes parent folder | download
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
// -*- mode: C++; c-file-style: "cc-mode" -*-
//*************************************************************************
// DESCRIPTION: Verilator: pre-C++11 replacements for std::unordered_set
//                         and std::unordered_map.
//
// Code available from: https://verilator.org
//
//*************************************************************************
//
// Copyright 2003-2020 by Wilson Snyder. This program is free software; you
// can redistribute it and/or modify it under the terms of either the GNU
// Lesser General Public License Version 3 or the Perl Artistic License
// Version 2.0.
// SPDX-License-Identifier: LGPL-3.0-only OR Artistic-2.0
//
//*************************************************************************

//*************************************************************************
// This file has clones of the std::unordered_set and std::unordered_map
// hash table types. They are here so that Verilator can use hash tables
// in pre-C++11 compilers, and the same client code can link against the
// std:: types when they are available.
//
// The implementations in this file do not implement the complete APIs
// of the std:: types. Nor are they correct in every detail,
// notably, the const_iterators do not enforce constness. We can extend
// these implementations to cover more of the std API as needed.
//
// TODO: In the future, when Verilator requires C++11 to compile,
//       remove this entire file and switch to the std:: types.
//
//*************************************************************************

#ifndef _VERILATED_UNORDERED_SET_MAP_H_
#define _VERILATED_UNORDERED_SET_MAP_H_

#include "verilatedos.h"

#include <list>
#include <stdexcept>
#include <string>

// Abstract 'vl_hash' and 'vl_equal_to' templates.
template <typename T> struct vl_hash { size_t operator()(const T& k) const; };

template <typename T> struct vl_equal_to { bool operator()(const T& a, const T& b) const; };

// Specializations of 'vl_hash' and 'vl_equal_to'.
inline size_t vl_hash_bytes(const void* vbufp, size_t nbytes) {
    const vluint8_t* bufp = static_cast<const vluint8_t*>(vbufp);
    size_t hash = 0;
    for (size_t i = 0; i < nbytes; i++) {
        hash = bufp[i] + 31U * hash;  // the K&R classic!
    }
    return hash;
}

template <> inline size_t vl_hash<int>::operator()(const int& k) const { return k; }

template <> inline bool vl_equal_to<int>::operator()(const int& a, const int& b) const {
    return a == b;
}

template <> inline size_t vl_hash<unsigned int>::operator()(const unsigned int& k) const {
    return k;
}

template <>
inline bool vl_equal_to<unsigned int>::operator()(const unsigned int& a,
                                                  const unsigned int& b) const {
    return a == b;
}

template <> inline size_t vl_hash<std::string>::operator()(const std::string& k) const {
    return vl_hash_bytes(k.data(), k.size());
}

template <>
inline bool vl_equal_to<std::string>::operator()(const std::string& a,
                                                 const std::string& b) const {
    // Don't scan the strings if the sizes are different.
    if (a.size() != b.size()) return false;
    return (0 == a.compare(b));  // Must scan.
}

template <typename T> struct vl_hash<T*> {
    size_t operator()(T* kp) const {
        return ((sizeof(size_t) == sizeof(kp)) ? reinterpret_cast<size_t>(kp)
                                               : vl_hash_bytes(&kp, sizeof(kp)));
    }
};

template <typename T> struct vl_equal_to<T*> {
    bool operator()(T* ap, T* bp) const { return ap == bp; }
};

//===================================================================
//
/// Functional clone of the std::unordered_set hash table.
template <class T_Key, class T_Hash = vl_hash<T_Key>, class T_Equal = vl_equal_to<T_Key> >
class vl_unordered_set {
public:
    // TYPES
    typedef std::list<T_Key> Bucket;
    enum RehashType { GROW, SHRINK };

    template <class KK, class VV, class HH, class EQ> friend class vl_unordered_map;

    class iterator {
    protected:
        // MEMBERS
        size_t m_bucketIdx;  //  Bucket this iterator points into
        typename Bucket::iterator m_bit;  // Bucket-local iterator
        const vl_unordered_set* m_setp;  // The containing set

    public:
        // CONSTRUCTORS
        iterator(size_t bucketIdx, typename Bucket::iterator bit, const vl_unordered_set* setp)
            : m_bucketIdx(bucketIdx)
            , m_bit(bit)
            , m_setp(setp) {}

        // METHODS
        const T_Key& operator*() const { return *m_bit; }
        // This should really be 'const T_Key*' type for unordered_set,
        // however this iterator is shared with unordered_map whose
        // operator-> returns a non-const ValueType*, so keep this
        // non-const to avoid having to define a whole separate iterator
        // for unordered_map.
        T_Key* operator->() const { return &(*m_bit); }
        bool operator==(const iterator& other) const {
            return ((m_bucketIdx == other.m_bucketIdx) && (m_bit == other.m_bit));
        }
        bool operator!=(const iterator& other) const { return (!this->operator==(other)); }
        void advanceUntilValid() {
            while (true) {
                if (m_bit != m_setp->m_bucketsp[m_bucketIdx].end()) {
                    // Valid iterator in this bucket; we're done.
                    return;
                }

                // Try the next bucket?
                m_bucketIdx++;
                if (m_bucketIdx == m_setp->numBuckets()) {
                    // Ran past the end of buckets, set to end().
                    *this = m_setp->end();
                    return;
                }
                m_bit = m_setp->m_bucketsp[m_bucketIdx].begin();
            }
        }
        void operator++() {
            ++m_bit;
            advanceUntilValid();
        }

        typename Bucket::iterator bit() const { return m_bit; }
    };

    // TODO: there's no real const enforcement on the 'const_iterator'.
    typedef iterator const_iterator;

private:
    // MEMBERS
    size_t m_numElements;  //  Number of entries present.
    size_t m_log2Buckets;  //  Log-base-2 of the number of buckets.
    mutable Bucket* m_bucketsp;  //  Hash table buckets. May be NULL;
    //                          //   we'll allocate it on the fly when
    //                          //   the first entries are created.
    Bucket m_emptyBucket;  //  A fake bucket, used to construct end().
    T_Hash m_hash;  //  Hash function provider.
    T_Equal m_equal;  //  Equal-to function provider.

public:
    // CONSTRUCTORS
    vl_unordered_set()
        : m_numElements(0)
        , m_log2Buckets(initLog2Buckets())
        , m_bucketsp(NULL)
        , m_hash()
        , m_equal() {}

    vl_unordered_set(const vl_unordered_set& other)
        : m_numElements(other.m_numElements)
        , m_log2Buckets(other.m_log2Buckets)
        , m_bucketsp(NULL)
        , m_hash()
        , m_equal() {
        if (other.m_bucketsp) {
            m_bucketsp = new Bucket[numBuckets()];
            for (size_t i = 0; i < numBuckets(); i++) m_bucketsp[i] = other.m_bucketsp[i];
        }
    }
    ~vl_unordered_set() { VL_DO_DANGLING(delete[] m_bucketsp, m_bucketsp); }

    vl_unordered_set& operator=(const vl_unordered_set& other) {
        if (this != &other) {
            clear();
            delete[] m_bucketsp;
            m_numElements = other.m_numElements;
            m_log2Buckets = other.m_log2Buckets;
            if (other.m_bucketsp) {
                m_bucketsp = new Bucket[numBuckets()];
                for (size_t i = 0; i < numBuckets(); i++) m_bucketsp[i] = other.m_bucketsp[i];
            } else {
                m_bucketsp = NULL;
            }
        }
        return *this;
    }

    // METHODS
    static size_t initLog2Buckets() { return 4; }

    iterator begin() {
        if (m_numElements) {
            initBuckets();
            iterator result = iterator(0, m_bucketsp[0].begin(), this);
            result.advanceUntilValid();
            return result;
        }
        return end();
    }
    const_iterator begin() const {
        if (m_numElements) {
            initBuckets();
            const_iterator result = iterator(0, m_bucketsp[0].begin(), this);
            result.advanceUntilValid();
            return result;
        }
        return end();
    }
    const_iterator end() const {
        return iterator(0xFFFFFFFFFFFFFFFFULL, const_cast<Bucket&>(m_emptyBucket).begin(), this);
    }

    bool empty() const { return m_numElements == 0; }

    size_t size() const { return m_numElements; }

    size_t count(const T_Key& key) const { return (find(key) == end()) ? 0 : 1; }

    size_t hashToBucket(size_t hashVal) const { return hashToBucket(hashVal, m_log2Buckets); }
    static size_t hashToBucket(size_t hashVal, unsigned log2Buckets) {
        // Fibonacci hashing, see
        // https://probablydance.com/2018/06/16/fibonacci-hashing-the-optimization
        // -that-the-world-forgot-or-a-better-alternative-to-integer-modulo/
        //
        // * The magic numbers below are UINT_MAX/phi where phi is the
        //   golden ratio number (1.618...)  for either 64- or 32-bit
        //   values of UINT_MAX.
        //
        // * Fibonacci hashing mixes the result of the client's hash
        //   function further. This permits the use of very fast client
        //   hash funcs (like just returning the int or pointer value as
        //   is!) and tolerates crappy client hash functions pretty well.
        size_t mult = hashVal * ((sizeof(size_t) == 8) ? 11400714819323198485ULL : 2654435769lu);
        size_t result = (mult >> (((sizeof(size_t) == 8) ? 64 : 32) - log2Buckets));
        return result;
    }

    iterator find_internal(const T_Key& key, size_t& bucketIdxOut) {
        size_t hash = m_hash.operator()(key);
        bucketIdxOut = hashToBucket(hash);
        initBuckets();
        Bucket* bucketp = &m_bucketsp[bucketIdxOut];

        for (typename Bucket::iterator it = bucketp->begin(); it != bucketp->end(); ++it) {
            if (m_equal.operator()(*it, key)) return iterator(bucketIdxOut, it, this);
        }
        return end();
    }

    const_iterator find(const T_Key& key) const {
        size_t bucketIdx;
        return const_cast<vl_unordered_set*>(this)->find_internal(key, bucketIdx);
    }

    iterator find(const T_Key& key) {
        size_t bucketIdx;
        return find_internal(key, bucketIdx);
    }

    std::pair<iterator, bool> insert(const T_Key& val) {
        size_t bucketIdx;
        iterator existIt = find_internal(val, bucketIdx);
        if (existIt != end()) {
            // Collision with existing element.
            //
            // An element may be inserted only if it is not
            // equal to an existing element. So fail.
            return std::pair<iterator, bool>(end(), false);
        }

        // No collision, so insert it.
        m_numElements++;

        m_bucketsp[bucketIdx].push_front(val);

        // Compute result iterator. This pointer will be valid
        // if we don't rehash:
        iterator result_it(bucketIdx, m_bucketsp[bucketIdx].begin(), this);

        if (needToRehash(GROW)) {
            rehash(GROW);
            // ... since we rehashed, do a lookup to get the result iterator.
            result_it = find(val);
        }

        return std::pair<iterator, bool>(result_it, true);
    }

    iterator erase(iterator it) {
        iterator next_it = it;
        ++next_it;
        erase(*it);
        return next_it;
    }

    size_t erase(const T_Key& key) {
        size_t bucketIdx;
        iterator it = find_internal(key, bucketIdx);
        if (it != end()) {
            m_bucketsp[bucketIdx].erase(it.bit());
            m_numElements--;
            // Rehashing to handle a shrinking data set is important
            // for the Scoreboard in V3Partition, which begins tracking
            // a huge number of vertices and then tracks a successively
            // smaller number over time.
            if (needToRehash(SHRINK)) rehash(SHRINK);
            return 1;
        }
        return 0;
    }

    void clear() {
        if (m_bucketsp) {
            delete[] m_bucketsp;
            m_bucketsp = NULL;
        }
        m_numElements = 0;
        m_log2Buckets = initLog2Buckets();
    }

private:
    size_t numBuckets() const { return (1ULL << m_log2Buckets); }

    Bucket* getBucket(size_t idx) {
        initBuckets();
        return &m_bucketsp[idx];
    }

    void initBuckets() const {
        if (!m_bucketsp) m_bucketsp = new Bucket[numBuckets()];
    }

    bool needToRehash(RehashType rt) const {
        if (rt == GROW) {
            return ((4 * numBuckets()) < m_numElements);
        } else {
            return (numBuckets() > (4 * m_numElements));
        }
    }

    void rehash(RehashType rt) {
        size_t new_log2Buckets;
        if (rt == GROW) {
            new_log2Buckets = m_log2Buckets + 2;
        } else {
            if (m_log2Buckets <= 4) {
                // On shrink, saturate m_log2Buckets at its
                // initial size of 2^4 == 16 buckets. Don't risk
                // underflowing!
                return;
            }
            new_log2Buckets = m_log2Buckets - 2;
        }

        size_t new_num_buckets = 1ULL << new_log2Buckets;
        Bucket* new_bucketsp = new Bucket[new_num_buckets];

        for (size_t i = 0; i < numBuckets(); i++) {
            while (!m_bucketsp[i].empty()) {
                typename Bucket::iterator bit = m_bucketsp[i].begin();
                size_t hash = m_hash.operator()(*bit);
                size_t new_idx = hashToBucket(hash, new_log2Buckets);
                // Avoid mallocing one list elem and freeing another;
                // splice just moves it over.
                new_bucketsp[new_idx].splice(new_bucketsp[new_idx].begin(), m_bucketsp[i], bit);
            }
        }

        delete[] m_bucketsp;
        m_bucketsp = new_bucketsp;
        m_log2Buckets = new_log2Buckets;
    }
};

//===================================================================
//
/// Functional clone of the std::unordered_map hash table.
template <class T_Key, class T_Value, class T_Hash = vl_hash<T_Key>,
          class T_Equal = vl_equal_to<T_Key> >
class vl_unordered_map {
private:
    // TYPES
    typedef std::pair<T_Key, T_Value> KeyValPair;

    class KeyHash {
    private:
        T_Hash key_hash;

    public:
        KeyHash() {}
        size_t operator()(const KeyValPair& kv_pair) const {
            return key_hash.operator()(kv_pair.first);
        }
    };

    class KeyEqual {
    private:
        T_Equal key_eq;

    public:
        KeyEqual() {}
        bool operator()(const KeyValPair& kv_a, const KeyValPair& kv_b) const {
            return key_eq.operator()(kv_a.first, kv_b.first);
        }
    };

    // MEMBERS
    typedef vl_unordered_set<KeyValPair, KeyHash, KeyEqual> MapSet;
    MapSet m_set;  // Wrap this vl_unordered_set which holds all state.

public:
    // CONSTRUCTORS
    vl_unordered_map() {}
    ~vl_unordered_map() {}

    typedef typename MapSet::iterator iterator;
    typedef typename MapSet::const_iterator const_iterator;

    // METHODS
    iterator begin() { return m_set.begin(); }
    const_iterator begin() const { return m_set.begin(); }
    const_iterator end() const { return m_set.end(); }
    bool empty() const { return m_set.empty(); }
    iterator find(const T_Key& k) {
        // We can't assume that T_Value() is defined.
        // ie, this does not work:
        //    return m_set.find(std::make_pair(k, T_Value()));

        // So, do this instead:
        T_Hash mapHash;
        T_Equal mapEq;
        size_t hash = mapHash.operator()(k);
        size_t bucketIdxOut = m_set.hashToBucket(hash);
        typename MapSet::Bucket* bucketp = m_set.getBucket(bucketIdxOut);

        for (typename MapSet::Bucket::iterator it = bucketp->begin(); it != bucketp->end(); ++it) {
            if (mapEq.operator()(it->first, k)) return iterator(bucketIdxOut, it, &m_set);
        }
        return end();
    }
    const_iterator find(const T_Key& k) const {
        return const_cast<vl_unordered_map*>(this)->find(k);
    }
    std::pair<iterator, bool> insert(const KeyValPair& val) { return m_set.insert(val); }
    iterator erase(iterator it) { return m_set.erase(it); }
    size_t erase(const T_Key& k) {
        iterator it = find(k);
        if (it == end()) return 0;
        m_set.erase(it);
        return 1;
    }
    T_Value& operator[](const T_Key& k) {
        // Here we can assume T_Value() is defined, as
        // std::unordered_map::operator[] relies on it too.
        KeyValPair dummy = std::make_pair(k, T_Value());
        iterator it = m_set.find(dummy);
        if (it == m_set.end()) it = m_set.insert(dummy).first;
        // For the 'set', it's generally not safe to modify
        // the value after deref. For the 'map' though, we know
        // it's safe to modify the value field and we can allow it:
        return it->second;
    }
    T_Value& at(const T_Key& k) {
        iterator it = find(k);
        if (it == end()) { throw std::out_of_range("sorry"); }
        return it->second;
    }
    const T_Value& at(const T_Key& k) const {
        iterator it = find(k);
        if (it == end()) { throw std::out_of_range("sorry"); }
        return it->second;
    }
    void clear() { m_set.clear(); }
    size_t size() const { return m_set.size(); }
};

#endif