File: verilated_funcs.h

package info (click to toggle)
verilator 5.038-1
  • links: PTS, VCS
  • area: main
  • in suites: forky, sid
  • size: 162,552 kB
  • sloc: cpp: 139,204; python: 20,931; ansic: 10,222; yacc: 6,000; lex: 1,925; makefile: 1,260; sh: 494; perl: 282; fortran: 22
file content (2843 lines) | stat: -rw-r--r-- 124,273 bytes parent folder | download
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
525
526
527
528
529
530
531
532
533
534
535
536
537
538
539
540
541
542
543
544
545
546
547
548
549
550
551
552
553
554
555
556
557
558
559
560
561
562
563
564
565
566
567
568
569
570
571
572
573
574
575
576
577
578
579
580
581
582
583
584
585
586
587
588
589
590
591
592
593
594
595
596
597
598
599
600
601
602
603
604
605
606
607
608
609
610
611
612
613
614
615
616
617
618
619
620
621
622
623
624
625
626
627
628
629
630
631
632
633
634
635
636
637
638
639
640
641
642
643
644
645
646
647
648
649
650
651
652
653
654
655
656
657
658
659
660
661
662
663
664
665
666
667
668
669
670
671
672
673
674
675
676
677
678
679
680
681
682
683
684
685
686
687
688
689
690
691
692
693
694
695
696
697
698
699
700
701
702
703
704
705
706
707
708
709
710
711
712
713
714
715
716
717
718
719
720
721
722
723
724
725
726
727
728
729
730
731
732
733
734
735
736
737
738
739
740
741
742
743
744
745
746
747
748
749
750
751
752
753
754
755
756
757
758
759
760
761
762
763
764
765
766
767
768
769
770
771
772
773
774
775
776
777
778
779
780
781
782
783
784
785
786
787
788
789
790
791
792
793
794
795
796
797
798
799
800
801
802
803
804
805
806
807
808
809
810
811
812
813
814
815
816
817
818
819
820
821
822
823
824
825
826
827
828
829
830
831
832
833
834
835
836
837
838
839
840
841
842
843
844
845
846
847
848
849
850
851
852
853
854
855
856
857
858
859
860
861
862
863
864
865
866
867
868
869
870
871
872
873
874
875
876
877
878
879
880
881
882
883
884
885
886
887
888
889
890
891
892
893
894
895
896
897
898
899
900
901
902
903
904
905
906
907
908
909
910
911
912
913
914
915
916
917
918
919
920
921
922
923
924
925
926
927
928
929
930
931
932
933
934
935
936
937
938
939
940
941
942
943
944
945
946
947
948
949
950
951
952
953
954
955
956
957
958
959
960
961
962
963
964
965
966
967
968
969
970
971
972
973
974
975
976
977
978
979
980
981
982
983
984
985
986
987
988
989
990
991
992
993
994
995
996
997
998
999
1000
1001
1002
1003
1004
1005
1006
1007
1008
1009
1010
1011
1012
1013
1014
1015
1016
1017
1018
1019
1020
1021
1022
1023
1024
1025
1026
1027
1028
1029
1030
1031
1032
1033
1034
1035
1036
1037
1038
1039
1040
1041
1042
1043
1044
1045
1046
1047
1048
1049
1050
1051
1052
1053
1054
1055
1056
1057
1058
1059
1060
1061
1062
1063
1064
1065
1066
1067
1068
1069
1070
1071
1072
1073
1074
1075
1076
1077
1078
1079
1080
1081
1082
1083
1084
1085
1086
1087
1088
1089
1090
1091
1092
1093
1094
1095
1096
1097
1098
1099
1100
1101
1102
1103
1104
1105
1106
1107
1108
1109
1110
1111
1112
1113
1114
1115
1116
1117
1118
1119
1120
1121
1122
1123
1124
1125
1126
1127
1128
1129
1130
1131
1132
1133
1134
1135
1136
1137
1138
1139
1140
1141
1142
1143
1144
1145
1146
1147
1148
1149
1150
1151
1152
1153
1154
1155
1156
1157
1158
1159
1160
1161
1162
1163
1164
1165
1166
1167
1168
1169
1170
1171
1172
1173
1174
1175
1176
1177
1178
1179
1180
1181
1182
1183
1184
1185
1186
1187
1188
1189
1190
1191
1192
1193
1194
1195
1196
1197
1198
1199
1200
1201
1202
1203
1204
1205
1206
1207
1208
1209
1210
1211
1212
1213
1214
1215
1216
1217
1218
1219
1220
1221
1222
1223
1224
1225
1226
1227
1228
1229
1230
1231
1232
1233
1234
1235
1236
1237
1238
1239
1240
1241
1242
1243
1244
1245
1246
1247
1248
1249
1250
1251
1252
1253
1254
1255
1256
1257
1258
1259
1260
1261
1262
1263
1264
1265
1266
1267
1268
1269
1270
1271
1272
1273
1274
1275
1276
1277
1278
1279
1280
1281
1282
1283
1284
1285
1286
1287
1288
1289
1290
1291
1292
1293
1294
1295
1296
1297
1298
1299
1300
1301
1302
1303
1304
1305
1306
1307
1308
1309
1310
1311
1312
1313
1314
1315
1316
1317
1318
1319
1320
1321
1322
1323
1324
1325
1326
1327
1328
1329
1330
1331
1332
1333
1334
1335
1336
1337
1338
1339
1340
1341
1342
1343
1344
1345
1346
1347
1348
1349
1350
1351
1352
1353
1354
1355
1356
1357
1358
1359
1360
1361
1362
1363
1364
1365
1366
1367
1368
1369
1370
1371
1372
1373
1374
1375
1376
1377
1378
1379
1380
1381
1382
1383
1384
1385
1386
1387
1388
1389
1390
1391
1392
1393
1394
1395
1396
1397
1398
1399
1400
1401
1402
1403
1404
1405
1406
1407
1408
1409
1410
1411
1412
1413
1414
1415
1416
1417
1418
1419
1420
1421
1422
1423
1424
1425
1426
1427
1428
1429
1430
1431
1432
1433
1434
1435
1436
1437
1438
1439
1440
1441
1442
1443
1444
1445
1446
1447
1448
1449
1450
1451
1452
1453
1454
1455
1456
1457
1458
1459
1460
1461
1462
1463
1464
1465
1466
1467
1468
1469
1470
1471
1472
1473
1474
1475
1476
1477
1478
1479
1480
1481
1482
1483
1484
1485
1486
1487
1488
1489
1490
1491
1492
1493
1494
1495
1496
1497
1498
1499
1500
1501
1502
1503
1504
1505
1506
1507
1508
1509
1510
1511
1512
1513
1514
1515
1516
1517
1518
1519
1520
1521
1522
1523
1524
1525
1526
1527
1528
1529
1530
1531
1532
1533
1534
1535
1536
1537
1538
1539
1540
1541
1542
1543
1544
1545
1546
1547
1548
1549
1550
1551
1552
1553
1554
1555
1556
1557
1558
1559
1560
1561
1562
1563
1564
1565
1566
1567
1568
1569
1570
1571
1572
1573
1574
1575
1576
1577
1578
1579
1580
1581
1582
1583
1584
1585
1586
1587
1588
1589
1590
1591
1592
1593
1594
1595
1596
1597
1598
1599
1600
1601
1602
1603
1604
1605
1606
1607
1608
1609
1610
1611
1612
1613
1614
1615
1616
1617
1618
1619
1620
1621
1622
1623
1624
1625
1626
1627
1628
1629
1630
1631
1632
1633
1634
1635
1636
1637
1638
1639
1640
1641
1642
1643
1644
1645
1646
1647
1648
1649
1650
1651
1652
1653
1654
1655
1656
1657
1658
1659
1660
1661
1662
1663
1664
1665
1666
1667
1668
1669
1670
1671
1672
1673
1674
1675
1676
1677
1678
1679
1680
1681
1682
1683
1684
1685
1686
1687
1688
1689
1690
1691
1692
1693
1694
1695
1696
1697
1698
1699
1700
1701
1702
1703
1704
1705
1706
1707
1708
1709
1710
1711
1712
1713
1714
1715
1716
1717
1718
1719
1720
1721
1722
1723
1724
1725
1726
1727
1728
1729
1730
1731
1732
1733
1734
1735
1736
1737
1738
1739
1740
1741
1742
1743
1744
1745
1746
1747
1748
1749
1750
1751
1752
1753
1754
1755
1756
1757
1758
1759
1760
1761
1762
1763
1764
1765
1766
1767
1768
1769
1770
1771
1772
1773
1774
1775
1776
1777
1778
1779
1780
1781
1782
1783
1784
1785
1786
1787
1788
1789
1790
1791
1792
1793
1794
1795
1796
1797
1798
1799
1800
1801
1802
1803
1804
1805
1806
1807
1808
1809
1810
1811
1812
1813
1814
1815
1816
1817
1818
1819
1820
1821
1822
1823
1824
1825
1826
1827
1828
1829
1830
1831
1832
1833
1834
1835
1836
1837
1838
1839
1840
1841
1842
1843
1844
1845
1846
1847
1848
1849
1850
1851
1852
1853
1854
1855
1856
1857
1858
1859
1860
1861
1862
1863
1864
1865
1866
1867
1868
1869
1870
1871
1872
1873
1874
1875
1876
1877
1878
1879
1880
1881
1882
1883
1884
1885
1886
1887
1888
1889
1890
1891
1892
1893
1894
1895
1896
1897
1898
1899
1900
1901
1902
1903
1904
1905
1906
1907
1908
1909
1910
1911
1912
1913
1914
1915
1916
1917
1918
1919
1920
1921
1922
1923
1924
1925
1926
1927
1928
1929
1930
1931
1932
1933
1934
1935
1936
1937
1938
1939
1940
1941
1942
1943
1944
1945
1946
1947
1948
1949
1950
1951
1952
1953
1954
1955
1956
1957
1958
1959
1960
1961
1962
1963
1964
1965
1966
1967
1968
1969
1970
1971
1972
1973
1974
1975
1976
1977
1978
1979
1980
1981
1982
1983
1984
1985
1986
1987
1988
1989
1990
1991
1992
1993
1994
1995
1996
1997
1998
1999
2000
2001
2002
2003
2004
2005
2006
2007
2008
2009
2010
2011
2012
2013
2014
2015
2016
2017
2018
2019
2020
2021
2022
2023
2024
2025
2026
2027
2028
2029
2030
2031
2032
2033
2034
2035
2036
2037
2038
2039
2040
2041
2042
2043
2044
2045
2046
2047
2048
2049
2050
2051
2052
2053
2054
2055
2056
2057
2058
2059
2060
2061
2062
2063
2064
2065
2066
2067
2068
2069
2070
2071
2072
2073
2074
2075
2076
2077
2078
2079
2080
2081
2082
2083
2084
2085
2086
2087
2088
2089
2090
2091
2092
2093
2094
2095
2096
2097
2098
2099
2100
2101
2102
2103
2104
2105
2106
2107
2108
2109
2110
2111
2112
2113
2114
2115
2116
2117
2118
2119
2120
2121
2122
2123
2124
2125
2126
2127
2128
2129
2130
2131
2132
2133
2134
2135
2136
2137
2138
2139
2140
2141
2142
2143
2144
2145
2146
2147
2148
2149
2150
2151
2152
2153
2154
2155
2156
2157
2158
2159
2160
2161
2162
2163
2164
2165
2166
2167
2168
2169
2170
2171
2172
2173
2174
2175
2176
2177
2178
2179
2180
2181
2182
2183
2184
2185
2186
2187
2188
2189
2190
2191
2192
2193
2194
2195
2196
2197
2198
2199
2200
2201
2202
2203
2204
2205
2206
2207
2208
2209
2210
2211
2212
2213
2214
2215
2216
2217
2218
2219
2220
2221
2222
2223
2224
2225
2226
2227
2228
2229
2230
2231
2232
2233
2234
2235
2236
2237
2238
2239
2240
2241
2242
2243
2244
2245
2246
2247
2248
2249
2250
2251
2252
2253
2254
2255
2256
2257
2258
2259
2260
2261
2262
2263
2264
2265
2266
2267
2268
2269
2270
2271
2272
2273
2274
2275
2276
2277
2278
2279
2280
2281
2282
2283
2284
2285
2286
2287
2288
2289
2290
2291
2292
2293
2294
2295
2296
2297
2298
2299
2300
2301
2302
2303
2304
2305
2306
2307
2308
2309
2310
2311
2312
2313
2314
2315
2316
2317
2318
2319
2320
2321
2322
2323
2324
2325
2326
2327
2328
2329
2330
2331
2332
2333
2334
2335
2336
2337
2338
2339
2340
2341
2342
2343
2344
2345
2346
2347
2348
2349
2350
2351
2352
2353
2354
2355
2356
2357
2358
2359
2360
2361
2362
2363
2364
2365
2366
2367
2368
2369
2370
2371
2372
2373
2374
2375
2376
2377
2378
2379
2380
2381
2382
2383
2384
2385
2386
2387
2388
2389
2390
2391
2392
2393
2394
2395
2396
2397
2398
2399
2400
2401
2402
2403
2404
2405
2406
2407
2408
2409
2410
2411
2412
2413
2414
2415
2416
2417
2418
2419
2420
2421
2422
2423
2424
2425
2426
2427
2428
2429
2430
2431
2432
2433
2434
2435
2436
2437
2438
2439
2440
2441
2442
2443
2444
2445
2446
2447
2448
2449
2450
2451
2452
2453
2454
2455
2456
2457
2458
2459
2460
2461
2462
2463
2464
2465
2466
2467
2468
2469
2470
2471
2472
2473
2474
2475
2476
2477
2478
2479
2480
2481
2482
2483
2484
2485
2486
2487
2488
2489
2490
2491
2492
2493
2494
2495
2496
2497
2498
2499
2500
2501
2502
2503
2504
2505
2506
2507
2508
2509
2510
2511
2512
2513
2514
2515
2516
2517
2518
2519
2520
2521
2522
2523
2524
2525
2526
2527
2528
2529
2530
2531
2532
2533
2534
2535
2536
2537
2538
2539
2540
2541
2542
2543
2544
2545
2546
2547
2548
2549
2550
2551
2552
2553
2554
2555
2556
2557
2558
2559
2560
2561
2562
2563
2564
2565
2566
2567
2568
2569
2570
2571
2572
2573
2574
2575
2576
2577
2578
2579
2580
2581
2582
2583
2584
2585
2586
2587
2588
2589
2590
2591
2592
2593
2594
2595
2596
2597
2598
2599
2600
2601
2602
2603
2604
2605
2606
2607
2608
2609
2610
2611
2612
2613
2614
2615
2616
2617
2618
2619
2620
2621
2622
2623
2624
2625
2626
2627
2628
2629
2630
2631
2632
2633
2634
2635
2636
2637
2638
2639
2640
2641
2642
2643
2644
2645
2646
2647
2648
2649
2650
2651
2652
2653
2654
2655
2656
2657
2658
2659
2660
2661
2662
2663
2664
2665
2666
2667
2668
2669
2670
2671
2672
2673
2674
2675
2676
2677
2678
2679
2680
2681
2682
2683
2684
2685
2686
2687
2688
2689
2690
2691
2692
2693
2694
2695
2696
2697
2698
2699
2700
2701
2702
2703
2704
2705
2706
2707
2708
2709
2710
2711
2712
2713
2714
2715
2716
2717
2718
2719
2720
2721
2722
2723
2724
2725
2726
2727
2728
2729
2730
2731
2732
2733
2734
2735
2736
2737
2738
2739
2740
2741
2742
2743
2744
2745
2746
2747
2748
2749
2750
2751
2752
2753
2754
2755
2756
2757
2758
2759
2760
2761
2762
2763
2764
2765
2766
2767
2768
2769
2770
2771
2772
2773
2774
2775
2776
2777
2778
2779
2780
2781
2782
2783
2784
2785
2786
2787
2788
2789
2790
2791
2792
2793
2794
2795
2796
2797
2798
2799
2800
2801
2802
2803
2804
2805
2806
2807
2808
2809
2810
2811
2812
2813
2814
2815
2816
2817
2818
2819
2820
2821
2822
2823
2824
2825
2826
2827
2828
2829
2830
2831
2832
2833
2834
2835
2836
2837
2838
2839
2840
2841
2842
2843
// -*- mode: C++; c-file-style: "cc-mode" -*-
//*************************************************************************
//
// Code available from: https://verilator.org
//
// Copyright 2003-2025 by Wilson Snyder. This program is free software; you can
// redistribute it and/or modify it under the terms of either the GNU
// Lesser General Public License Version 3 or the Perl Artistic License
// Version 2.0.
// SPDX-License-Identifier: LGPL-3.0-only OR Artistic-2.0
//
//*************************************************************************
///
/// \file
/// \brief Verilated common functions
///
/// verilated.h should be included instead of this file.
///
/// Those macro/function/variable starting or ending in _ are internal,
/// however many of the other function/macros here are also internal.
///
//*************************************************************************

#ifndef VERILATOR_VERILATED_FUNCS_H_
#define VERILATOR_VERILATED_FUNCS_H_

#ifndef VERILATOR_VERILATED_H_INTERNAL_
#error "verilated_funcs.h should only be included by verilated.h"
#endif

#include <string>

//=========================================================================
// Extern functions -- User may override -- See verilated.cpp

/// Routine to call for $finish
/// User code may wish to replace this function, to do so, define VL_USER_FINISH.
/// This code does not have to be thread safe.
/// Verilator internal code must call VL_FINISH_MT instead, which eventually calls this.
extern void vl_finish(const char* filename, int linenum, const char* hier) VL_MT_UNSAFE;

/// Routine to call for $stop and non-fatal error
/// User code may wish to replace this function, to do so, define VL_USER_STOP.
/// This code does not have to be thread safe.
/// Verilator internal code must call VL_STOP_MT instead, which eventually calls this.
extern void vl_stop(const char* filename, int linenum, const char* hier) VL_MT_UNSAFE;

/// Routine to call for fatal messages
/// User code may wish to replace this function, to do so, define VL_USER_FATAL.
/// This code does not have to be thread safe.
/// Verilator internal code must call VL_FATAL_MT instead, which eventually calls this.
extern void vl_fatal(const char* filename, int linenum, const char* hier,
                     const char* msg) VL_MT_UNSAFE;

/// Routine to call for warning messages
/// User code may wish to replace this function, to do so, define VL_USER_WARN.
/// This code does not have to be thread safe.
/// Verilator internal code must call VL_WARN_MT instead, which eventually calls this.
extern void vl_warn(const char* filename, int linenum, const char* hier,
                    const char* msg) VL_MT_UNSAFE;

//=========================================================================
// Extern functions -- Slow path

/// Multithread safe wrapper for calls to $finish
extern void VL_FINISH_MT(const char* filename, int linenum, const char* hier) VL_MT_SAFE;
/// Multithread safe wrapper for calls to $stop
extern void VL_STOP_MT(const char* filename, int linenum, const char* hier,
                       bool maybe = true) VL_MT_SAFE;
/// Multithread safe wrapper to call for fatal messages
extern void VL_FATAL_MT(const char* filename, int linenum, const char* hier,
                        const char* msg) VL_MT_SAFE;
/// Multithread safe wrapper to call for warning messages
extern void VL_WARN_MT(const char* filename, int linenum, const char* hier,
                       const char* msg) VL_MT_SAFE;

// clang-format off
/// Print a string, multithread safe. Eventually VL_PRINTF will get called.
extern void VL_PRINTF_MT(const char* formatp, ...) VL_ATTR_PRINTF(1) VL_MT_SAFE;
// clang-format on

/// Print a debug message from internals with standard prefix, with printf style format
extern void VL_DBG_MSGF(const char* formatp, ...) VL_ATTR_PRINTF(1) VL_MT_SAFE;

// EMIT_RULE: VL_RANDOM:  oclean=dirty
inline IData VL_RANDOM_I() VL_MT_SAFE { return vl_rand64(); }
inline QData VL_RANDOM_Q() VL_MT_SAFE { return vl_rand64(); }
extern WDataOutP VL_RANDOM_W(int obits, WDataOutP outwp) VL_MT_SAFE;
extern IData VL_RANDOM_SEEDED_II(IData& seedr) VL_MT_SAFE;
extern IData VL_URANDOM_SEEDED_II(IData seed) VL_MT_SAFE;
inline IData VL_URANDOM_RANGE_I(IData hi, IData lo) {
    const uint64_t rnd = vl_rand64();
    if (VL_LIKELY(hi > lo)) {
        // (hi - lo + 1) can be zero when hi is UINT_MAX and lo is zero
        if (VL_UNLIKELY(hi - lo + 1 == 0)) return rnd;
        // Modulus isn't very fast but it's common that hi-low is power-of-two
        return (rnd % (hi - lo + 1)) + lo;
    } else {
        if (VL_UNLIKELY(lo - hi + 1 == 0)) return rnd;
        return (rnd % (lo - hi + 1)) + hi;
    }
}

/// Random reset a signal of given width (init time only, var-specific PRNG)
extern IData VL_SCOPED_RAND_RESET_I(int obits, uint64_t scopeHash, uint64_t salt) VL_MT_UNSAFE;
/// Random reset a signal of given width (init time only, var-specific PRNG)
extern QData VL_SCOPED_RAND_RESET_Q(int obits, uint64_t scopeHash, uint64_t salt) VL_MT_UNSAFE;
/// Random reset a signal of given width (init time only, var-specific PRNG)
extern WDataOutP VL_SCOPED_RAND_RESET_W(int obits, WDataOutP outwp, uint64_t scopeHash,
                                        uint64_t salt) VL_MT_UNSAFE;

/// Random reset a signal of given width (assign time only)
extern IData VL_SCOPED_RAND_RESET_ASSIGN_I(int obits, uint64_t scopeHash,
                                           uint64_t salt) VL_MT_UNSAFE;
/// Random reset a signal of given width (assign time only)
extern QData VL_SCOPED_RAND_RESET_ASSIGN_Q(int obits, uint64_t scopeHash,
                                           uint64_t salt) VL_MT_UNSAFE;
/// Random reset a signal of given width (assign time only)
extern WDataOutP VL_SCOPED_RAND_RESET_ASSIGN_W(int obits, WDataOutP outwp, uint64_t scopeHash,
                                               uint64_t salt) VL_MT_UNSAFE;

/// Random reset a signal of given width (init time only)
extern IData VL_RAND_RESET_I(int obits) VL_MT_SAFE;
/// Random reset a signal of given width (init time only)
extern QData VL_RAND_RESET_Q(int obits) VL_MT_SAFE;
/// Random reset a signal of given width (init time only)
extern WDataOutP VL_RAND_RESET_W(int obits, WDataOutP outwp) VL_MT_SAFE;

/// Zero reset a signal (slow - else use VL_ZERO_W)
extern WDataOutP VL_ZERO_RESET_W(int obits, WDataOutP outwp) VL_MT_SAFE;

extern void VL_PRINTTIMESCALE(const char* namep, const char* timeunitp,
                              const VerilatedContext* contextp) VL_MT_SAFE;

extern WDataOutP _vl_moddiv_w(int lbits, WDataOutP owp, WDataInP const lwp, WDataInP const rwp,
                              bool is_modulus) VL_MT_SAFE;

extern void _vl_vsss_based(WDataOutP owp, int obits, int baseLog2, const char* strp,
                           size_t posstart, size_t posend) VL_MT_SAFE;

extern IData VL_FGETS_IXI(int obits, void* destp, IData fpi) VL_MT_SAFE;

extern void VL_FFLUSH_I(IData fdi) VL_MT_SAFE;
extern IData VL_FSEEK_I(IData fdi, IData offset, IData origin) VL_MT_SAFE;
extern IData VL_FTELL_I(IData fdi) VL_MT_SAFE;
extern void VL_FCLOSE_I(IData fdi) VL_MT_SAFE;

extern IData VL_FREAD_I(int width, int array_lsb, int array_size, void* memp, IData fpi,
                        IData start, IData count) VL_MT_SAFE;

extern void VL_WRITEF_NX(const std::string& format, int argc, ...) VL_MT_SAFE;
extern void VL_FWRITEF_NX(IData fpi, const std::string& format, int argc, ...) VL_MT_SAFE;

extern IData VL_FSCANF_INX(IData fpi, const std::string& format, int argc, ...) VL_MT_SAFE;
extern IData VL_SSCANF_IINX(int lbits, IData ld, const std::string& format, int argc,
                            ...) VL_MT_SAFE;
extern IData VL_SSCANF_IQNX(int lbits, QData ld, const std::string& format, int argc,
                            ...) VL_MT_SAFE;
extern IData VL_SSCANF_IWNX(int lbits, WDataInP const lwp, const std::string& format, int argc,
                            ...) VL_MT_SAFE;

extern void VL_SFORMAT_NX(int obits, CData& destr, const std::string& format, int argc,
                          ...) VL_MT_SAFE;
extern void VL_SFORMAT_NX(int obits, SData& destr, const std::string& format, int argc,
                          ...) VL_MT_SAFE;
extern void VL_SFORMAT_NX(int obits, IData& destr, const std::string& format, int argc,
                          ...) VL_MT_SAFE;
extern void VL_SFORMAT_NX(int obits, QData& destr, const std::string& format, int argc,
                          ...) VL_MT_SAFE;
extern void VL_SFORMAT_NX(int obits, void* destp, const std::string& format, int argc,
                          ...) VL_MT_SAFE;

extern void VL_STACKTRACE() VL_MT_SAFE;
extern std::string VL_STACKTRACE_N() VL_MT_SAFE;
extern IData VL_SYSTEM_IW(int lhswords, WDataInP const lhsp) VL_MT_SAFE;
extern IData VL_SYSTEM_IQ(QData lhs) VL_MT_SAFE;
inline IData VL_SYSTEM_II(IData lhs) VL_MT_SAFE { return VL_SYSTEM_IQ(lhs); }
extern IData VL_SYSTEM_IN(const std::string& lhs) VL_MT_SAFE;

extern IData VL_TESTPLUSARGS_I(const std::string& format) VL_MT_SAFE;
extern const char* vl_mc_scan_plusargs(const char* prefixp) VL_MT_SAFE;  // PLIish

//=========================================================================
// Base macros

// Return true if data[bit] set; not 0/1 return, but 0/non-zero return.
// Arguments must not have side effects
#define VL_BITISSETLIMIT_W(data, width, bit) (((bit) < (width)) && VL_BITISSET_W(data, bit))

// Shift appropriate word by bit. Does not account for wrapping between two words
// Argument 'bit' must not have side effects
#define VL_BITRSHIFT_W(data, bit) ((data)[VL_BITWORD_E(bit)] >> VL_BITBIT_E(bit))

// Create two 32-bit words from quadword
// WData is always at least 2 words; does not clean upper bits
#define VL_SET_WQ(owp, data) \
    do { \
        (owp)[0] = static_cast<IData>(data); \
        (owp)[1] = static_cast<IData>((data) >> VL_EDATASIZE); \
    } while (false)
#define VL_SET_WI(owp, data) \
    do { \
        (owp)[0] = static_cast<IData>(data); \
        (owp)[1] = 0; \
    } while (false)
#define VL_SET_QW(lwp) \
    ((static_cast<QData>((lwp)[0])) \
     | (static_cast<QData>((lwp)[1]) << (static_cast<QData>(VL_EDATASIZE))))
#define VL_SET_QII(ld, rd) ((static_cast<QData>(ld) << 32ULL) | static_cast<QData>(rd))

// Return FILE* from IData
extern FILE* VL_CVT_I_FP(IData lhs) VL_MT_SAFE;

// clang-format off
// Use a union to avoid cast-to-different-size warnings
// Return void* from QData
static inline void* VL_CVT_Q_VP(QData lhs) VL_PURE {
    union { void* fp; QData q; } u;
    u.q = lhs;
    return u.fp;
}
// Return QData from const void*
static inline QData VL_CVT_VP_Q(const void* fp) VL_PURE {
    union { const void* fp; QData q; } u;
    u.q = 0;
    u.fp = fp;
    return u.q;
}
// Return double from QData (bits, not numerically)
static inline double VL_CVT_D_Q(QData lhs) VL_PURE {
    union { double d; QData q; } u;
    u.q = lhs;
    return u.d;
}
// Return QData from double (bits, not numerically)
static inline QData VL_CVT_Q_D(double lhs) VL_PURE {
    union { double d; QData q; } u;
    u.d = lhs;
    return u.q;
}
// clang-format on
// Return string from DPI char*
static inline std::string VL_CVT_N_CSTR(const char* lhsp) VL_PURE {
    return lhsp ? std::string{lhsp} : ""s;
}

// Return queue from an unpacked array
template <typename T, std::size_t N_Depth>
static inline VlQueue<T> VL_CVT_UNPACK_TO_Q(const VlUnpacked<T, N_Depth>& q) VL_PURE {
    VlQueue<T> ret;
    for (size_t i = 0; i < N_Depth; ++i) ret.push_back(q[i]);
    return ret;
}

// Return double from lhs (numeric) unsigned
double VL_ITOR_D_W(int lbits, WDataInP const lwp) VL_PURE;
static inline double VL_ITOR_D_I(int, IData lhs) VL_PURE {
    return static_cast<double>(static_cast<uint32_t>(lhs));
}
static inline double VL_ITOR_D_Q(int, QData lhs) VL_PURE {
    return static_cast<double>(static_cast<uint64_t>(lhs));
}
// Return double from lhs (numeric) signed
double VL_ISTOR_D_W(int lbits, WDataInP const lwp) VL_MT_SAFE;
static inline double VL_ISTOR_D_I(int lbits, IData lhs) VL_MT_SAFE {
    if (lbits == 32) return static_cast<double>(static_cast<int32_t>(lhs));
    VlWide<VL_WQ_WORDS_E> lwp;
    VL_SET_WI(lwp, lhs);
    return VL_ISTOR_D_W(lbits, lwp);
}
static inline double VL_ISTOR_D_Q(int lbits, QData lhs) VL_MT_SAFE {
    if (lbits == 64) return static_cast<double>(static_cast<int64_t>(lhs));
    VlWide<VL_WQ_WORDS_E> lwp;
    VL_SET_WQ(lwp, lhs);
    return VL_ISTOR_D_W(lbits, lwp);
}
// Return IData truncated from double (numeric)
static inline IData VL_RTOI_I_D(double lhs) VL_PURE { return static_cast<int32_t>(VL_TRUNC(lhs)); }

// Sign extend such that if MSB set, we get ffff_ffff, else 0s
// (Requires clean input)
#define VL_SIGN_I(nbits, lhs) ((lhs) >> VL_BITBIT_I((nbits)-VL_UL(1)))
#define VL_SIGN_Q(nbits, lhs) ((lhs) >> VL_BITBIT_Q((nbits)-1ULL))
#define VL_SIGN_E(nbits, lhs) ((lhs) >> VL_BITBIT_E((nbits)-VL_EUL(1)))
#define VL_SIGN_W(nbits, rwp) \
    ((rwp)[VL_BITWORD_E((nbits)-VL_EUL(1))] >> VL_BITBIT_E((nbits)-VL_EUL(1)))
#define VL_SIGNONES_E(nbits, lhs) (-(VL_SIGN_E(nbits, lhs)))

// Sign bit extended up to MSB, doesn't include unsigned portion
// Optimization bug in GCC 3.3 returns different bitmasks to later states for
static inline IData VL_EXTENDSIGN_I(int lbits, IData lhs) VL_PURE {
    return (-((lhs) & (VL_UL(1) << (lbits - 1))));
}
static inline QData VL_EXTENDSIGN_Q(int lbits, QData lhs) VL_PURE {
    return (-((lhs) & (1ULL << (lbits - 1))));
}

// Debugging prints
extern void _vl_debug_print_w(int lbits, WDataInP const iwp) VL_MT_SAFE;

//=========================================================================
// Time handling

// clang-format off

#if defined(SYSTEMC_VERSION)
/// Return current simulation time
// Already defined: extern sc_time sc_time_stamp();
inline uint64_t vl_time_stamp64() VL_MT_SAFE { return sc_core::sc_time_stamp().value(); }
#else  // Non-SystemC
# if !defined(VL_TIME_CONTEXT) && !defined(VL_NO_LEGACY)
#  ifdef VL_TIME_STAMP64
// vl_time_stamp64() may be optionally defined by the user to return time.
// On MSVC++ weak symbols are not supported so must be declared, or define
// VL_TIME_CONTEXT.
extern uint64_t vl_time_stamp64() VL_ATTR_WEAK VL_MT_SAFE;
#  else
// sc_time_stamp() may be optionally defined by the user to return time.
// On MSVC++ weak symbols are not supported so must be declared, or define
// VL_TIME_CONTEXT.
extern double sc_time_stamp() VL_ATTR_WEAK VL_MT_SAFE;  // Verilator 4.032 and newer
inline uint64_t vl_time_stamp64() VL_MT_SAFE {
    // clang9.0.1 requires & although we really do want the weak symbol value
    // cppcheck-suppress duplicateValueTernary
    return VL_LIKELY(&sc_time_stamp) ? static_cast<uint64_t>(sc_time_stamp()) : 0;
}
#  endif
# endif
#endif

// clang-format on

uint64_t VerilatedContext::time() const VL_MT_SAFE {
    // When using non-default context, fastest path is return time
    if (VL_LIKELY(m_s.m_time)) return m_s.m_time;
#if defined(SYSTEMC_VERSION) || (!defined(VL_TIME_CONTEXT) && !defined(VL_NO_LEGACY))
    // Zero time could mean really at zero, or using callback
    // clang9.0.1 requires & although we really do want the weak symbol value
    if (VL_LIKELY(&vl_time_stamp64)) {  // else is weak symbol that is not defined
        return vl_time_stamp64();
    }
#endif
    return 0;
}

#define VL_TIME_Q() (Verilated::threadContextp()->time())
#define VL_TIME_D() (static_cast<double>(VL_TIME_Q()))

// Time scaled from 1-per-precision into a module's time units ("Unit"-ed, not "United")
// Optimized assuming scale is always constant.
// Can't use multiply in Q flavor, as might lose precision
#define VL_TIME_ROUND(t, p) (((t) + ((p) / 2)) / (p))
#define VL_TIME_UNITED_Q(scale) VL_TIME_ROUND(VL_TIME_Q(), static_cast<QData>(scale))
#define VL_TIME_UNITED_D(scale) (VL_TIME_D() / static_cast<double>(scale))

// Return time precision as multiplier of time units
double vl_time_multiplier(int scale) VL_PURE;
// Return power of 10. e.g. returns 100 if n==2
uint64_t vl_time_pow10(int n) VL_PURE;
// Return time as string with timescale suffix
std::string vl_timescaled_double(double value, const char* format = "%0.0f%s") VL_PURE;

//=========================================================================
// Functional macros/routines
// These all take the form
//      VL_func_IW(bits, bits, op, op)
//      VL_func_WW(bits, bits, out, op, op)
// The I/W indicates if it's a integer or wide for the output and each operand.
// The bits indicate the bit width of the output and each operand.
// If wide output, a temporary storage location is specified.

//===================================================================
// SETTING OPERATORS

VL_ATTR_ALWINLINE
static WDataOutP VL_MEMSET_ZERO_W(WDataOutP owp, int words) VL_MT_SAFE {
    return static_cast<WDataOutP>(std::memset(owp, 0, words * sizeof(EData)));
}
VL_ATTR_ALWINLINE
static WDataOutP VL_MEMSET_ONES_W(WDataOutP owp, int words) VL_MT_SAFE {
    return static_cast<WDataOutP>(std::memset(owp, 0xff, words * sizeof(EData)));
}
VL_ATTR_ALWINLINE
static WDataOutP VL_MEMCPY_W(WDataOutP owp, WDataInP const iwp, int words) VL_MT_SAFE {
    return static_cast<WDataOutP>(std::memcpy(owp, iwp, words * sizeof(EData)));
}

// Output clean
// EMIT_RULE: VL_CLEAN:  oclean=clean; obits=lbits;
#define VL_CLEAN_II(obits, lbits, lhs) ((lhs) & (VL_MASK_I(obits)))
#define VL_CLEAN_QQ(obits, lbits, lhs) ((lhs) & (VL_MASK_Q(obits)))

// EMIT_RULE: VL_ASSIGNCLEAN:  oclean=clean; obits==lbits;
#define VL_ASSIGNCLEAN_W(obits, owp, lwp) VL_CLEAN_WW((obits), (owp), (lwp))
static inline WDataOutP _vl_clean_inplace_w(int obits, WDataOutP owp) VL_MT_SAFE {
    const int words = VL_WORDS_I(obits);
    owp[words - 1] &= VL_MASK_E(obits);
    return owp;
}
static inline WDataOutP VL_CLEAN_WW(int obits, WDataOutP owp, WDataInP const lwp) VL_MT_SAFE {
    const int words = VL_WORDS_I(obits);
    VL_MEMCPY_W(owp, lwp, words - 1);
    owp[words - 1] = lwp[words - 1] & VL_MASK_E(obits);
    return owp;
}
static inline WDataOutP VL_ZERO_W(int obits, WDataOutP owp) VL_MT_SAFE {
    return VL_MEMSET_ZERO_W(owp, VL_WORDS_I(obits));
}
static inline WDataOutP VL_ALLONES_W(int obits, WDataOutP owp) VL_MT_SAFE {
    const int words = VL_WORDS_I(obits);
    VL_MEMSET_ONES_W(owp, words - 1);
    owp[words - 1] = VL_MASK_E(obits);
    return owp;
}

// EMIT_RULE: VL_ASSIGN:  oclean=rclean; obits==lbits;
// For now, we always have a clean rhs.
// Note: If a ASSIGN isn't clean, use VL_ASSIGNCLEAN instead to do the same thing.
static inline WDataOutP VL_ASSIGN_W(int obits, WDataOutP owp, WDataInP const lwp) VL_MT_SAFE {
    return VL_MEMCPY_W(owp, lwp, VL_WORDS_I(obits));
}

// EMIT_RULE: VL_ASSIGNBIT:  rclean=clean;
static inline void VL_ASSIGNBIT_II(int bit, CData& lhsr, IData rhs) VL_PURE {
    lhsr = ((lhsr & ~(VL_UL(1) << VL_BITBIT_I(bit))) | (rhs << VL_BITBIT_I(bit)));
}
static inline void VL_ASSIGNBIT_II(int bit, SData& lhsr, IData rhs) VL_PURE {
    lhsr = ((lhsr & ~(VL_UL(1) << VL_BITBIT_I(bit))) | (rhs << VL_BITBIT_I(bit)));
}
static inline void VL_ASSIGNBIT_II(int bit, IData& lhsr, IData rhs) VL_PURE {
    lhsr = ((lhsr & ~(VL_UL(1) << VL_BITBIT_I(bit))) | (rhs << VL_BITBIT_I(bit)));
}
static inline void VL_ASSIGNBIT_QI(int bit, QData& lhsr, QData rhs) VL_PURE {
    lhsr = ((lhsr & ~(1ULL << VL_BITBIT_Q(bit))) | (static_cast<QData>(rhs) << VL_BITBIT_Q(bit)));
}
static inline void VL_ASSIGNBIT_WI(int bit, WDataOutP owp, IData rhs) VL_MT_SAFE {
    const EData orig = owp[VL_BITWORD_E(bit)];
    owp[VL_BITWORD_E(bit)] = ((orig & ~(VL_EUL(1) << VL_BITBIT_E(bit)))
                              | (static_cast<EData>(rhs) << VL_BITBIT_E(bit)));
}
// Alternative form that is an instruction faster when rhs is constant one.
static inline void VL_ASSIGNBIT_IO(int bit, CData& lhsr) VL_PURE {
    lhsr = (lhsr | (VL_UL(1) << VL_BITBIT_I(bit)));
}
static inline void VL_ASSIGNBIT_IO(int bit, SData& lhsr) VL_PURE {
    lhsr = (lhsr | (VL_UL(1) << VL_BITBIT_I(bit)));
}
static inline void VL_ASSIGNBIT_IO(int bit, IData& lhsr) VL_PURE {
    lhsr = (lhsr | (VL_UL(1) << VL_BITBIT_I(bit)));
}
static inline void VL_ASSIGNBIT_QO(int bit, QData& lhsr) VL_PURE {
    lhsr = (lhsr | (1ULL << VL_BITBIT_Q(bit)));
}
static inline void VL_ASSIGNBIT_WO(int bit, WDataOutP owp) VL_MT_SAFE {
    const EData orig = owp[VL_BITWORD_E(bit)];
    owp[VL_BITWORD_E(bit)] = (orig | (VL_EUL(1) << VL_BITBIT_E(bit)));
}

//===================================================================
// SYSTEMC OPERATORS
// Copying verilog format to systemc integers and bit vectors.
// Get a SystemC variable

#define VL_ASSIGN_ISI(obits, vvar, svar) \
    { (vvar) = VL_CLEAN_II((obits), (obits), (svar).read()); }
#define VL_ASSIGN_QSQ(obits, vvar, svar) \
    { (vvar) = VL_CLEAN_QQ((obits), (obits), (svar).read()); }

#define VL_ASSIGN_ISW(obits, od, svar) \
    { (od) = ((svar).read().get_word(0)) & VL_MASK_I(obits); }
#define VL_ASSIGN_QSW(obits, od, svar) \
    { \
        (od) = ((static_cast<QData>((svar).read().get_word(1))) << VL_IDATASIZE \
                | (svar).read().get_word(0)) \
               & VL_MASK_Q(obits); \
    }
#define VL_ASSIGN_WSW(obits, owp, svar) \
    { \
        const int words = VL_WORDS_I(obits); \
        for (int i = 0; i < words; ++i) (owp)[i] = (svar).read().get_word(i); \
        (owp)[words - 1] &= VL_MASK_E(obits); \
    }

#define VL_ASSIGN_ISU(obits, vvar, svar) \
    { (vvar) = VL_CLEAN_II((obits), (obits), (svar).read().to_uint()); }
#define VL_ASSIGN_QSU(obits, vvar, svar) \
    { (vvar) = VL_CLEAN_QQ((obits), (obits), (svar).read().to_uint64()); }
#define VL_ASSIGN_WSB(obits, owp, svar) \
    { \
        const int words = VL_WORDS_I(obits); \
        sc_dt::sc_biguint<(obits)> _butemp = (svar).read(); \
        uint32_t* chunkp = _butemp.get_raw(); \
        int32_t lsb = 0; \
        while (lsb < obits - BITS_PER_DIGIT) { \
            const uint32_t data = *chunkp; \
            ++chunkp; \
            _vl_insert_WI(owp.data(), data, lsb + BITS_PER_DIGIT - 1, lsb); \
            lsb += BITS_PER_DIGIT; \
        } \
        if (lsb < obits) { \
            const uint32_t msb_data = *chunkp; \
            _vl_insert_WI(owp.data(), msb_data, obits - 1, lsb); \
        } \
        (owp)[words - 1] &= VL_MASK_E(obits); \
    }

// Copying verilog format from systemc integers and bit vectors.
// Set a SystemC variable

#define VL_ASSIGN_SII(obits, svar, vvar) \
    { (svar).write(vvar); }
#define VL_ASSIGN_SQQ(obits, svar, vvar) \
    { (svar).write(vvar); }

#define VL_ASSIGN_SWI(obits, svar, rd) \
    { \
        sc_dt::sc_bv<(obits)> _bvtemp; \
        _bvtemp.set_word(0, (rd)); \
        (svar).write(_bvtemp); \
    }
#define VL_ASSIGN_SWQ(obits, svar, rd) \
    { \
        sc_dt::sc_bv<(obits)> _bvtemp; \
        _bvtemp.set_word(0, static_cast<IData>(rd)); \
        _bvtemp.set_word(1, static_cast<IData>((rd) >> VL_IDATASIZE)); \
        (svar).write(_bvtemp); \
    }
#define VL_ASSIGN_SWW(obits, svar, rwp) \
    { \
        sc_dt::sc_bv<(obits)> _bvtemp; \
        for (int i = 0; i < VL_WORDS_I(obits); ++i) _bvtemp.set_word(i, (rwp)[i]); \
        (svar).write(_bvtemp); \
    }

#define VL_ASSIGN_SUI(obits, svar, rd) \
    { (svar).write(rd); }
#define VL_ASSIGN_SUQ(obits, svar, rd) \
    { (svar).write(rd); }
#define VL_ASSIGN_SBI(obits, svar, rd) \
    { (svar).write(rd); }
#define VL_ASSIGN_SBQ(obits, svar, rd) \
    { (svar).write(rd); }
#define VL_ASSIGN_SBW(obits, svar, rwp) \
    { \
        sc_dt::sc_biguint<(obits)> _butemp; \
        int32_t lsb = 0; \
        uint32_t* chunkp = _butemp.get_raw(); \
        while (lsb + BITS_PER_DIGIT < (obits)) { \
            static_assert(std::is_same<IData, EData>::value, "IData and EData mismatch"); \
            const uint32_t data \
                = VL_SEL_IWII(lsb + BITS_PER_DIGIT + 1, (rwp).data(), lsb, BITS_PER_DIGIT); \
            *chunkp = data & VL_MASK_E(BITS_PER_DIGIT); \
            ++chunkp; \
            lsb += BITS_PER_DIGIT; \
        } \
        if (lsb < (obits)) { \
            const uint32_t msb_data = VL_SEL_IWII((obits) + 1, (rwp).data(), lsb, (obits)-lsb); \
            *chunkp = msb_data & VL_MASK_E((obits)-lsb); \
        } \
        _butemp.set(0, *(rwp).data() & 1); /* force update the sign */ \
        (svar).write(_butemp); \
    }

//===================================================================
// Extending sizes

// CAREFUL, we're width changing, so obits!=lbits

// Right must be clean because otherwise size increase would pick up bad bits
// EMIT_RULE: VL_EXTEND:  oclean=clean; rclean==clean;
#define VL_EXTEND_II(obits, lbits, lhs) ((lhs))
#define VL_EXTEND_QI(obits, lbits, lhs) (static_cast<QData>(lhs))
#define VL_EXTEND_QQ(obits, lbits, lhs) ((lhs))

static inline WDataOutP VL_EXTEND_WI(int obits, int, WDataOutP owp, IData ld) VL_MT_SAFE {
    // Note for extracts that obits != lbits
    owp[0] = ld;
    VL_MEMSET_ZERO_W(owp + 1, VL_WORDS_I(obits) - 1);
    return owp;
}
static inline WDataOutP VL_EXTEND_WQ(int obits, int, WDataOutP owp, QData ld) VL_MT_SAFE {
    VL_SET_WQ(owp, ld);
    VL_MEMSET_ZERO_W(owp + VL_WQ_WORDS_E, VL_WORDS_I(obits) - VL_WQ_WORDS_E);
    return owp;
}
static inline WDataOutP VL_EXTEND_WW(int obits, int lbits, WDataOutP owp,
                                     WDataInP const lwp) VL_MT_SAFE {
    const int lwords = VL_WORDS_I(lbits);
    VL_PREFETCH_RD(lwp);
    VL_MEMSET_ZERO_W(owp + lwords, VL_WORDS_I(obits) - lwords);
    return VL_MEMCPY_W(owp, lwp, lwords);
}

// EMIT_RULE: VL_EXTENDS:  oclean=*dirty*; obits=lbits;
// Sign extension; output dirty
static inline IData VL_EXTENDS_II(int, int lbits, IData lhs) VL_PURE {
    return VL_EXTENDSIGN_I(lbits, lhs) | lhs;
}
static inline QData VL_EXTENDS_QI(int, int lbits, QData lhs /*Q_as_need_extended*/) VL_PURE {
    return VL_EXTENDSIGN_Q(lbits, lhs) | lhs;
}
static inline QData VL_EXTENDS_QQ(int, int lbits, QData lhs) VL_PURE {
    return VL_EXTENDSIGN_Q(lbits, lhs) | lhs;
}

static inline WDataOutP VL_EXTENDS_WI(int obits, int lbits, WDataOutP owp, IData ld) VL_MT_SAFE {
    owp[0] = ld;
    if (VL_SIGN_E(lbits, owp[0])) {
        owp[0] |= ~VL_MASK_E(lbits);
        VL_MEMSET_ONES_W(owp + 1, VL_WORDS_I(obits) - 1);
    } else {
        VL_MEMSET_ZERO_W(owp + 1, VL_WORDS_I(obits) - 1);
    }
    return owp;
}
static inline WDataOutP VL_EXTENDS_WQ(int obits, int lbits, WDataOutP owp, QData ld) VL_MT_SAFE {
    VL_SET_WQ(owp, ld);
    if (VL_SIGN_E(lbits, owp[1])) {
        owp[1] |= ~VL_MASK_E(lbits);
        VL_MEMSET_ONES_W(owp + VL_WQ_WORDS_E, VL_WORDS_I(obits) - VL_WQ_WORDS_E);
    } else {
        VL_MEMSET_ZERO_W(owp + VL_WQ_WORDS_E, VL_WORDS_I(obits) - VL_WQ_WORDS_E);
    }
    return owp;
}
static inline WDataOutP VL_EXTENDS_WW(int obits, int lbits, WDataOutP owp,
                                      WDataInP const lwp) VL_MT_SAFE {
    const int lwords = VL_WORDS_I(lbits);
    VL_PREFETCH_RD(lwp);
    owp[lwords - 1] = lwp[lwords - 1];
    if (VL_SIGN_E(lbits, lwp[lwords - 1])) {
        owp[lwords - 1] |= ~VL_MASK_E(lbits);
        VL_MEMSET_ONES_W(owp + lwords, VL_WORDS_I(obits) - lwords);
    } else {
        VL_MEMSET_ZERO_W(owp + lwords, VL_WORDS_I(obits) - lwords);
    }
    return VL_MEMCPY_W(owp, lwp, lwords - 1);
}

//===================================================================
// REDUCTION OPERATORS

// EMIT_RULE: VL_REDAND:  oclean=clean; lclean==clean; obits=1;
#define VL_REDAND_II(lbits, lhs) ((lhs) == VL_MASK_I(lbits))
#define VL_REDAND_IQ(lbits, lhs) ((lhs) == VL_MASK_Q(lbits))
static inline IData VL_REDAND_IW(int lbits, WDataInP const lwp) VL_PURE {
    const int words = VL_WORDS_I(lbits);
    EData combine = lwp[0];
    for (int i = 1; i < words - 1; ++i) combine &= lwp[i];
    combine &= ~VL_MASK_E(lbits) | lwp[words - 1];
    // cppcheck-has-bug-suppress knownConditionTrueFalse
    return ((~combine) == 0);
}

// EMIT_RULE: VL_REDOR:  oclean=clean; lclean==clean; obits=1;
#define VL_REDOR_I(lhs) ((lhs) != 0)
#define VL_REDOR_Q(lhs) ((lhs) != 0)
static inline IData VL_REDOR_W(int words, WDataInP const lwp) VL_PURE {
    EData equal = 0;
    for (int i = 0; i < words; ++i) equal |= lwp[i];
    return (equal != 0);
}

// EMIT_RULE: VL_REDXOR:  oclean=dirty; obits=1;
static inline IData VL_REDXOR_2(IData r) VL_PURE {
    // Experiments show VL_REDXOR_2 is faster than __builtin_parityl
    r = (r ^ (r >> 1));
    return r;
}
static inline IData VL_REDXOR_4(IData r) VL_PURE {
#if defined(__GNUC__) && (__GNUC__ >= 4) && !defined(VL_NO_BUILTINS)
    return __builtin_parityl(r);
#else
    r = (r ^ (r >> 1));
    r = (r ^ (r >> 2));
    return r;
#endif
}
static inline IData VL_REDXOR_8(IData r) VL_PURE {
#if defined(__GNUC__) && (__GNUC__ >= 4) && !defined(VL_NO_BUILTINS)
    return __builtin_parityl(r);
#else
    r = (r ^ (r >> 1));
    r = (r ^ (r >> 2));
    r = (r ^ (r >> 4));
    return r;
#endif
}
static inline IData VL_REDXOR_16(IData r) VL_PURE {
#if defined(__GNUC__) && (__GNUC__ >= 4) && !defined(VL_NO_BUILTINS)
    return __builtin_parityl(r);
#else
    r = (r ^ (r >> 1));
    r = (r ^ (r >> 2));
    r = (r ^ (r >> 4));
    r = (r ^ (r >> 8));
    return r;
#endif
}
static inline IData VL_REDXOR_32(IData r) VL_PURE {
#if defined(__GNUC__) && (__GNUC__ >= 4) && !defined(VL_NO_BUILTINS)
    return __builtin_parityl(r);
#else
    r = (r ^ (r >> 1));
    r = (r ^ (r >> 2));
    r = (r ^ (r >> 4));
    r = (r ^ (r >> 8));
    r = (r ^ (r >> 16));
    return r;
#endif
}
static inline IData VL_REDXOR_64(QData r) VL_PURE {
#if defined(__GNUC__) && (__GNUC__ >= 4) && !defined(VL_NO_BUILTINS)
    return __builtin_parityll(r);
#else
    r = (r ^ (r >> 1));
    r = (r ^ (r >> 2));
    r = (r ^ (r >> 4));
    r = (r ^ (r >> 8));
    r = (r ^ (r >> 16));
    r = (r ^ (r >> 32));
    return static_cast<IData>(r);
#endif
}
static inline IData VL_REDXOR_W(int words, WDataInP const lwp) VL_PURE {
    EData r = lwp[0];
    for (int i = 1; i < words; ++i) r ^= lwp[i];
    return VL_REDXOR_32(r);
}

// EMIT_RULE: VL_COUNTONES_II:  oclean = false; lhs clean
static inline IData VL_COUNTONES_I(IData lhs) VL_PURE {
    // This is faster than __builtin_popcountl
    IData r = lhs - ((lhs >> 1) & 033333333333) - ((lhs >> 2) & 011111111111);
    r = (r + (r >> 3)) & 030707070707;
    r = (r + (r >> 6));
    r = (r + (r >> 12) + (r >> 24)) & 077;
    return r;
}
static inline IData VL_COUNTONES_Q(QData lhs) VL_PURE {
    return VL_COUNTONES_I(static_cast<IData>(lhs)) + VL_COUNTONES_I(static_cast<IData>(lhs >> 32));
}
#define VL_COUNTONES_E VL_COUNTONES_I
static inline IData VL_COUNTONES_W(int words, WDataInP const lwp) VL_PURE {
    EData r = 0;
    for (int i = 0; i < words; ++i) r += VL_COUNTONES_E(lwp[i]);
    return r;
}

// EMIT_RULE: VL_COUNTBITS_II:  oclean = false; lhs clean
static inline IData VL_COUNTBITS_I(int lbits, IData lhs, IData ctrl0, IData ctrl1,
                                   IData ctrl2) VL_PURE {
    const int ctrlSum = (ctrl0 & 0x1) + (ctrl1 & 0x1) + (ctrl2 & 0x1);
    if (ctrlSum == 3) {
        return VL_COUNTONES_I(lhs);
    } else if (ctrlSum == 0) {
        const IData mask = (lbits == 32) ? -1 : ((1 << lbits) - 1);
        return VL_COUNTONES_I(~lhs & mask);
    } else {
        return (lbits == 32) ? 32 : lbits;
    }
}
static inline IData VL_COUNTBITS_Q(int lbits, QData lhs, IData ctrl0, IData ctrl1,
                                   IData ctrl2) VL_PURE {
    return VL_COUNTBITS_I(32, static_cast<IData>(lhs), ctrl0, ctrl1, ctrl2)
           + VL_COUNTBITS_I(lbits - 32, static_cast<IData>(lhs >> 32), ctrl0, ctrl1, ctrl2);
}
#define VL_COUNTBITS_E VL_COUNTBITS_I
static inline IData VL_COUNTBITS_W(int lbits, int words, WDataInP const lwp, IData ctrl0,
                                   IData ctrl1, IData ctrl2) VL_MT_SAFE {
    EData r = 0;
    IData wordLbits = 32;
    for (int i = 0; i < words; ++i) {
        if (i == words - 1) wordLbits = lbits % 32;
        r += VL_COUNTBITS_E(wordLbits, lwp[i], ctrl0, ctrl1, ctrl2);
    }
    return r;
}

static inline IData VL_ONEHOT_I(IData lhs) VL_PURE {
    return (((lhs & (lhs - 1)) == 0) & (lhs != 0));
}
static inline IData VL_ONEHOT_Q(QData lhs) VL_PURE {
    return (((lhs & (lhs - 1)) == 0) & (lhs != 0));
}
static inline IData VL_ONEHOT_W(int words, WDataInP const lwp) VL_PURE {
    EData one = 0;
    for (int i = 0; (i < words); ++i) {
        if (lwp[i]) {
            if (one) return 0;
            one = 1;
            if (lwp[i] & (lwp[i] - 1)) return 0;
        }
    }
    return one;
}

static inline IData VL_ONEHOT0_I(IData lhs) VL_PURE { return ((lhs & (lhs - 1)) == 0); }
static inline IData VL_ONEHOT0_Q(QData lhs) VL_PURE { return ((lhs & (lhs - 1)) == 0); }
static inline IData VL_ONEHOT0_W(int words, WDataInP const lwp) VL_PURE {
    bool one = false;
    for (int i = 0; (i < words); ++i) {
        if (lwp[i]) {
            if (one) return 0;
            one = true;
            if (lwp[i] & (lwp[i] - 1)) return 0;
        }
    }
    return 1;
}

static inline IData VL_CLOG2_I(IData lhs) VL_PURE {
    // There are faster algorithms, or fls GCC4 builtins, but rarely used
    // In C++20 there will be std::bit_width(lhs) - 1
    if (VL_UNLIKELY(!lhs)) return 0;
    --lhs;
    int shifts = 0;
    for (; lhs != 0; ++shifts) lhs = lhs >> 1;
    return shifts;
}
static inline IData VL_CLOG2_Q(QData lhs) VL_PURE {
    if (VL_UNLIKELY(!lhs)) return 0;
    --lhs;
    int shifts = 0;
    for (; lhs != 0; ++shifts) lhs = lhs >> 1ULL;
    return shifts;
}
static inline IData VL_CLOG2_W(int words, WDataInP const lwp) VL_PURE {
    const EData adjust = (VL_COUNTONES_W(words, lwp) == 1) ? 0 : 1;
    for (int i = words - 1; i >= 0; --i) {
        if (VL_UNLIKELY(lwp[i])) {  // Shorter worst case if predict not taken
            for (int bit = VL_EDATASIZE - 1; bit >= 0; --bit) {
                if (VL_UNLIKELY(VL_BITISSET_E(lwp[i], bit))) {
                    return i * VL_EDATASIZE + bit + adjust;
                }
            }
            // Can't get here - one bit must be set
        }
    }
    return 0;
}

static inline IData VL_MOSTSETBITP1_W(int words, WDataInP const lwp) VL_PURE {
    // MSB set bit plus one; similar to FLS.  0=value is zero
    for (int i = words - 1; i >= 0; --i) {
        if (VL_UNLIKELY(lwp[i])) {  // Shorter worst case if predict not taken
            for (int bit = VL_EDATASIZE - 1; bit >= 0; --bit) {
                if (VL_UNLIKELY(VL_BITISSET_E(lwp[i], bit))) return i * VL_EDATASIZE + bit + 1;
            }
            // Can't get here - one bit must be set
        }
    }
    return 0;
}

//===================================================================
// SIMPLE LOGICAL OPERATORS

// EMIT_RULE: VL_AND:  oclean=lclean||rclean; obits=lbits; lbits==rbits;
static inline WDataOutP VL_AND_W(int words, WDataOutP owp, WDataInP const lwp,
                                 WDataInP const rwp) VL_MT_SAFE {
    for (int i = 0; (i < words); ++i) owp[i] = (lwp[i] & rwp[i]);
    return owp;
}
// EMIT_RULE: VL_OR:   oclean=lclean&&rclean; obits=lbits; lbits==rbits;
static inline WDataOutP VL_OR_W(int words, WDataOutP owp, WDataInP const lwp,
                                WDataInP const rwp) VL_MT_SAFE {
    for (int i = 0; (i < words); ++i) owp[i] = (lwp[i] | rwp[i]);
    return owp;
}
// EMIT_RULE: VL_CHANGEXOR:  oclean=1; obits=32; lbits==rbits;
static inline IData VL_CHANGEXOR_W(int words, WDataInP const lwp, WDataInP const rwp) VL_PURE {
    IData od = 0;
    for (int i = 0; (i < words); ++i) od |= (lwp[i] ^ rwp[i]);
    return od;
}
// EMIT_RULE: VL_XOR:  oclean=lclean&&rclean; obits=lbits; lbits==rbits;
static inline WDataOutP VL_XOR_W(int words, WDataOutP owp, WDataInP const lwp,
                                 WDataInP const rwp) VL_MT_SAFE {
    for (int i = 0; (i < words); ++i) owp[i] = (lwp[i] ^ rwp[i]);
    return owp;
}
// EMIT_RULE: VL_NOT:  oclean=dirty; obits=lbits;
static inline WDataOutP VL_NOT_W(int words, WDataOutP owp, WDataInP const lwp) VL_MT_SAFE {
    for (int i = 0; i < words; ++i) owp[i] = ~(lwp[i]);
    return owp;
}

//=========================================================================
// Logical comparisons

// EMIT_RULE: VL_EQ:  oclean=clean; lclean==clean; rclean==clean; obits=1; lbits==rbits;
// EMIT_RULE: VL_NEQ: oclean=clean; lclean==clean; rclean==clean; obits=1; lbits==rbits;
// EMIT_RULE: VL_LT:  oclean=clean; lclean==clean; rclean==clean; obits=1; lbits==rbits;
// EMIT_RULE: VL_GT:  oclean=clean; lclean==clean; rclean==clean; obits=1; lbits==rbits;
// EMIT_RULE: VL_GTE: oclean=clean; lclean==clean; rclean==clean; obits=1; lbits==rbits;
// EMIT_RULE: VL_LTE: oclean=clean; lclean==clean; rclean==clean; obits=1; lbits==rbits;
#define VL_NEQ_W(words, lwp, rwp) (!VL_EQ_W(words, lwp, rwp))
#define VL_LT_W(words, lwp, rwp) (_vl_cmp_w(words, lwp, rwp) < 0)
#define VL_LTE_W(words, lwp, rwp) (_vl_cmp_w(words, lwp, rwp) <= 0)
#define VL_GT_W(words, lwp, rwp) (_vl_cmp_w(words, lwp, rwp) > 0)
#define VL_GTE_W(words, lwp, rwp) (_vl_cmp_w(words, lwp, rwp) >= 0)

// Output clean, <lhs> AND <rhs> MUST BE CLEAN
static inline IData VL_EQ_W(int words, WDataInP const lwp, WDataInP const rwp) VL_PURE {
    EData nequal = 0;
    for (int i = 0; (i < words); ++i) nequal |= (lwp[i] ^ rwp[i]);
    return (nequal == 0);
}

// Internal usage
static inline int _vl_cmp_w(int words, WDataInP const lwp, WDataInP const rwp) VL_PURE {
    for (int i = words - 1; i >= 0; --i) {
        if (lwp[i] > rwp[i]) return 1;
        if (lwp[i] < rwp[i]) return -1;
    }
    return 0;  // ==
}

#define VL_LTS_IWW(lbits, lwp, rwp) (_vl_cmps_w(lbits, lwp, rwp) < 0)
#define VL_LTES_IWW(lbits, lwp, rwp) (_vl_cmps_w(lbits, lwp, rwp) <= 0)
#define VL_GTS_IWW(lbits, lwp, rwp) (_vl_cmps_w(lbits, lwp, rwp) > 0)
#define VL_GTES_IWW(lbits, lwp, rwp) (_vl_cmps_w(lbits, lwp, rwp) >= 0)

static inline IData VL_GTS_III(int lbits, IData lhs, IData rhs) VL_PURE {
    // For lbits==32, this becomes just a single instruction, otherwise ~5.
    // GCC 3.3.4 sign extension bugs on AMD64 architecture force us to use quad logic
    const int64_t lhs_signed = VL_EXTENDS_QQ(64, lbits, lhs);  // Q for gcc
    const int64_t rhs_signed = VL_EXTENDS_QQ(64, lbits, rhs);  // Q for gcc
    return lhs_signed > rhs_signed;
}
static inline IData VL_GTS_IQQ(int lbits, QData lhs, QData rhs) VL_PURE {
    const int64_t lhs_signed = VL_EXTENDS_QQ(64, lbits, lhs);
    const int64_t rhs_signed = VL_EXTENDS_QQ(64, lbits, rhs);
    return lhs_signed > rhs_signed;
}

static inline IData VL_GTES_III(int lbits, IData lhs, IData rhs) VL_PURE {
    const int64_t lhs_signed = VL_EXTENDS_QQ(64, lbits, lhs);  // Q for gcc
    const int64_t rhs_signed = VL_EXTENDS_QQ(64, lbits, rhs);  // Q for gcc
    return lhs_signed >= rhs_signed;
}
static inline IData VL_GTES_IQQ(int lbits, QData lhs, QData rhs) VL_PURE {
    const int64_t lhs_signed = VL_EXTENDS_QQ(64, lbits, lhs);
    const int64_t rhs_signed = VL_EXTENDS_QQ(64, lbits, rhs);
    return lhs_signed >= rhs_signed;
}

static inline IData VL_LTS_III(int lbits, IData lhs, IData rhs) VL_PURE {
    const int64_t lhs_signed = VL_EXTENDS_QQ(64, lbits, lhs);  // Q for gcc
    const int64_t rhs_signed = VL_EXTENDS_QQ(64, lbits, rhs);  // Q for gcc
    return lhs_signed < rhs_signed;
}
static inline IData VL_LTS_IQQ(int lbits, QData lhs, QData rhs) VL_PURE {
    const int64_t lhs_signed = VL_EXTENDS_QQ(64, lbits, lhs);
    const int64_t rhs_signed = VL_EXTENDS_QQ(64, lbits, rhs);
    return lhs_signed < rhs_signed;
}

static inline IData VL_LTES_III(int lbits, IData lhs, IData rhs) VL_PURE {
    const int64_t lhs_signed = VL_EXTENDS_QQ(64, lbits, lhs);  // Q for gcc
    const int64_t rhs_signed = VL_EXTENDS_QQ(64, lbits, rhs);  // Q for gcc
    return lhs_signed <= rhs_signed;
}
static inline IData VL_LTES_IQQ(int lbits, QData lhs, QData rhs) VL_PURE {
    const int64_t lhs_signed = VL_EXTENDS_QQ(64, lbits, lhs);
    const int64_t rhs_signed = VL_EXTENDS_QQ(64, lbits, rhs);
    return lhs_signed <= rhs_signed;
}

static inline int _vl_cmps_w(int lbits, WDataInP const lwp, WDataInP const rwp) VL_PURE {
    const int words = VL_WORDS_I(lbits);
    int i = words - 1;
    // We need to flip sense if negative comparison
    const EData lsign = VL_SIGN_E(lbits, lwp[i]);
    const EData rsign = VL_SIGN_E(lbits, rwp[i]);
    if (!lsign && rsign) return 1;  // + > -
    if (lsign && !rsign) return -1;  // - < +
    for (; i >= 0; --i) {
        if (lwp[i] > rwp[i]) return 1;
        if (lwp[i] < rwp[i]) return -1;
    }
    return 0;  // ==
}

//=========================================================================
// Expressions

// Output NOT clean
static inline WDataOutP VL_NEGATE_W(int words, WDataOutP owp, WDataInP const lwp) VL_MT_SAFE {
    EData carry = 1;
    for (int i = 0; i < words; ++i) {
        owp[i] = ~lwp[i] + carry;
        carry = (owp[i] < ~lwp[i]);
    }
    return owp;
}
static inline void VL_NEGATE_INPLACE_W(int words, WDataOutP owp_lwp) VL_MT_SAFE {
    EData carry = 1;
    for (int i = 0; i < words; ++i) {
        const EData word = ~owp_lwp[i] + carry;
        carry = (word < ~owp_lwp[i]);
        owp_lwp[i] = word;
    }
}

// EMIT_RULE: VL_MUL:    oclean=dirty; lclean==clean; rclean==clean;
// EMIT_RULE: VL_DIV:    oclean=dirty; lclean==clean; rclean==clean;
// EMIT_RULE: VL_MODDIV: oclean=dirty; lclean==clean; rclean==clean;
static inline IData VL_DIV_III(int lbits, IData lhs, IData rhs) {
    return (rhs == 0) ? 0 : lhs / rhs;
}
static inline QData VL_DIV_QQQ(int lbits, QData lhs, QData rhs) {
    return (rhs == 0) ? 0 : lhs / rhs;
}
#define VL_DIV_WWW(lbits, owp, lwp, rwp) (_vl_moddiv_w(lbits, owp, lwp, rwp, 0))
static inline IData VL_MODDIV_III(int lbits, IData lhs, IData rhs) {
    return (rhs == 0) ? 0 : lhs % rhs;
}
static inline QData VL_MODDIV_QQQ(int lbits, QData lhs, QData rhs) {
    return (rhs == 0) ? 0 : lhs % rhs;
}
#define VL_MODDIV_WWW(lbits, owp, lwp, rwp) (_vl_moddiv_w(lbits, owp, lwp, rwp, 1))

static inline WDataOutP VL_ADD_W(int words, WDataOutP owp, WDataInP const lwp,
                                 WDataInP const rwp) VL_MT_SAFE {
    QData carry = 0;
    for (int i = 0; i < words; ++i) {
        carry = carry + static_cast<QData>(lwp[i]) + static_cast<QData>(rwp[i]);
        owp[i] = (carry & 0xffffffffULL);
        carry = (carry >> 32ULL) & 0xffffffffULL;
    }
    // Last output word is dirty
    return owp;
}

static inline WDataOutP VL_SUB_W(int words, WDataOutP owp, WDataInP const lwp,
                                 WDataInP const rwp) VL_MT_SAFE {
    QData carry = 0;
    for (int i = 0; i < words; ++i) {
        carry = (carry + static_cast<QData>(lwp[i])
                 + static_cast<QData>(static_cast<IData>(~rwp[i])));
        if (i == 0) ++carry;  // Negation of rwp
        owp[i] = (carry & 0xffffffffULL);
        carry = (carry >> 32ULL) & 0xffffffffULL;
    }
    // Last output word is dirty
    return owp;
}

static inline WDataOutP VL_MUL_W(int words, WDataOutP owp, WDataInP const lwp,
                                 WDataInP const rwp) VL_MT_SAFE {
    for (int i = 0; i < words; ++i) owp[i] = 0;
    for (int lword = 0; lword < words; ++lword) {
        for (int rword = 0; rword < words; ++rword) {
            QData mul = static_cast<QData>(lwp[lword]) * static_cast<QData>(rwp[rword]);
            for (int qword = lword + rword; qword < words; ++qword) {
                mul += static_cast<QData>(owp[qword]);
                owp[qword] = (mul & 0xffffffffULL);
                mul = (mul >> 32ULL) & 0xffffffffULL;
            }
        }
    }
    // Last output word is dirty
    return owp;
}

static inline IData VL_MULS_III(int lbits, IData lhs, IData rhs) VL_PURE {
    const int32_t lhs_signed = VL_EXTENDS_II(32, lbits, lhs);
    const int32_t rhs_signed = VL_EXTENDS_II(32, lbits, rhs);
    return lhs_signed * rhs_signed;
}
static inline QData VL_MULS_QQQ(int lbits, QData lhs, QData rhs) VL_PURE {
    const int64_t lhs_signed = VL_EXTENDS_QQ(64, lbits, lhs);
    const int64_t rhs_signed = VL_EXTENDS_QQ(64, lbits, rhs);
    return lhs_signed * rhs_signed;
}

static inline WDataOutP VL_MULS_WWW(int lbits, WDataOutP owp, WDataInP const lwp,
                                    WDataInP const rwp) VL_MT_SAFE {
    const int words = VL_WORDS_I(lbits);
    VL_DEBUG_IFDEF(assert(words <= VL_MULS_MAX_WORDS););
    // cppcheck-suppress variableScope
    WData lwstore[VL_MULS_MAX_WORDS];  // Fixed size, as MSVC++ doesn't allow [words] here
    // cppcheck-suppress variableScope
    WData rwstore[VL_MULS_MAX_WORDS];
    WDataInP lwusp = lwp;
    WDataInP rwusp = rwp;
    const EData lneg = VL_SIGN_E(lbits, lwp[words - 1]);
    if (lneg) {  // Negate lhs
        lwusp = lwstore;
        VL_NEGATE_W(words, lwstore, lwp);
        // cppcheck-has-bug-suppress unreadVariable
        lwstore[words - 1] &= VL_MASK_E(lbits);  // Clean it
    }
    const EData rneg = VL_SIGN_E(lbits, rwp[words - 1]);
    if (rneg) {  // Negate rhs
        rwusp = rwstore;
        VL_NEGATE_W(words, rwstore, rwp);
        // cppcheck-has-bug-suppress unreadVariable
        rwstore[words - 1] &= VL_MASK_E(lbits);  // Clean it
    }
    VL_MUL_W(words, owp, lwusp, rwusp);
    owp[words - 1] &= VL_MASK_E(
        lbits);  // Clean.  Note it's ok for the multiply to overflow into the sign bit
    if ((lneg ^ rneg) & 1) {  // Negate output (not using NEGATE, as owp==lwp)
        QData carry = 0;
        for (int i = 0; i < words; ++i) {
            carry = carry + static_cast<QData>(static_cast<IData>(~owp[i]));
            if (i == 0) ++carry;  // Negation of temp2
            owp[i] = (carry & 0xffffffffULL);
            carry = (carry >> 32ULL) & 0xffffffffULL;
        }
        // Not needed: owp[words-1] |= 1<<VL_BITBIT_E(lbits-1);  // Set sign bit
    }
    // Last output word is dirty
    return owp;
}

static inline IData VL_DIVS_III(int lbits, IData lhs, IData rhs) VL_PURE {
    if (VL_UNLIKELY(rhs == 0)) return 0;
    // -MAX / -1 cannot be represented in twos complement, and will cause SIGFPE
    if (VL_UNLIKELY(lhs == 0x80000000 && rhs == 0xffffffff)) return 0;
    const int32_t lhs_signed = VL_EXTENDS_II(VL_IDATASIZE, lbits, lhs);
    const int32_t rhs_signed = VL_EXTENDS_II(VL_IDATASIZE, lbits, rhs);
    return lhs_signed / rhs_signed;
}
static inline QData VL_DIVS_QQQ(int lbits, QData lhs, QData rhs) VL_PURE {
    if (VL_UNLIKELY(rhs == 0)) return 0;
    // -MAX / -1 cannot be represented in twos complement, and will cause SIGFPE
    if (VL_UNLIKELY(lhs == 0x8000000000000000ULL && rhs == 0xffffffffffffffffULL)) return 0;
    const int64_t lhs_signed = VL_EXTENDS_QQ(VL_QUADSIZE, lbits, lhs);
    const int64_t rhs_signed = VL_EXTENDS_QQ(VL_QUADSIZE, lbits, rhs);
    return lhs_signed / rhs_signed;
}
static inline IData VL_MODDIVS_III(int lbits, IData lhs, IData rhs) VL_PURE {
    if (VL_UNLIKELY(rhs == 0)) return 0;
    if (VL_UNLIKELY(lhs == 0x80000000 && rhs == 0xffffffff)) return 0;
    const int32_t lhs_signed = VL_EXTENDS_II(VL_IDATASIZE, lbits, lhs);
    const int32_t rhs_signed = VL_EXTENDS_II(VL_IDATASIZE, lbits, rhs);
    return lhs_signed % rhs_signed;
}
static inline QData VL_MODDIVS_QQQ(int lbits, QData lhs, QData rhs) VL_PURE {
    if (VL_UNLIKELY(rhs == 0)) return 0;
    if (VL_UNLIKELY(lhs == 0x8000000000000000ULL && rhs == 0xffffffffffffffffULL)) return 0;
    const int64_t lhs_signed = VL_EXTENDS_QQ(VL_QUADSIZE, lbits, lhs);
    const int64_t rhs_signed = VL_EXTENDS_QQ(VL_QUADSIZE, lbits, rhs);
    return lhs_signed % rhs_signed;
}

static inline WDataOutP VL_DIVS_WWW(int lbits, WDataOutP owp, WDataInP const lwp,
                                    WDataInP const rwp) VL_MT_SAFE {
    const int lwords = VL_WORDS_I(lbits);
    const EData lsign = VL_SIGN_E(lbits, lwp[lwords - 1]);
    const EData rsign = VL_SIGN_E(lbits, rwp[lwords - 1]);
    VL_DEBUG_IFDEF(assert(lwords <= VL_MULS_MAX_WORDS););
    // cppcheck-suppress variableScope
    WData lwstore[VL_MULS_MAX_WORDS];  // Fixed size, as MSVC++ doesn't allow [words] here
    // cppcheck-suppress variableScope
    WData rwstore[VL_MULS_MAX_WORDS];
    WDataInP ltup = lwp;
    WDataInP rtup = rwp;
    if (lsign) ltup = _vl_clean_inplace_w(lbits, VL_NEGATE_W(lwords, lwstore, lwp));
    if (rsign) rtup = _vl_clean_inplace_w(lbits, VL_NEGATE_W(lwords, rwstore, rwp));
    if ((lsign && !rsign) || (!lsign && rsign)) {
        WData qNoSign[VL_MULS_MAX_WORDS];
        VL_DIV_WWW(lbits, qNoSign, ltup, rtup);
        _vl_clean_inplace_w(lbits, VL_NEGATE_W(lwords, owp, qNoSign));
        return owp;
    } else {
        return VL_DIV_WWW(lbits, owp, ltup, rtup);
    }
}
static inline WDataOutP VL_MODDIVS_WWW(int lbits, WDataOutP owp, WDataInP const lwp,
                                       WDataInP const rwp) VL_MT_SAFE {
    const int lwords = VL_WORDS_I(lbits);
    const EData lsign = VL_SIGN_E(lbits, lwp[lwords - 1]);
    const EData rsign = VL_SIGN_E(lbits, rwp[lwords - 1]);
    VL_DEBUG_IFDEF(assert(lwords <= VL_MULS_MAX_WORDS););
    // cppcheck-suppress variableScope
    WData lwstore[VL_MULS_MAX_WORDS];  // Fixed size, as MSVC++ doesn't allow [words] here
    // cppcheck-suppress variableScope
    WData rwstore[VL_MULS_MAX_WORDS];
    WDataInP ltup = lwp;
    WDataInP rtup = rwp;
    if (lsign) ltup = _vl_clean_inplace_w(lbits, VL_NEGATE_W(lwords, lwstore, lwp));
    if (rsign) rtup = _vl_clean_inplace_w(lbits, VL_NEGATE_W(lwords, rwstore, rwp));
    if (lsign) {  // Only dividend sign matters for modulus
        WData qNoSign[VL_MULS_MAX_WORDS];
        VL_MODDIV_WWW(lbits, qNoSign, ltup, rtup);
        _vl_clean_inplace_w(lbits, VL_NEGATE_W(lwords, owp, qNoSign));
        return owp;
    } else {
        return VL_MODDIV_WWW(lbits, owp, ltup, rtup);
    }
}

#define VL_POW_IIQ(obits, lbits, rbits, lhs, rhs) VL_POW_QQQ(obits, lbits, rbits, lhs, rhs)
#define VL_POW_IIW(obits, lbits, rbits, lhs, rwp) VL_POW_QQW(obits, lbits, rbits, lhs, rwp)
#define VL_POW_QQI(obits, lbits, rbits, lhs, rhs) VL_POW_QQQ(obits, lbits, rbits, lhs, rhs)
#define VL_POW_WWI(obits, lbits, rbits, owp, lwp, rhs) \
    VL_POW_WWQ(obits, lbits, rbits, owp, lwp, rhs)

static inline IData VL_POW_III(int, int, int rbits, IData lhs, IData rhs) VL_PURE {
    if (VL_UNLIKELY(rhs == 0)) return 1;
    if (VL_UNLIKELY(lhs == 0)) return 0;
    IData power = lhs;
    IData out = 1;
    for (int i = 0; i < rbits; ++i) {
        if (i > 0) power = power * power;
        if (rhs & (1ULL << i)) out *= power;
    }
    return out;
}
static inline QData VL_POW_QQQ(int, int, int rbits, QData lhs, QData rhs) VL_PURE {
    if (VL_UNLIKELY(rhs == 0)) return 1;
    if (VL_UNLIKELY(lhs == 0)) return 0;
    QData power = lhs;
    QData out = 1ULL;
    for (int i = 0; i < rbits; ++i) {
        if (i > 0) power = power * power;
        if (rhs & (1ULL << i)) out *= power;
    }
    return out;
}
WDataOutP VL_POW_WWW(int obits, int, int rbits, WDataOutP owp, WDataInP const lwp,
                     WDataInP const rwp) VL_MT_SAFE;
WDataOutP VL_POW_WWQ(int obits, int, int rbits, WDataOutP owp, WDataInP const lwp,
                     QData rhs) VL_MT_SAFE;
QData VL_POW_QQW(int obits, int, int rbits, QData lhs, WDataInP const rwp) VL_MT_SAFE;

#define VL_POWSS_IIQ(obits, lbits, rbits, lhs, rhs, lsign, rsign) \
    VL_POWSS_QQQ(obits, lbits, rbits, lhs, rhs, lsign, rsign)
#define VL_POWSS_IIQ(obits, lbits, rbits, lhs, rhs, lsign, rsign) \
    VL_POWSS_QQQ(obits, lbits, rbits, lhs, rhs, lsign, rsign)
#define VL_POWSS_IIW(obits, lbits, rbits, lhs, rwp, lsign, rsign) \
    VL_POWSS_QQW(obits, lbits, rbits, lhs, rwp, lsign, rsign)
#define VL_POWSS_QQI(obits, lbits, rbits, lhs, rhs, lsign, rsign) \
    VL_POWSS_QQQ(obits, lbits, rbits, lhs, rhs, lsign, rsign)
#define VL_POWSS_WWI(obits, lbits, rbits, owp, lwp, rhs, lsign, rsign) \
    VL_POWSS_WWQ(obits, lbits, rbits, owp, lwp, rhs, lsign, rsign)

static inline IData VL_POWSS_III(int obits, int, int rbits, IData lhs, IData rhs, bool lsign,
                                 bool rsign) VL_MT_SAFE {
    if (VL_UNLIKELY(rhs == 0)) return 1;
    if (rsign && VL_SIGN_I(rbits, rhs)) {
        if (lhs == 0) {
            return 0;  // "X"
        } else if (lhs == 1) {
            return 1;
        } else if (lsign && lhs == VL_MASK_I(obits)) {  // -1
            if (rhs & 1) {
                return VL_MASK_I(obits);  // -1^odd=-1
            } else {
                return 1;  // -1^even=1
            }
        }
        return 0;
    }
    return VL_POW_III(obits, rbits, rbits, lhs, rhs);
}
static inline QData VL_POWSS_QQQ(int obits, int, int rbits, QData lhs, QData rhs, bool lsign,
                                 bool rsign) VL_MT_SAFE {
    if (VL_UNLIKELY(rhs == 0)) return 1;
    if (rsign && VL_SIGN_Q(rbits, rhs)) {
        if (lhs == 0) {
            return 0;  // "X"
        } else if (lhs == 1) {
            return 1;
        } else if (lsign && lhs == VL_MASK_Q(obits)) {  // -1
            if (rhs & 1) {
                return VL_MASK_Q(obits);  // -1^odd=-1
            } else {
                return 1;  // -1^even=1
            }
        }
        return 0;
    }
    return VL_POW_QQQ(obits, rbits, rbits, lhs, rhs);
}
WDataOutP VL_POWSS_WWW(int obits, int, int rbits, WDataOutP owp, WDataInP const lwp,
                       WDataInP const rwp, bool lsign, bool rsign) VL_MT_SAFE;
WDataOutP VL_POWSS_WWQ(int obits, int, int rbits, WDataOutP owp, WDataInP const lwp, QData rhs,
                       bool lsign, bool rsign) VL_MT_SAFE;
QData VL_POWSS_QQW(int obits, int, int rbits, QData lhs, WDataInP const rwp, bool lsign,
                   bool rsign) VL_MT_SAFE;

//===================================================================
// Concat/replication

// INTERNAL: Stuff LHS bit 0++ into OUTPUT at specified offset
// ld may be "dirty", output is clean
static inline void _vl_insert_II(CData& lhsr, IData ld, int hbit, int lbit, int rbits) VL_PURE {
    const IData cleanmask = VL_MASK_I(rbits);
    const IData insmask = (VL_MASK_I(hbit - lbit + 1)) << lbit;
    lhsr = (lhsr & ~insmask) | ((ld << lbit) & (insmask & cleanmask));
}
static inline void _vl_insert_II(SData& lhsr, IData ld, int hbit, int lbit, int rbits) VL_PURE {
    const IData cleanmask = VL_MASK_I(rbits);
    const IData insmask = (VL_MASK_I(hbit - lbit + 1)) << lbit;
    lhsr = (lhsr & ~insmask) | ((ld << lbit) & (insmask & cleanmask));
}
static inline void _vl_insert_II(IData& lhsr, IData ld, int hbit, int lbit, int rbits) VL_PURE {
    const IData cleanmask = VL_MASK_I(rbits);
    const IData insmask = (VL_MASK_I(hbit - lbit + 1)) << lbit;
    lhsr = (lhsr & ~insmask) | ((ld << lbit) & (insmask & cleanmask));
}
static inline void _vl_insert_QQ(QData& lhsr, QData ld, int hbit, int lbit, int rbits) VL_PURE {
    const QData cleanmask = VL_MASK_Q(rbits);
    const QData insmask = (VL_MASK_Q(hbit - lbit + 1)) << lbit;
    lhsr = (lhsr & ~insmask) | ((ld << lbit) & (insmask & cleanmask));
}
static inline void _vl_insert_WI(WDataOutP iowp, IData ld, int hbit, int lbit,
                                 int rbits = 0) VL_MT_SAFE {
    // Insert value ld into iowp at bit slice [hbit:lbit]. iowp is rbits wide.
    const int hoffset = VL_BITBIT_E(hbit);
    const int loffset = VL_BITBIT_E(lbit);
    const int roffset = VL_BITBIT_E(rbits);
    const int hword = VL_BITWORD_E(hbit);
    const int lword = VL_BITWORD_E(lbit);
    const int rword = VL_BITWORD_E(rbits);
    const EData cleanmask = hword == rword ? VL_MASK_E(roffset) : VL_MASK_E(0);

    if (hoffset == VL_SIZEBITS_E && loffset == 0) {
        // Fast and common case, word based insertion
        iowp[lword] = ld & cleanmask;
    } else {
        const EData lde = static_cast<EData>(ld);
        if (hword == lword) {  // know < EData bits because above checks it
            // Assignment is contained within one word of destination
            const EData insmask = (VL_MASK_E(hoffset - loffset + 1)) << loffset;
            iowp[lword] = (iowp[lword] & ~insmask) | ((lde << loffset) & (insmask & cleanmask));
        } else {
            // Assignment crosses a word boundary in destination
            const EData hinsmask = (VL_MASK_E(hoffset - 0 + 1)) << 0;
            const EData linsmask = (VL_MASK_E((VL_EDATASIZE - 1) - loffset + 1)) << loffset;
            const int nbitsonright = VL_EDATASIZE - loffset;  // bits that end up in lword
            iowp[lword] = (iowp[lword] & ~linsmask) | ((lde << loffset) & linsmask);
            // Prevent unsafe write where lword was final writable location and hword is
            // out-of-bounds.
            if (VL_LIKELY(!(hword == rword && roffset == 0))) {
                iowp[hword]
                    = (iowp[hword] & ~hinsmask) | ((lde >> nbitsonright) & (hinsmask & cleanmask));
            }
        }
    }
}

// Copy bits from lwp[hbit:lbit] to low bits of lhsr. rbits is real width of lshr
static inline void _vl_insert_IW(IData& lhsr, WDataInP const lwp, int hbit, int lbit,
                                 int rbits = 0) VL_MT_SAFE {
    const int hoffset = VL_BITBIT_E(hbit);
    const int loffset = VL_BITBIT_E(lbit);
    const int hword = VL_BITWORD_E(hbit);
    const int lword = VL_BITWORD_E(lbit);
    const IData cleanmask = VL_MASK_I(rbits);
    if (hword == lword) {
        const IData insmask = (VL_MASK_I(hoffset - loffset + 1));
        lhsr = (lhsr & ~insmask) | ((lwp[lword] >> loffset) & (insmask & cleanmask));
    } else {
        const int nbitsonright = VL_IDATASIZE - loffset;  // bits that filled by lword
        const IData hinsmask = (VL_MASK_E(hoffset - 0 + 1)) << nbitsonright;
        const IData linsmask = VL_MASK_E(VL_EDATASIZE - loffset);
        lhsr = (lhsr & ~linsmask) | ((lwp[lword] >> loffset) & (linsmask & cleanmask));
        lhsr = (lhsr & ~hinsmask) | ((lwp[hword] << nbitsonright) & (hinsmask & cleanmask));
    }
}

// INTERNAL: Stuff large LHS bit 0++ into OUTPUT at specified offset
// lwp may be "dirty"
static inline void _vl_insert_WW(WDataOutP iowp, WDataInP const lwp, int hbit, int lbit,
                                 int rbits = 0) VL_MT_SAFE {
    const int hoffset = VL_BITBIT_E(hbit);
    const int loffset = VL_BITBIT_E(lbit);
    const int roffset = VL_BITBIT_E(rbits);
    const int lword = VL_BITWORD_E(lbit);
    const int hword = VL_BITWORD_E(hbit);
    const int rword = VL_BITWORD_E(rbits);
    const int words = VL_WORDS_I(hbit - lbit + 1);
    // Cleaning mask, only applied to top word of the assignment.  Is a no-op
    // if we don't assign to the top word of the destination.
    const EData cleanmask = hword == rword ? VL_MASK_E(roffset) : VL_MASK_E(0);

    if (hoffset == VL_SIZEBITS_E && loffset == 0) {
        // Fast and common case, word based insertion
        for (int i = 0; i < (words - 1); ++i) iowp[lword + i] = lwp[i];
        iowp[hword] = lwp[words - 1] & cleanmask;
    } else if (loffset == 0) {
        // Non-32bit, but nicely aligned, so stuff all but the last word
        for (int i = 0; i < (words - 1); ++i) iowp[lword + i] = lwp[i];
        // Know it's not a full word as above fast case handled it
        const EData hinsmask = (VL_MASK_E(hoffset - 0 + 1));
        iowp[hword] = (iowp[hword] & ~hinsmask) | (lwp[words - 1] & (hinsmask & cleanmask));
    } else {
        const EData hinsmask = (VL_MASK_E(hoffset - 0 + 1)) << 0;
        const EData linsmask = (VL_MASK_E((VL_EDATASIZE - 1) - loffset + 1)) << loffset;
        const int nbitsonright
            = VL_EDATASIZE - loffset;  // bits that end up in lword (know loffset!=0)
        // Middle words
        for (int i = 0; i < words; ++i) {
            {  // Lower word
                const int oword = lword + i;
                const EData d = lwp[i] << loffset;
                const EData od = (iowp[oword] & ~linsmask) | (d & linsmask);
                if (oword == hword) {
                    iowp[oword] = (iowp[oword] & ~hinsmask) | (od & (hinsmask & cleanmask));
                } else {
                    iowp[oword] = od;
                }
            }
            {  // Upper word
                const int oword = lword + i + 1;
                if (oword <= hword) {
                    const EData d = lwp[i] >> nbitsonright;
                    const EData od = (d & ~linsmask) | (iowp[oword] & linsmask);
                    if (oword == hword) {
                        iowp[oword] = (iowp[oword] & ~hinsmask) | (od & (hinsmask & cleanmask));
                    } else {
                        iowp[oword] = od;
                    }
                }
            }
        }
    }
}

static inline void _vl_insert_WQ(WDataOutP iowp, QData ld, int hbit, int lbit,
                                 int rbits = 0) VL_MT_SAFE {
    VlWide<VL_WQ_WORDS_E> lwp;
    VL_SET_WQ(lwp, ld);
    _vl_insert_WW(iowp, lwp, hbit, lbit, rbits);
}

// EMIT_RULE: VL_REPLICATE:  oclean=clean>width32, dirty<=width32; lclean=clean; rclean==clean;
// RHS MUST BE CLEAN CONSTANT.
#define VL_REPLICATE_IOI(lbits, ld, rep) (-(ld))  // Iff lbits==1
#define VL_REPLICATE_QOI(lbits, ld, rep) (-(static_cast<QData>(ld)))  // Iff lbits==1

static inline IData VL_REPLICATE_III(int lbits, IData ld, IData rep) VL_PURE {
    IData returndata = ld;
    for (unsigned i = 1; i < rep; ++i) {
        returndata = returndata << lbits;
        returndata |= ld;
    }
    return returndata;
}
static inline QData VL_REPLICATE_QII(int lbits, IData ld, IData rep) VL_PURE {
    QData returndata = ld;
    for (unsigned i = 1; i < rep; ++i) {
        returndata = returndata << lbits;
        returndata |= static_cast<QData>(ld);
    }
    return returndata;
}
static inline WDataOutP VL_REPLICATE_WII(int lbits, WDataOutP owp, IData ld,
                                         IData rep) VL_MT_SAFE {
    owp[0] = ld;
    // Zeroing all words isn't strictly needed but allows compiler to know
    // it does not need to preserve data in word(s) not being written
    for (unsigned i = 1; i < VL_WORDS_I(static_cast<unsigned>(lbits) * rep); ++i) owp[i] = 0;
    for (unsigned i = 1; i < rep; ++i) {
        _vl_insert_WI(owp, ld, i * lbits + lbits - 1, i * lbits);
    }
    return owp;
}
static inline WDataOutP VL_REPLICATE_WQI(int lbits, WDataOutP owp, QData ld,
                                         IData rep) VL_MT_SAFE {
    VL_SET_WQ(owp, ld);
    // Zeroing all words isn't strictly needed but allows compiler to know
    // it does not need to preserve data in word(s) not being written
    for (unsigned i = 2; i < VL_WORDS_I(static_cast<unsigned>(lbits) * rep); ++i) owp[i] = 0;
    for (unsigned i = 1; i < rep; ++i) {
        _vl_insert_WQ(owp, ld, i * lbits + lbits - 1, i * lbits);
    }
    return owp;
}
static inline WDataOutP VL_REPLICATE_WWI(int lbits, WDataOutP owp, WDataInP const lwp,
                                         IData rep) VL_MT_SAFE {
    for (unsigned i = 0; i < VL_WORDS_I(static_cast<unsigned>(lbits)); ++i) owp[i] = lwp[i];
    // Zeroing all words isn't strictly needed but allows compiler to know
    // it does not need to preserve data in word(s) not being written
    for (unsigned i = VL_WORDS_I(static_cast<unsigned>(lbits));
         i < VL_WORDS_I(static_cast<unsigned>(lbits * rep)); ++i)
        owp[i] = 0;
    for (unsigned i = 1; i < rep; ++i) {
        _vl_insert_WW(owp, lwp, i * lbits + lbits - 1, i * lbits);
    }
    return owp;
}

// Left stream operator. Output will always be clean. LHS and RHS must be clean.
// Special "fast" versions for slice sizes that are a power of 2. These use
// shifts and masks to execute faster than the slower for-loop approach where a
// subset of bits is copied in during each iteration.
static inline IData VL_STREAML_FAST_III(int lbits, IData ld, IData rd_log2) VL_PURE {
    // Pre-shift bits in most-significant slice:
    //
    // If lbits is not a multiple of the slice size (i.e., lbits % rd != 0),
    // then we end up with a "gap" in our reversed result. For example, if we
    // have a 5-bit Verilog signal (lbits=5) in an 8-bit C data type:
    //
    //   ld = ---43210
    //
    // (where numbers are the Verilog signal bit numbers and '-' is an unused bit).
    // Executing the switch statement below with a slice size of two (rd=2,
    // rd_log2=1) produces:
    //
    //   ret = 1032-400
    //
    // Pre-shifting the bits in the most-significant slice allows us to avoid
    // this gap in the shuffled data:
    //
    //   ld_adjusted = --4-3210
    //   ret = 10324---
    IData ret = ld;
    if (rd_log2) {
        const uint32_t lbitsFloor = lbits & ~VL_MASK_I(rd_log2);  // max multiple of rd <= lbits
        const uint32_t lbitsRem = lbits - lbitsFloor;  // number of bits in most-sig slice (MSS)
        const IData msbMask = lbitsFloor == 32 ? 0UL : VL_MASK_I(lbitsRem) << lbitsFloor;
        ret = (ret & ~msbMask) | ((ret & msbMask) << ((VL_UL(1) << rd_log2) - lbitsRem));
    }
    switch (rd_log2) {
    case 0: ret = ((ret >> 1) & VL_UL(0x55555555)) | ((ret & VL_UL(0x55555555)) << 1);  // FALLTHRU
    case 1: ret = ((ret >> 2) & VL_UL(0x33333333)) | ((ret & VL_UL(0x33333333)) << 2);  // FALLTHRU
    case 2: ret = ((ret >> 4) & VL_UL(0x0f0f0f0f)) | ((ret & VL_UL(0x0f0f0f0f)) << 4);  // FALLTHRU
    case 3: ret = ((ret >> 8) & VL_UL(0x00ff00ff)) | ((ret & VL_UL(0x00ff00ff)) << 8);  // FALLTHRU
    case 4: ret = ((ret >> 16) | (ret << 16));  // FALLTHRU
    default:;
    }
    return ret >> (VL_IDATASIZE - lbits);
}

static inline QData VL_STREAML_FAST_QQI(int lbits, QData ld, IData rd_log2) VL_PURE {
    // Pre-shift bits in most-significant slice (see comment in VL_STREAML_FAST_III)
    QData ret = ld;
    if (rd_log2) {
        const uint32_t lbitsFloor = lbits & ~VL_MASK_I(rd_log2);
        const uint32_t lbitsRem = lbits - lbitsFloor;
        const QData msbMask = lbitsFloor == 64 ? 0ULL : VL_MASK_Q(lbitsRem) << lbitsFloor;
        ret = (ret & ~msbMask) | ((ret & msbMask) << ((1ULL << rd_log2) - lbitsRem));
    }
    switch (rd_log2) {
    case 0:
        ret = (((ret >> 1) & 0x5555555555555555ULL)
               | ((ret & 0x5555555555555555ULL) << 1));  // FALLTHRU
    case 1:
        ret = (((ret >> 2) & 0x3333333333333333ULL)
               | ((ret & 0x3333333333333333ULL) << 2));  // FALLTHRU
    case 2:
        ret = (((ret >> 4) & 0x0f0f0f0f0f0f0f0fULL)
               | ((ret & 0x0f0f0f0f0f0f0f0fULL) << 4));  // FALLTHRU
    case 3:
        ret = (((ret >> 8) & 0x00ff00ff00ff00ffULL)
               | ((ret & 0x00ff00ff00ff00ffULL) << 8));  // FALLTHRU
    case 4:
        ret = (((ret >> 16) & 0x0000ffff0000ffffULL)
               | ((ret & 0x0000ffff0000ffffULL) << 16));  // FALLTHRU
    case 5: ret = ((ret >> 32) | (ret << 32));  // FALLTHRU
    default:;
    }
    return ret >> (VL_QUADSIZE - lbits);
}

// Regular "slow" streaming operators
static inline IData VL_STREAML_III(int lbits, IData ld, IData rd) VL_PURE {
    IData ret = 0;
    // Slice size should never exceed the lhs width
    const IData mask = VL_MASK_I(rd);
    for (int istart = 0; istart < lbits; istart += rd) {
        int ostart = lbits - rd - istart;
        ostart = ostart > 0 ? ostart : 0;
        ret |= ((ld >> istart) & mask) << ostart;
    }
    return ret;
}

static inline QData VL_STREAML_QQI(int lbits, QData ld, IData rd) VL_PURE {
    QData ret = 0;
    // Slice size should never exceed the lhs width
    const QData mask = VL_MASK_Q(rd);
    for (int istart = 0; istart < lbits; istart += rd) {
        int ostart = lbits - rd - istart;
        ostart = ostart > 0 ? ostart : 0;
        ret |= ((ld >> istart) & mask) << ostart;
    }
    return ret;
}

static inline WDataOutP VL_STREAML_WWI(int lbits, WDataOutP owp, WDataInP const lwp,
                                       IData rd) VL_MT_SAFE {
    VL_ZERO_W(lbits, owp);
    // Slice size should never exceed the lhs width
    const int ssize = (rd < static_cast<IData>(lbits)) ? rd : (static_cast<IData>(lbits));
    for (int istart = 0; istart < lbits; istart += rd) {
        int ostart = lbits - rd - istart;
        ostart = ostart > 0 ? ostart : 0;
        for (int sbit = 0; sbit < ssize && sbit < lbits - istart; ++sbit) {
            // Extract a single bit from lwp and shift it to the correct
            // location for owp.
            const EData bit = (VL_BITRSHIFT_W(lwp, (istart + sbit)) & 1)
                              << VL_BITBIT_E(ostart + sbit);
            owp[VL_BITWORD_E(ostart + sbit)] |= bit;
        }
    }
    return owp;
}

static inline IData VL_PACK_I_RI(int obits, int lbits, const VlQueue<CData>& q) {
    IData ret = 0;
    for (size_t i = 0; i < q.size(); ++i)
        ret |= static_cast<IData>(q.at(q.size() - 1 - i)) << (i * lbits);
    return ret;
}

static inline IData VL_PACK_I_RI(int obits, int lbits, const VlQueue<SData>& q) {
    IData ret = 0;
    for (size_t i = 0; i < q.size(); ++i)
        ret |= static_cast<IData>(q.at(q.size() - 1 - i)) << (i * lbits);
    return ret;
}

static inline IData VL_PACK_I_RI(int obits, int lbits, const VlQueue<IData>& q) {
    IData ret = 0;
    for (size_t i = 0; i < q.size(); ++i) ret |= q.at(q.size() - 1 - i) << (i * lbits);
    return ret;
}

template <std::size_t N_Depth>
static inline IData VL_PACK_I_UI(int obits, int lbits, const VlUnpacked<CData, N_Depth>& q) {
    IData ret = 0;
    for (size_t i = 0; i < N_Depth; ++i)
        ret |= static_cast<IData>(q[N_Depth - 1 - i]) << (i * lbits);
    return ret;
}

template <std::size_t N_Depth>
static inline IData VL_PACK_I_UI(int obits, int lbits, const VlUnpacked<SData, N_Depth>& q) {
    IData ret = 0;
    for (size_t i = 0; i < N_Depth; ++i)
        ret |= static_cast<IData>(q[N_Depth - 1 - i]) << (i * lbits);
    return ret;
}

template <std::size_t N_Depth>
static inline IData VL_PACK_I_UI(int obits, int lbits, const VlUnpacked<IData, N_Depth>& q) {
    IData ret = 0;
    for (size_t i = 0; i < N_Depth; ++i) ret |= q[N_Depth - 1 - i] << (i * lbits);
    return ret;
}

static inline QData VL_PACK_Q_RI(int obits, int lbits, const VlQueue<CData>& q) {
    QData ret = 0;
    for (size_t i = 0; i < q.size(); ++i)
        ret |= static_cast<QData>(q.at(q.size() - 1 - i)) << (i * lbits);
    return ret;
}

static inline QData VL_PACK_Q_RI(int obits, int lbits, const VlQueue<SData>& q) {
    QData ret = 0;
    for (size_t i = 0; i < q.size(); ++i)
        ret |= static_cast<QData>(q.at(q.size() - 1 - i)) << (i * lbits);
    return ret;
}

static inline QData VL_PACK_Q_RI(int obits, int lbits, const VlQueue<IData>& q) {
    QData ret = 0;
    for (size_t i = 0; i < q.size(); ++i)
        ret |= static_cast<QData>(q.at(q.size() - 1 - i)) << (i * lbits);
    return ret;
}

template <std::size_t N_Depth>
static inline QData VL_PACK_Q_UI(int obits, int lbits, const VlUnpacked<CData, N_Depth>& q) {
    QData ret = 0;
    for (size_t i = 0; i < N_Depth; ++i)
        ret |= static_cast<QData>(q[N_Depth - 1 - i]) << (i * lbits);
    return ret;
}

template <std::size_t N_Depth>
static inline QData VL_PACK_Q_UI(int obits, int lbits, const VlUnpacked<SData, N_Depth>& q) {
    QData ret = 0;
    for (size_t i = 0; i < N_Depth; ++i)
        ret |= static_cast<QData>(q[N_Depth - 1 - i]) << (i * lbits);
    return ret;
}

template <std::size_t N_Depth>
static inline QData VL_PACK_Q_UI(int obits, int lbits, const VlUnpacked<IData, N_Depth>& q) {
    QData ret = 0;
    for (size_t i = 0; i < N_Depth; ++i)
        ret |= static_cast<QData>(q[N_Depth - 1 - i]) << (i * lbits);
    return ret;
}

static inline QData VL_PACK_Q_RQ(int obits, int lbits, const VlQueue<QData>& q) {
    QData ret = 0;
    for (size_t i = 0; i < q.size(); ++i) ret |= q.at(q.size() - 1 - i) << (i * lbits);
    return ret;
}

template <std::size_t N_Depth>
static inline QData VL_PACK_Q_UQ(int obits, int lbits, const VlUnpacked<QData, N_Depth>& q) {
    QData ret = 0;
    for (size_t i = 0; i < N_Depth; ++i) ret |= q[N_Depth - 1 - i] << (i * lbits);
    return ret;
}

static inline WDataOutP VL_PACK_W_RI(int obits, int lbits, WDataOutP owp,
                                     const VlQueue<CData>& q) {
    VL_MEMSET_ZERO_W(owp + 1, VL_WORDS_I(obits) - 1);
    for (size_t i = 0; i < q.size(); ++i)
        _vl_insert_WI(owp, q.at(q.size() - i - 1), i * lbits + lbits - 1, i * lbits);
    return owp;
}

static inline WDataOutP VL_PACK_W_RI(int obits, int lbits, WDataOutP owp,
                                     const VlQueue<SData>& q) {
    VL_MEMSET_ZERO_W(owp + 1, VL_WORDS_I(obits) - 1);
    for (size_t i = 0; i < q.size(); ++i)
        _vl_insert_WI(owp, q.at(q.size() - i - 1), i * lbits + lbits - 1, i * lbits);
    return owp;
}

static inline WDataOutP VL_PACK_W_RI(int obits, int lbits, WDataOutP owp,
                                     const VlQueue<IData>& q) {
    VL_MEMSET_ZERO_W(owp + 1, VL_WORDS_I(obits) - 1);
    for (size_t i = 0; i < q.size(); ++i)
        _vl_insert_WI(owp, q.at(q.size() - 1 - i), i * lbits + lbits - 1, i * lbits);
    return owp;
}

template <std::size_t N_Depth>
static inline WDataOutP VL_PACK_W_UI(int obits, int lbits, WDataOutP owp,
                                     const VlUnpacked<CData, N_Depth>& q) {
    VL_MEMSET_ZERO_W(owp + 1, VL_WORDS_I(obits) - 1);
    for (size_t i = 0; i < N_Depth; ++i)
        _vl_insert_WI(owp, q[N_Depth - 1 - i], i * lbits + lbits - 1, i * lbits);
    return owp;
}

template <std::size_t N_Depth>
static inline WDataOutP VL_PACK_W_UI(int obits, int lbits, WDataOutP owp,
                                     const VlUnpacked<SData, N_Depth>& q) {
    VL_MEMSET_ZERO_W(owp + 1, VL_WORDS_I(obits) - 1);
    for (size_t i = 0; i < N_Depth; ++i)
        _vl_insert_WI(owp, q[N_Depth - 1 - i], i * lbits + lbits - 1, i * lbits);
    return owp;
}

template <std::size_t N_Depth>
static inline WDataOutP VL_PACK_W_UI(int obits, int lbits, WDataOutP owp,
                                     const VlUnpacked<IData, N_Depth>& q) {
    VL_MEMSET_ZERO_W(owp + 1, VL_WORDS_I(obits) - 1);
    for (size_t i = 0; i < N_Depth; ++i)
        _vl_insert_WI(owp, q[N_Depth - 1 - i], i * lbits + lbits - 1, i * lbits);
    return owp;
}

static inline WDataOutP VL_PACK_W_RQ(int obits, int lbits, WDataOutP owp,
                                     const VlQueue<QData>& q) {
    VL_MEMSET_ZERO_W(owp + 1, VL_WORDS_I(obits) - 1);
    for (size_t i = 0; i < q.size(); ++i)
        _vl_insert_WQ(owp, q.at(q.size() - 1 - i), i * lbits + lbits - 1, i * lbits);
    return owp;
}

template <std::size_t N_Depth>
static inline WDataOutP VL_PACK_W_UQ(int obits, int lbits, WDataOutP owp,
                                     const VlUnpacked<QData, N_Depth>& q) {
    VL_MEMSET_ZERO_W(owp + 1, VL_WORDS_I(obits) - 1);
    for (size_t i = 0; i < N_Depth; ++i)
        _vl_insert_WQ(owp, q[N_Depth - 1 - i], i * lbits + lbits - 1, i * lbits);
    return owp;
}

template <std::size_t N_Words>
static inline WDataOutP VL_PACK_W_RW(int obits, int lbits, WDataOutP owp,
                                     const VlQueue<VlWide<N_Words>>& q) {
    VL_MEMSET_ZERO_W(owp + 1, VL_WORDS_I(obits) - 1);
    for (size_t i = 0; i < q.size(); ++i)
        _vl_insert_WW(owp, q.at(q.size() - 1 - i), i * lbits + lbits - 1, i * lbits);
    return owp;
}

template <std::size_t N_Depth, std::size_t N_Words>
static inline WDataOutP VL_PACK_W_UW(int obits, int lbits, WDataOutP owp,
                                     const VlUnpacked<VlWide<N_Words>, N_Depth>& q) {
    VL_MEMSET_ZERO_W(owp + 1, VL_WORDS_I(obits) - 1);
    for (size_t i = 0; i < N_Depth; ++i)
        _vl_insert_WW(owp, q[N_Depth - 1 - i], i * lbits + lbits - 1, i * lbits);
    return owp;
}

// Because concats are common and wide, it's valuable to always have a clean output.
// Thus we specify inputs must be clean, so we don't need to clean the output.
// Note the bit shifts are always constants, so the adds in these constify out.
// Casts required, as args may be 8 bit entities, and need to shift to appropriate output size
#define VL_CONCAT_III(obits, lbits, rbits, ld, rd) \
    (static_cast<IData>(ld) << (rbits) | static_cast<IData>(rd))
#define VL_CONCAT_QII(obits, lbits, rbits, ld, rd) \
    (static_cast<QData>(ld) << (rbits) | static_cast<QData>(rd))
#define VL_CONCAT_QIQ(obits, lbits, rbits, ld, rd) \
    (static_cast<QData>(ld) << (rbits) | static_cast<QData>(rd))
#define VL_CONCAT_QQI(obits, lbits, rbits, ld, rd) \
    (static_cast<QData>(ld) << (rbits) | static_cast<QData>(rd))
#define VL_CONCAT_QQQ(obits, lbits, rbits, ld, rd) \
    (static_cast<QData>(ld) << (rbits) | static_cast<QData>(rd))

static inline WDataOutP VL_CONCAT_WII(int obits, int lbits, int rbits, WDataOutP owp, IData ld,
                                      IData rd) VL_MT_SAFE {
    owp[0] = rd;
    VL_MEMSET_ZERO_W(owp + 1, VL_WORDS_I(obits) - 1);
    _vl_insert_WI(owp, ld, rbits + lbits - 1, rbits);
    return owp;
}
static inline WDataOutP VL_CONCAT_WWI(int obits, int lbits, int rbits, WDataOutP owp,
                                      WDataInP const lwp, IData rd) VL_MT_SAFE {
    owp[0] = rd;
    VL_MEMSET_ZERO_W(owp + 1, VL_WORDS_I(obits) - 1);
    _vl_insert_WW(owp, lwp, rbits + lbits - 1, rbits);
    return owp;
}
static inline WDataOutP VL_CONCAT_WIW(int obits, int lbits, int rbits, WDataOutP owp, IData ld,
                                      WDataInP const rwp) VL_MT_SAFE {
    const int rwords = VL_WORDS_I(rbits);
    VL_MEMCPY_W(owp, rwp, rwords);
    VL_MEMSET_ZERO_W(owp + rwords, VL_WORDS_I(obits) - rwords);
    _vl_insert_WI(owp, ld, rbits + lbits - 1, rbits);
    return owp;
}
static inline WDataOutP VL_CONCAT_WIQ(int obits, int lbits, int rbits, WDataOutP owp, IData ld,
                                      QData rd) VL_MT_SAFE {
    VL_SET_WQ(owp, rd);
    VL_MEMSET_ZERO_W(owp + VL_WQ_WORDS_E, VL_WORDS_I(obits) - VL_WQ_WORDS_E);
    _vl_insert_WI(owp, ld, rbits + lbits - 1, rbits);
    return owp;
}
static inline WDataOutP VL_CONCAT_WQI(int obits, int lbits, int rbits, WDataOutP owp, QData ld,
                                      IData rd) VL_MT_SAFE {
    owp[0] = rd;
    VL_MEMSET_ZERO_W(owp + 1, VL_WORDS_I(obits) - 1);
    _vl_insert_WQ(owp, ld, rbits + lbits - 1, rbits);
    return owp;
}
static inline WDataOutP VL_CONCAT_WQQ(int obits, int lbits, int rbits, WDataOutP owp, QData ld,
                                      QData rd) VL_MT_SAFE {
    VL_SET_WQ(owp, rd);
    VL_MEMSET_ZERO_W(owp + VL_WQ_WORDS_E, VL_WORDS_I(obits) - VL_WQ_WORDS_E);
    _vl_insert_WQ(owp, ld, rbits + lbits - 1, rbits);
    return owp;
}
static inline WDataOutP VL_CONCAT_WWQ(int obits, int lbits, int rbits, WDataOutP owp,
                                      WDataInP const lwp, QData rd) VL_MT_SAFE {
    VL_SET_WQ(owp, rd);
    VL_MEMSET_ZERO_W(owp + VL_WQ_WORDS_E, VL_WORDS_I(obits) - VL_WQ_WORDS_E);
    _vl_insert_WW(owp, lwp, rbits + lbits - 1, rbits);
    return owp;
}
static inline WDataOutP VL_CONCAT_WQW(int obits, int lbits, int rbits, WDataOutP owp, QData ld,
                                      WDataInP const rwp) VL_MT_SAFE {
    const int rwords = VL_WORDS_I(rbits);
    VL_MEMCPY_W(owp, rwp, rwords);
    VL_MEMSET_ZERO_W(owp + rwords, VL_WORDS_I(obits) - rwords);
    _vl_insert_WQ(owp, ld, rbits + lbits - 1, rbits);
    return owp;
}
static inline WDataOutP VL_CONCAT_WWW(int obits, int lbits, int rbits, WDataOutP owp,
                                      WDataInP const lwp, WDataInP const rwp) VL_MT_SAFE {
    const int rwords = VL_WORDS_I(rbits);
    VL_MEMCPY_W(owp, rwp, rwords);
    VL_MEMSET_ZERO_W(owp + rwords, VL_WORDS_I(obits) - rwords);
    _vl_insert_WW(owp, lwp, rbits + lbits - 1, rbits);
    return owp;
}

//===================================================================
// Shifts

// Static shift, used by internal functions
// The output is the same as the input - it overlaps!
static inline void _vl_shiftl_inplace_w(int obits, WDataOutP iowp,
                                        IData rd /*1 or 4*/) VL_MT_SAFE {
    const int words = VL_WORDS_I(obits);
    const EData linsmask = VL_MASK_E(rd);
    for (int i = words - 1; i >= 1; --i) {
        iowp[i]
            = ((iowp[i] << rd) & ~linsmask) | ((iowp[i - 1] >> (VL_EDATASIZE - rd)) & linsmask);
    }
    iowp[0] = ((iowp[0] << rd) & ~linsmask);
    iowp[VL_WORDS_I(obits) - 1] &= VL_MASK_E(obits);
}

// EMIT_RULE: VL_SHIFTL:  oclean=lclean; rclean==clean;
// Important: Unlike most other funcs, the shift might well be a computed
// expression.  Thus consider this when optimizing.  (And perhaps have 2 funcs?)
// If RHS (rd/rwp) is larger than the output, zeros (or all ones for >>>) must be returned
// (This corresponds to AstShift*Ovr Ast nodes)
static inline IData VL_SHIFTL_III(int obits, int, int, IData lhs, IData rhs) VL_MT_SAFE {
    if (VL_UNLIKELY(rhs >= VL_IDATASIZE)) return 0;
    return lhs << rhs;  // Small is common so not clean return
}
static inline IData VL_SHIFTL_IIQ(int obits, int, int, IData lhs, QData rhs) VL_MT_SAFE {
    if (VL_UNLIKELY(rhs >= VL_IDATASIZE)) return 0;
    return VL_CLEAN_II(obits, obits, lhs << rhs);
}
static inline QData VL_SHIFTL_QQI(int obits, int, int, QData lhs, IData rhs) VL_MT_SAFE {
    if (VL_UNLIKELY(rhs >= VL_QUADSIZE)) return 0;
    return lhs << rhs;  // Small is common so not clean return
}
static inline QData VL_SHIFTL_QQQ(int obits, int, int, QData lhs, QData rhs) VL_MT_SAFE {
    if (VL_UNLIKELY(rhs >= VL_QUADSIZE)) return 0;
    return VL_CLEAN_QQ(obits, obits, lhs << rhs);
}
static inline WDataOutP VL_SHIFTL_WWI(int obits, int, int, WDataOutP owp, WDataInP const lwp,
                                      IData rd) VL_MT_SAFE {
    const int word_shift = VL_BITWORD_E(rd);
    const int bit_shift = VL_BITBIT_E(rd);
    if (rd >= static_cast<IData>(obits)) {  // rd may be huge with MSB set
        for (int i = 0; i < VL_WORDS_I(obits); ++i) owp[i] = 0;
    } else if (bit_shift == 0) {  // Aligned word shift (<<0,<<32,<<64 etc)
        for (int i = 0; i < word_shift; ++i) owp[i] = 0;
        for (int i = word_shift; i < VL_WORDS_I(obits); ++i) owp[i] = lwp[i - word_shift];
    } else {
        for (int i = 0; i < VL_WORDS_I(obits); ++i) owp[i] = 0;
        _vl_insert_WW(owp, lwp, obits - 1, rd);
    }
    return owp;
}
static inline WDataOutP VL_SHIFTL_WWW(int obits, int lbits, int rbits, WDataOutP owp,
                                      WDataInP const lwp, WDataInP const rwp) VL_MT_SAFE {
    for (int i = 1; i < VL_WORDS_I(rbits); ++i) {
        if (VL_UNLIKELY(rwp[i])) {  // Huge shift 1>>32 or more
            return VL_ZERO_W(obits, owp);
        }
    }
    return VL_SHIFTL_WWI(obits, lbits, 32, owp, lwp, rwp[0]);
}
static inline WDataOutP VL_SHIFTL_WWQ(int obits, int lbits, int rbits, WDataOutP owp,
                                      WDataInP const lwp, QData rd) VL_MT_SAFE {
    VlWide<VL_WQ_WORDS_E> rwp;
    VL_SET_WQ(rwp, rd);
    return VL_SHIFTL_WWW(obits, lbits, rbits, owp, lwp, rwp);
}
static inline IData VL_SHIFTL_IIW(int obits, int, int rbits, IData lhs,
                                  WDataInP const rwp) VL_MT_SAFE {
    for (int i = 1; i < VL_WORDS_I(rbits); ++i) {
        if (VL_UNLIKELY(rwp[i])) {  // Huge shift 1>>32 or more
            return 0;
        }
    }
    return VL_SHIFTL_III(obits, obits, 32, lhs, rwp[0]);
}
static inline QData VL_SHIFTL_QQW(int obits, int, int rbits, QData lhs,
                                  WDataInP const rwp) VL_MT_SAFE {
    for (int i = 1; i < VL_WORDS_I(rbits); ++i) {
        if (VL_UNLIKELY(rwp[i])) {  // Huge shift 1>>32 or more
            return 0;
        }
    }
    // Above checks rwp[1]==0 so not needed in below shift
    return VL_SHIFTL_QQI(obits, obits, 32, lhs, rwp[0]);
}

// EMIT_RULE: VL_SHIFTR:  oclean=lclean; rclean==clean;
// Important: Unlike most other funcs, the shift might well be a computed
// expression.  Thus consider this when optimizing.  (And perhaps have 2 funcs?)
static inline IData VL_SHIFTR_III(int obits, int, int, IData lhs, IData rhs) VL_PURE {
    if (VL_UNLIKELY(rhs >= VL_IDATASIZE)) return 0;
    return lhs >> rhs;  // Small is common so assumed not clean
}
static inline IData VL_SHIFTR_IIQ(int obits, int, int, IData lhs, QData rhs) VL_PURE {
    if (VL_UNLIKELY(rhs >= VL_IDATASIZE)) return 0;
    return VL_CLEAN_QQ(obits, obits, lhs >> rhs);
}
static inline QData VL_SHIFTR_QQI(int obits, int, int, QData lhs, IData rhs) VL_PURE {
    if (VL_UNLIKELY(rhs >= VL_QUADSIZE)) return 0;
    return lhs >> rhs;  // Small is common so assumed not clean
}
static inline QData VL_SHIFTR_QQQ(int obits, int, int, QData lhs, QData rhs) VL_PURE {
    if (VL_UNLIKELY(rhs >= VL_QUADSIZE)) return 0;
    return VL_CLEAN_QQ(obits, obits, lhs >> rhs);
}
static inline WDataOutP VL_SHIFTR_WWI(int obits, int, int, WDataOutP owp, WDataInP const lwp,
                                      IData rd) VL_MT_SAFE {
    const int word_shift = VL_BITWORD_E(rd);  // Maybe 0
    const int bit_shift = VL_BITBIT_E(rd);
    if (rd >= static_cast<IData>(obits)) {  // rd may be huge with MSB set
        for (int i = 0; i < VL_WORDS_I(obits); ++i) owp[i] = 0;
    } else if (bit_shift == 0) {  // Aligned word shift (>>0,>>32,>>64 etc)
        const int copy_words = (VL_WORDS_I(obits) - word_shift);
        for (int i = 0; i < copy_words; ++i) owp[i] = lwp[i + word_shift];
        for (int i = copy_words; i < VL_WORDS_I(obits); ++i) owp[i] = 0;
    } else {
        const int loffset = rd & VL_SIZEBITS_E;
        const int nbitsonright = VL_EDATASIZE - loffset;  // bits that end up in lword (know
                                                          // loffset!=0) Middle words
        const int words = VL_WORDS_I(obits - rd);
        for (int i = 0; i < words; ++i) {
            owp[i] = lwp[i + word_shift] >> loffset;
            const int upperword = i + word_shift + 1;
            if (upperword < VL_WORDS_I(obits)) owp[i] |= lwp[upperword] << nbitsonright;
        }
        for (int i = words; i < VL_WORDS_I(obits); ++i) owp[i] = 0;
    }
    return owp;
}
static inline WDataOutP VL_SHIFTR_WWW(int obits, int lbits, int rbits, WDataOutP owp,
                                      WDataInP const lwp, WDataInP const rwp) VL_MT_SAFE {
    for (int i = 1; i < VL_WORDS_I(rbits); ++i) {
        if (VL_UNLIKELY(rwp[i])) {  // Huge shift 1>>32 or more
            return VL_ZERO_W(obits, owp);
        }
    }
    return VL_SHIFTR_WWI(obits, lbits, 32, owp, lwp, rwp[0]);
}
static inline WDataOutP VL_SHIFTR_WWQ(int obits, int lbits, int rbits, WDataOutP owp,
                                      WDataInP const lwp, QData rd) VL_MT_SAFE {
    VlWide<VL_WQ_WORDS_E> rwp;
    VL_SET_WQ(rwp, rd);
    return VL_SHIFTR_WWW(obits, lbits, rbits, owp, lwp, rwp);
}

static inline IData VL_SHIFTR_IIW(int obits, int, int rbits, IData lhs,
                                  WDataInP const rwp) VL_PURE {
    for (int i = 1; i < VL_WORDS_I(rbits); ++i) {
        if (VL_UNLIKELY(rwp[i])) return 0;  // Huge shift 1>>32 or more
    }
    return VL_SHIFTR_III(obits, obits, 32, lhs, rwp[0]);
}
static inline QData VL_SHIFTR_QQW(int obits, int, int rbits, QData lhs,
                                  WDataInP const rwp) VL_PURE {
    for (int i = 1; i < VL_WORDS_I(rbits); ++i) {
        if (VL_UNLIKELY(rwp[i])) return 0;  // Huge shift 1>>32 or more
    }
    return VL_SHIFTR_QQI(obits, obits, 32, lhs, rwp[0]);
}

// EMIT_RULE: VL_SHIFTRS:  oclean=false; lclean=clean, rclean==clean;
static inline IData VL_SHIFTRS_III(int obits, int lbits, int, IData lhs, IData rhs) VL_PURE {
    // Note the C standard does not specify the >> operator as a arithmetic shift!
    // IEEE says signed if output signed, but bit position from lbits;
    // must use lbits for sign; lbits might != obits,
    // an EXTEND(SHIFTRS(...)) can became a SHIFTRS(...) within same 32/64 bit word length
    const IData sign = -(lhs >> (lbits - 1));  // ffff_ffff if negative
    if (VL_UNLIKELY(rhs >= VL_IDATASIZE)) return sign & VL_MASK_I(obits);
    const IData signext = ~(VL_MASK_I(lbits) >> rhs);  // One with bits where we've shifted "past"
    return (lhs >> rhs) | (sign & VL_CLEAN_II(obits, obits, signext));
}
static inline QData VL_SHIFTRS_QQI(int obits, int lbits, int, QData lhs, IData rhs) VL_PURE {
    const QData sign = -(lhs >> (lbits - 1));
    if (VL_UNLIKELY(rhs >= VL_QUADSIZE)) return sign & VL_MASK_Q(obits);
    const QData signext = ~(VL_MASK_Q(lbits) >> rhs);
    return (lhs >> rhs) | (sign & VL_CLEAN_QQ(obits, obits, signext));
}
static inline IData VL_SHIFTRS_IQI(int obits, int lbits, int rbits, QData lhs, IData rhs) VL_PURE {
    return static_cast<IData>(VL_SHIFTRS_QQI(obits, lbits, rbits, lhs, rhs));
}
static inline WDataOutP VL_SHIFTRS_WWI(int obits, int lbits, int, WDataOutP owp,
                                       WDataInP const lwp, IData rd) VL_MT_SAFE {
    const int word_shift = VL_BITWORD_E(rd);
    const int bit_shift = VL_BITBIT_E(rd);
    const int lmsw = VL_WORDS_I(obits) - 1;
    const EData sign = VL_SIGNONES_E(lbits, lwp[lmsw]);
    if (rd >= static_cast<IData>(obits)) {  // Shifting past end, sign in all of lbits
        for (int i = 0; i <= lmsw; ++i) owp[i] = sign;
        owp[lmsw] &= VL_MASK_E(lbits);
    } else if (bit_shift == 0) {  // Aligned word shift (>>0,>>32,>>64 etc)
        const int copy_words = (VL_WORDS_I(obits) - word_shift);
        for (int i = 0; i < copy_words; ++i) owp[i] = lwp[i + word_shift];
        if (copy_words >= 0) owp[copy_words - 1] |= ~VL_MASK_E(obits) & sign;
        for (int i = copy_words; i < VL_WORDS_I(obits); ++i) owp[i] = sign;
        owp[lmsw] &= VL_MASK_E(lbits);
    } else {
        const int loffset = rd & VL_SIZEBITS_E;
        const int nbitsonright
            = VL_EDATASIZE - loffset;  // bits that end up in lword (know loffset!=0)
        // Middle words
        const int words = VL_WORDS_I(obits - rd);
        for (int i = 0; i < words; ++i) {
            owp[i] = lwp[i + word_shift] >> loffset;
            const int upperword = i + word_shift + 1;
            if (upperword < VL_WORDS_I(obits)) owp[i] |= lwp[upperword] << nbitsonright;
        }
        if (words) owp[words - 1] |= sign & ~VL_MASK_E(obits - loffset);
        for (int i = words; i < VL_WORDS_I(obits); ++i) owp[i] = sign;
        owp[lmsw] &= VL_MASK_E(lbits);
    }
    return owp;
}
static inline WDataOutP VL_SHIFTRS_WWW(int obits, int lbits, int rbits, WDataOutP owp,
                                       WDataInP const lwp, WDataInP const rwp) VL_MT_SAFE {
    EData overshift = 0;  // Huge shift 1>>32 or more
    for (int i = 1; i < VL_WORDS_I(rbits); ++i) overshift |= rwp[i];
    if (VL_UNLIKELY(overshift || rwp[0] >= static_cast<IData>(obits))) {
        const int owords = VL_WORDS_I(obits);
        if (VL_SIGN_E(lbits, lwp[owords - 1])) {
            VL_MEMSET_ONES_W(owp, owords);
            owp[owords - 1] &= VL_MASK_E(lbits);
        } else {
            VL_MEMSET_ZERO_W(owp, owords);
        }
        return owp;
    }
    return VL_SHIFTRS_WWI(obits, lbits, 32, owp, lwp, rwp[0]);
}
static inline WDataOutP VL_SHIFTRS_WWQ(int obits, int lbits, int rbits, WDataOutP owp,
                                       WDataInP const lwp, QData rd) VL_MT_SAFE {
    VlWide<VL_WQ_WORDS_E> rwp;
    VL_SET_WQ(rwp, rd);
    return VL_SHIFTRS_WWW(obits, lbits, rbits, owp, lwp, rwp);
}
static inline IData VL_SHIFTRS_IIW(int obits, int lbits, int rbits, IData lhs,
                                   WDataInP const rwp) VL_PURE {
    EData overshift = 0;  // Huge shift 1>>32 or more
    for (int i = 1; i < VL_WORDS_I(rbits); ++i) overshift |= rwp[i];
    if (VL_UNLIKELY(overshift || rwp[0] >= static_cast<IData>(obits))) {
        const IData sign = -(lhs >> (lbits - 1));  // ffff_ffff if negative
        return VL_CLEAN_II(obits, obits, sign);
    }
    return VL_SHIFTRS_III(obits, lbits, 32, lhs, rwp[0]);
}
static inline QData VL_SHIFTRS_QQW(int obits, int lbits, int rbits, QData lhs,
                                   WDataInP const rwp) VL_PURE {
    EData overshift = 0;  // Huge shift 1>>32 or more
    for (int i = 1; i < VL_WORDS_I(rbits); ++i) overshift |= rwp[i];
    if (VL_UNLIKELY(overshift || rwp[0] >= static_cast<IData>(obits))) {
        const QData sign = -(lhs >> (lbits - 1));  // ffff_ffff if negative
        return VL_CLEAN_QQ(obits, obits, sign);
    }
    return VL_SHIFTRS_QQI(obits, lbits, 32, lhs, rwp[0]);
}
static inline IData VL_SHIFTRS_IIQ(int obits, int lbits, int rbits, IData lhs, QData rhs) VL_PURE {
    VlWide<VL_WQ_WORDS_E> rwp;
    VL_SET_WQ(rwp, rhs);
    return VL_SHIFTRS_IIW(obits, lbits, rbits, lhs, rwp);
}
static inline QData VL_SHIFTRS_QQQ(int obits, int lbits, int rbits, QData lhs, QData rhs) VL_PURE {
    VlWide<VL_WQ_WORDS_E> rwp;
    VL_SET_WQ(rwp, rhs);
    return VL_SHIFTRS_QQW(obits, lbits, rbits, lhs, rwp);
}

//===================================================================
// Bit selection

// EMIT_RULE: VL_BITSEL:  oclean=dirty; rclean==clean;
#define VL_BITSEL_IIII(lbits, lhs, rhs) ((lhs) >> (rhs))
#define VL_BITSEL_QIII(lbits, lhs, rhs) ((lhs) >> (rhs))
#define VL_BITSEL_QQII(lbits, lhs, rhs) ((lhs) >> (rhs))
#define VL_BITSEL_IQII(lbits, lhs, rhs) (static_cast<IData>((lhs) >> (rhs)))

static inline IData VL_BITSEL_IWII(int lbits, WDataInP const lwp, IData rd) VL_MT_SAFE {
    const int word = VL_BITWORD_E(rd);
    if (VL_UNLIKELY(rd > static_cast<IData>(lbits))) {
        return ~0;  // Spec says you can go outside the range of a array.  Don't coredump if so.
        // We return all 1's as that's more likely to find bugs (?) than 0's.
    } else {
        return (lwp[word] >> VL_BITBIT_E(rd));
    }
}

// EMIT_RULE: VL_RANGE:  oclean=lclean;  out=dirty
// <msb> & <lsb> MUST BE CLEAN (currently constant)
#define VL_SEL_IIII(lbits, lhs, lsb, width) ((lhs) >> (lsb))
#define VL_SEL_QQII(lbits, lhs, lsb, width) ((lhs) >> (lsb))
#define VL_SEL_IQII(lbits, lhs, lsb, width) (static_cast<IData>((lhs) >> (lsb)))

static inline IData VL_SEL_IWII(int lbits, WDataInP const lwp, IData lsb, IData width) VL_MT_SAFE {
    const int msb = lsb + width - 1;
    if (VL_UNLIKELY(msb >= lbits)) {
        return ~0;  // Spec says you can go outside the range of a array.  Don't coredump if so.
    } else if (VL_BITWORD_E(msb) == VL_BITWORD_E(static_cast<int>(lsb))) {
        return VL_BITRSHIFT_W(lwp, lsb);
    } else {
        // 32 bit extraction may span two words
        const int nbitsfromlow = VL_EDATASIZE - VL_BITBIT_E(lsb);  // bits that come from low word
        return ((lwp[VL_BITWORD_E(msb)] << nbitsfromlow) | VL_BITRSHIFT_W(lwp, lsb));
    }
}

static inline QData VL_SEL_QWII(int lbits, WDataInP const lwp, IData lsb, IData width) VL_MT_SAFE {
    const int msb = lsb + width - 1;
    if (VL_UNLIKELY(msb > lbits)) {
        return ~0;  // Spec says you can go outside the range of a array.  Don't coredump if so.
    } else if (VL_BITWORD_E(msb) == VL_BITWORD_E(static_cast<int>(lsb))) {
        return VL_BITRSHIFT_W(lwp, lsb);
    } else if (VL_BITWORD_E(msb) == 1 + VL_BITWORD_E(static_cast<int>(lsb))) {
        const int nbitsfromlow = VL_EDATASIZE - VL_BITBIT_E(lsb);
        const QData hi = (lwp[VL_BITWORD_E(msb)]);
        const QData lo = VL_BITRSHIFT_W(lwp, lsb);
        return (hi << nbitsfromlow) | lo;
    } else {
        // 64 bit extraction may span three words
        const int nbitsfromlow = VL_EDATASIZE - VL_BITBIT_E(lsb);
        const QData hi = (lwp[VL_BITWORD_E(msb)]);
        const QData mid = (lwp[VL_BITWORD_E(lsb) + 1]);
        const QData lo = VL_BITRSHIFT_W(lwp, lsb);
        return (hi << (nbitsfromlow + VL_EDATASIZE)) | (mid << nbitsfromlow) | lo;
    }
}

static inline WDataOutP VL_SEL_WWII(int obits, int lbits, WDataOutP owp, WDataInP const lwp,
                                    IData lsb, IData width) VL_MT_SAFE {
    const int msb = lsb + width - 1;
    const int word_shift = VL_BITWORD_E(lsb);
    if (VL_UNLIKELY(msb > lbits)) {  // Outside bounds,
        for (int i = 0; i < VL_WORDS_I(obits) - 1; ++i) owp[i] = ~0;
        owp[VL_WORDS_I(obits) - 1] = VL_MASK_E(obits);
    } else if (VL_BITBIT_E(lsb) == 0) {
        // Just a word extract
        for (int i = 0; i < VL_WORDS_I(obits); ++i) owp[i] = lwp[i + word_shift];
    } else {
        // Not a _vl_insert because the bits come from any bit number and goto bit 0
        const int loffset = lsb & VL_SIZEBITS_E;
        const int nbitsfromlow = VL_EDATASIZE - loffset;  // bits that end up in lword (know
                                                          // loffset!=0) Middle words
        const int words = VL_WORDS_I(msb - lsb + 1);
        for (int i = 0; i < words; ++i) {
            owp[i] = lwp[i + word_shift] >> loffset;
            const int upperword = i + word_shift + 1;
            if (upperword <= static_cast<int>(VL_BITWORD_E(msb))) {
                owp[i] |= lwp[upperword] << nbitsfromlow;
            }
        }
        for (int i = words; i < VL_WORDS_I(obits); ++i) owp[i] = 0;
    }
    return owp;
}

//======================================================================
// Expressions needing insert/select

static inline void VL_UNPACK_RI_I(int lbits, int rbits, VlQueue<CData>& q, IData from) {
    const size_t size = (rbits + lbits - 1) / lbits;
    q.renew(size);
    const IData mask = VL_MASK_I(lbits);
    for (size_t i = 0; i < size; ++i) q.atWrite(q.size() - 1 - i) = (from >> (i * lbits)) & mask;
}

static inline void VL_UNPACK_RI_I(int lbits, int rbits, VlQueue<SData>& q, IData from) {
    const size_t size = (rbits + lbits - 1) / lbits;
    q.renew(size);
    const IData mask = VL_MASK_I(lbits);
    for (size_t i = 0; i < size; ++i) q.atWrite(q.size() - 1 - i) = (from >> (i * lbits)) & mask;
}

static inline void VL_UNPACK_RI_I(int lbits, int rbits, VlQueue<IData>& q, IData from) {
    const size_t size = (rbits + lbits - 1) / lbits;
    q.renew(size);
    const IData mask = VL_MASK_I(lbits);
    for (size_t i = 0; i < size; ++i) q.atWrite(q.size() - 1 - i) = (from >> (i * lbits)) & mask;
}

static inline void VL_UNPACK_RI_Q(int lbits, int rbits, VlQueue<CData>& q, QData from) {
    const size_t size = (rbits + lbits - 1) / lbits;
    q.renew(size);
    const IData mask = VL_MASK_I(lbits);
    for (size_t i = 0; i < size; ++i) q.atWrite(q.size() - 1 - i) = (from >> (i * lbits)) & mask;
}

static inline void VL_UNPACK_RI_Q(int lbits, int rbits, VlQueue<SData>& q, QData from) {
    const size_t size = (rbits + lbits - 1) / lbits;
    q.renew(size);
    const IData mask = VL_MASK_I(lbits);
    for (size_t i = 0; i < size; ++i) q.atWrite(q.size() - 1 - i) = (from >> (i * lbits)) & mask;
}

static inline void VL_UNPACK_RI_Q(int lbits, int rbits, VlQueue<IData>& q, QData from) {
    const size_t size = (rbits + lbits - 1) / lbits;
    q.renew(size);
    const IData mask = VL_MASK_I(lbits);
    for (size_t i = 0; i < size; ++i) q.atWrite(q.size() - 1 - i) = (from >> (i * lbits)) & mask;
}

static inline void VL_UNPACK_RQ_Q(int lbits, int rbits, VlQueue<QData>& q, QData from) {
    const size_t size = (rbits + lbits - 1) / lbits;
    q.renew(size);
    const QData mask = VL_MASK_Q(lbits);
    for (size_t i = 0; i < size; ++i) q.atWrite(q.size() - 1 - i) = (from >> (i * lbits)) & mask;
}

static inline void VL_UNPACK_RI_W(int lbits, int rbits, VlQueue<CData>& q, WDataInP rwp) {
    const int size = (rbits + lbits - 1) / lbits;
    q.renew(size);
    const IData mask = VL_MASK_I(lbits);
    for (size_t i = 0; i < size; ++i) {
        q.atWrite(i) = VL_SEL_IWII(rbits, rwp, i * lbits, lbits) & mask;
    }
}

static inline void VL_UNPACK_RI_W(int lbits, int rbits, VlQueue<SData>& q, WDataInP rwp) {
    const int size = (rbits + lbits - 1) / lbits;
    q.renew(size);
    const IData mask = VL_MASK_I(lbits);
    for (size_t i = 0; i < size; ++i) {
        q.atWrite(i) = VL_SEL_IWII(rbits, rwp, i * lbits, lbits) & mask;
    }
}

static inline void VL_UNPACK_RI_W(int lbits, int rbits, VlQueue<IData>& q, WDataInP rwp) {
    const int size = (rbits + lbits - 1) / lbits;
    q.renew(size);
    const IData mask = VL_MASK_I(lbits);
    for (size_t i = 0; i < size; ++i) {
        q.atWrite(i) = VL_SEL_IWII(rbits, rwp, i * lbits, lbits) & mask;
    }
}

static inline void VL_UNPACK_RQ_W(int lbits, int rbits, VlQueue<QData>& q, WDataInP rwp) {
    const int size = (rbits + lbits - 1) / lbits;
    q.renew(size);
    const QData mask = VL_MASK_Q(lbits);
    for (size_t i = 0; i < size; ++i) {
        q.atWrite(i) = VL_SEL_QWII(rbits, rwp, i * lbits, lbits) & mask;
    }
}

template <std::size_t N_Words>
static inline void VL_UNPACK_RW_W(int lbits, int rbits, VlQueue<VlWide<N_Words>>& q,
                                  WDataInP rwp) {
    const int size = (rbits + lbits - 1) / lbits;
    q.renew(size);
    for (size_t i = 0; i < size; ++i) {
        VL_SEL_WWII(lbits, rbits, q.atWrite(i), rwp, i * lbits, lbits);
    }
}

template <std::size_t N_Depth>
static inline void VL_UNPACK_UI_I(int lbits, int rbits, VlUnpacked<CData, N_Depth>& q,
                                  IData from) {
    const IData mask = VL_MASK_I(lbits);
    for (size_t i = 0; i < N_Depth; ++i) q[i] = (from >> ((N_Depth - 1 - i) * lbits)) & mask;
}

template <std::size_t N_Depth>
static inline void VL_UNPACK_UI_I(int lbits, int rbits, VlUnpacked<SData, N_Depth>& q,
                                  IData from) {
    const IData mask = VL_MASK_I(lbits);
    for (size_t i = 0; i < N_Depth; ++i) q[i] = (from >> ((N_Depth - 1 - i) * lbits)) & mask;
}

template <std::size_t N_Depth>
static inline void VL_UNPACK_UI_I(int lbits, int rbits, VlUnpacked<IData, N_Depth>& q,
                                  IData from) {
    const IData mask = VL_MASK_I(lbits);
    for (size_t i = 0; i < N_Depth; ++i) q[i] = (from >> ((N_Depth - 1 - i) * lbits)) & mask;
}

template <std::size_t N_Depth>
static inline void VL_UNPACK_UI_Q(int lbits, int rbits, VlUnpacked<CData, N_Depth>& q,
                                  QData from) {
    const IData mask = VL_MASK_I(lbits);
    for (size_t i = 0; i < N_Depth; ++i) q[i] = (from >> ((N_Depth - 1 - i) * lbits)) & mask;
}

template <std::size_t N_Depth>
static inline void VL_UNPACK_UI_Q(int lbits, int rbits, VlUnpacked<SData, N_Depth>& q,
                                  QData from) {
    const IData mask = VL_MASK_I(lbits);
    for (size_t i = 0; i < N_Depth; ++i) q[i] = (from >> ((N_Depth - 1 - i) * lbits)) & mask;
}

template <std::size_t N_Depth>
static inline void VL_UNPACK_UI_Q(int lbits, int rbits, VlUnpacked<IData, N_Depth>& q,
                                  QData from) {
    const IData mask = VL_MASK_I(lbits);
    for (size_t i = 0; i < N_Depth; ++i) q[i] = (from >> ((N_Depth - 1 - i) * lbits)) & mask;
}

template <std::size_t N_Depth>
static inline void VL_UNPACK_UQ_Q(int lbits, int rbits, VlUnpacked<QData, N_Depth>& q,
                                  QData from) {
    const QData mask = VL_MASK_Q(lbits);
    for (size_t i = 0; i < N_Depth; ++i) q[i] = (from >> ((N_Depth - 1 - i) * lbits)) & mask;
}

template <std::size_t N_Depth>
static inline void VL_UNPACK_UI_W(int lbits, int rbits, VlUnpacked<CData, N_Depth>& q,
                                  WDataInP rwp) {
    const IData mask = VL_MASK_I(lbits);
    for (size_t i = 0; i < N_Depth; ++i)
        q[i] = VL_SEL_IWII(rbits, rwp, (N_Depth - 1 - i) * lbits, lbits) & mask;
}

template <std::size_t N_Depth>
static inline void VL_UNPACK_UI_W(int lbits, int rbits, VlUnpacked<SData, N_Depth>& q,
                                  WDataInP rwp) {
    const IData mask = VL_MASK_I(lbits);
    for (size_t i = 0; i < N_Depth; ++i)
        q[i] = VL_SEL_IWII(rbits, rwp, (N_Depth - 1 - i) * lbits, lbits) & mask;
}

template <std::size_t N_Depth>
static inline void VL_UNPACK_UI_W(int lbits, int rbits, VlUnpacked<IData, N_Depth>& q,
                                  WDataInP rwp) {
    const IData mask = VL_MASK_I(lbits);
    for (size_t i = 0; i < N_Depth; ++i)
        q[i] = VL_SEL_IWII(rbits, rwp, (N_Depth - 1 - i) * lbits, lbits) & mask;
}

template <std::size_t N_Depth>
static inline void VL_UNPACK_UQ_W(int lbits, int rbits, VlUnpacked<QData, N_Depth>& q,
                                  WDataInP rwp) {
    const QData mask = VL_MASK_Q(lbits);
    for (size_t i = 0; i < N_Depth; ++i)
        q[i] = VL_SEL_QWII(rbits, rwp, (N_Depth - 1 - i) * lbits, lbits) & mask;
}

template <std::size_t N_Depth, std::size_t N_Words>
static inline void VL_UNPACK_UW_W(int lbits, int rbits, VlUnpacked<VlWide<N_Words>, N_Depth>& q,
                                  WDataInP rwp) {
    for (size_t i = 0; i < N_Depth; ++i)
        VL_SEL_WWII(lbits, rbits, q[i], rwp, (N_Depth - 1 - i) * lbits, lbits);
}

// Return QData from double (numeric)
// EMIT_RULE: VL_RTOIROUND_Q_D:  oclean=dirty; lclean==clean/real
static inline QData VL_RTOIROUND_Q_D(double lhs) VL_PURE {
    // IEEE format: [63]=sign [62:52]=exp+1023 [51:0]=mantissa
    // This does not need to support subnormals as they are sub-integral
    lhs = VL_ROUND(lhs);
    if (lhs == 0.0) return 0;
    const QData q = VL_CVT_Q_D(lhs);
    const int lsb = static_cast<int>((q >> 52ULL) & VL_MASK_Q(11)) - 1023 - 52;
    const uint64_t mantissa = (q & VL_MASK_Q(52)) | (1ULL << 52);
    uint64_t out = 0;
    if (lsb < 0) {
        out = mantissa >> -lsb;
    } else if (lsb < 64) {
        out = mantissa << lsb;
    }
    if (lhs < 0) out = -out;
    return out;
}
static inline IData VL_RTOIROUND_I_D(double lhs) VL_PURE {
    return static_cast<IData>(VL_RTOIROUND_Q_D(lhs));
}
static inline WDataOutP VL_RTOIROUND_W_D(int obits, WDataOutP owp, double lhs) VL_MT_SAFE {
    // IEEE format: [63]=sign [62:52]=exp+1023 [51:0]=mantissa
    // This does not need to support subnormals as they are sub-integral
    lhs = VL_ROUND(lhs);
    VL_ZERO_W(obits, owp);
    if (lhs == 0.0) return owp;
    const QData q = VL_CVT_Q_D(lhs);
    const int lsb = static_cast<int>((q >> 52ULL) & VL_MASK_Q(11)) - 1023 - 52;
    const uint64_t mantissa = (q & VL_MASK_Q(52)) | (1ULL << 52);
    if (lsb < 0) {
        VL_SET_WQ(owp, mantissa >> -lsb);
    } else if (lsb < obits) {
        _vl_insert_WQ(owp, mantissa, lsb + 52, lsb);
    }
    if (lhs < 0) VL_NEGATE_INPLACE_W(VL_WORDS_I(obits), owp);
    return owp;
}

//======================================================================
// Range assignments

// EMIT_RULE: VL_ASSIGNRANGE:  rclean=dirty;
static inline void VL_ASSIGNSEL_II(int rbits, int obits, int lsb, CData& lhsr, IData rhs) VL_PURE {
    _vl_insert_II(lhsr, rhs, lsb + obits - 1, lsb, rbits);
}
static inline void VL_ASSIGNSEL_II(int rbits, int obits, int lsb, SData& lhsr, IData rhs) VL_PURE {
    _vl_insert_II(lhsr, rhs, lsb + obits - 1, lsb, rbits);
}
static inline void VL_ASSIGNSEL_II(int rbits, int obits, int lsb, IData& lhsr, IData rhs) VL_PURE {
    _vl_insert_II(lhsr, rhs, lsb + obits - 1, lsb, rbits);
}
static inline void VL_ASSIGNSEL_QI(int rbits, int obits, int lsb, QData& lhsr, IData rhs) VL_PURE {
    _vl_insert_QQ(lhsr, rhs, lsb + obits - 1, lsb, rbits);
}
static inline void VL_ASSIGNSEL_QQ(int rbits, int obits, int lsb, QData& lhsr, QData rhs) VL_PURE {
    _vl_insert_QQ(lhsr, rhs, lsb + obits - 1, lsb, rbits);
}
// static inline void VL_ASSIGNSEL_IIIW(int obits, int lsb, IData& lhsr, WDataInP const rwp)
// VL_MT_SAFE { Illegal, as lhs width >= rhs width
static inline void VL_ASSIGNSEL_WI(int rbits, int obits, int lsb, WDataOutP iowp,
                                   IData rhs) VL_MT_SAFE {
    _vl_insert_WI(iowp, rhs, lsb + obits - 1, lsb, rbits);
}
static inline void VL_ASSIGNSEL_WQ(int rbits, int obits, int lsb, WDataOutP iowp,
                                   QData rhs) VL_MT_SAFE {
    _vl_insert_WQ(iowp, rhs, lsb + obits - 1, lsb, rbits);
}
static inline void VL_ASSIGNSEL_WW(int rbits, int obits, int lsb, WDataOutP iowp,
                                   WDataInP const rwp) VL_MT_SAFE {
    _vl_insert_WW(iowp, rwp, lsb + obits - 1, lsb, rbits);
}

//====================================================
// Range assignments

// These additional functions copy bits range [obis+roffset-1:roffset] from rhs to lower bits
// of lhs(select before assigning). Rhs should always be wider than lhs.
static inline void VL_SELASSIGN_II(int rbits, int obits, CData& lhsr, IData rhs,
                                   int roffset) VL_PURE {
    _vl_insert_II(lhsr, rhs >> roffset, obits - 1, 0, rbits);
}
static inline void VL_SELASSIGN_II(int rbits, int obits, SData& lhsr, IData rhs,
                                   int roffset) VL_PURE {
    _vl_insert_II(lhsr, rhs >> roffset, obits - 1, 0, rbits);
}
static inline void VL_SELASSIGN_II(int rbits, int obits, IData& lhsr, IData rhs,
                                   int roffset) VL_PURE {
    _vl_insert_II(lhsr, rhs >> roffset, obits - 1, 0, rbits);
}
static inline void VL_SELASSIGN_IQ(int rbits, int obits, CData& lhsr, QData rhs,
                                   int roffset) VL_PURE {
    // it will be truncated to right CData mask
    const CData cleanmask = VL_MASK_I(rbits);
    const CData insmask = VL_MASK_I(obits);
    lhsr = (lhsr & ~insmask) | (static_cast<CData>(rhs >> roffset) & (insmask & cleanmask));
}
static inline void VL_SELASSIGN_IQ(int rbits, int obits, SData& lhsr, QData rhs,
                                   int roffset) VL_PURE {
    // it will be truncated to right CData mask
    const SData cleanmask = VL_MASK_I(rbits);
    const SData insmask = VL_MASK_I(obits);
    lhsr = (lhsr & ~insmask) | (static_cast<SData>(rhs >> roffset) & (insmask & cleanmask));
}
static inline void VL_SELASSIGN_IQ(int rbits, int obits, IData& lhsr, QData rhs,
                                   int roffset) VL_PURE {
    const IData cleanmask = VL_MASK_I(rbits);
    const IData insmask = VL_MASK_I(obits);
    lhsr = (lhsr & ~insmask) | (static_cast<IData>(rhs >> roffset) & (insmask & cleanmask));
}

static inline void VL_SELASSIGN_QQ(int rbits, int obits, QData& lhsr, QData rhs,
                                   int roffset) VL_PURE {
    _vl_insert_QQ(lhsr, rhs >> roffset, obits - 1, 0, rbits);
}

static inline void VL_SELASSIGN_IW(int rbits, int obits, CData& lhsr, WDataInP const rhs,
                                   int roffset) VL_MT_SAFE {
    IData l = static_cast<IData>(lhsr);
    _vl_insert_IW(l, rhs, roffset + obits - 1, roffset, rbits);
    lhsr = static_cast<CData>(l);
}
static inline void VL_SELASSIGN_IW(int rbits, int obits, SData& lhsr, WDataInP const rhs,
                                   int roffset) VL_MT_SAFE {
    IData l = static_cast<IData>(lhsr);
    _vl_insert_IW(l, rhs, roffset + obits - 1, roffset, rbits);
    lhsr = static_cast<SData>(l);
}
static inline void VL_SELASSIGN_IW(int rbits, int obits, IData& lhsr, WDataInP const rhs,
                                   int roffset) VL_MT_SAFE {
    _vl_insert_IW(lhsr, rhs, roffset + obits - 1, roffset, rbits);
}
static inline void VL_SELASSIGN_QW(int rbits, int obits, QData& lhsr, WDataInP const rhs,
                                   int roffset) VL_MT_SAFE {
    // assert VL_QDATASIZE >= rbits > VL_IDATASIZE;
    IData low = static_cast<IData>(lhsr);
    IData high = static_cast<IData>(lhsr >> VL_IDATASIZE);
    if (obits <= VL_IDATASIZE) {
        _vl_insert_IW(low, rhs, obits + roffset - 1, roffset, VL_IDATASIZE);
    } else {
        _vl_insert_IW(low, rhs, roffset + VL_IDATASIZE - 1, roffset, VL_IDATASIZE);
        _vl_insert_IW(high, rhs, roffset + obits - 1, roffset + VL_IDATASIZE,
                      rbits - VL_IDATASIZE);
    }
    lhsr = (static_cast<QData>(high) << VL_IDATASIZE) | low;
}

static inline void VL_SELASSIGN_WW(int rbits, int obits, WDataOutP iowp, WDataInP const rwp,
                                   int roffset) VL_MT_SAFE {
    // assert rbits > VL_QDATASIZE
    const int wordoff = roffset / VL_EDATASIZE;
    const int lsb = roffset & VL_SIZEBITS_E;
    const int upperbits = lsb == 0 ? 0 : VL_EDATASIZE - lsb;
    // If roffset is not aligned, we copy some bits to align it.
    if (lsb != 0) {
        const int w = obits < upperbits ? obits : upperbits;
        const int insmask = VL_MASK_E(w);
        iowp[0] = (iowp[0] & ~insmask) | ((rwp[wordoff] >> lsb) & insmask);
        if (w == obits) return;
        obits -= w;
    }
    _vl_insert_WW(iowp, rwp + wordoff + (lsb != 0), upperbits + obits - 1, upperbits, rbits);
}

//======================================================================
// Triops

static inline WDataOutP VL_COND_WIWW(int obits, WDataOutP owp, int cond, WDataInP const w1p,
                                     WDataInP const w2p) VL_MT_SAFE {
    return VL_MEMCPY_W(owp, cond ? w1p : w2p, VL_WORDS_I(obits));
}

//======================================================================
// Constification

// VL_CONST_W_#X(int obits, WDataOutP owp, IData data0, .... IData data(#-1))
// Sets wide vector words to specified constant words.
// These macros are used when o might represent more words then are given as constants,
// hence all upper words must be zeroed.
// If changing the number of functions here, also change EMITCINLINES_NUM_CONSTW

#define VL_C_END_(obits, wordsSet) \
    VL_MEMSET_ZERO_W(o + (wordsSet), VL_WORDS_I(obits) - (wordsSet)); \
    return o

// clang-format off
static inline WDataOutP VL_CONST_W_1X(int obits, WDataOutP o, EData d0) VL_MT_SAFE {
    o[0] = d0;
    VL_C_END_(obits, 1);
}
static inline WDataOutP VL_CONST_W_2X(int obits, WDataOutP o, EData d1, EData d0) VL_MT_SAFE {
    o[0] = d0;  o[1] = d1;
    VL_C_END_(obits, 2);
}
static inline WDataOutP VL_CONST_W_3X(int obits, WDataOutP o, EData d2, EData d1,
                                      EData d0) VL_MT_SAFE {
    o[0] = d0;  o[1] = d1;  o[2] = d2;
    VL_C_END_(obits, 3);
}
static inline WDataOutP VL_CONST_W_4X(int obits, WDataOutP o,
                                      EData d3, EData d2, EData d1, EData d0) VL_MT_SAFE {
    o[0] = d0;  o[1] = d1;  o[2] = d2;  o[3] = d3;
    VL_C_END_(obits, 4);
}
static inline WDataOutP VL_CONST_W_5X(int obits, WDataOutP o,
                                      EData d4,
                                      EData d3, EData d2, EData d1, EData d0) VL_MT_SAFE {
    o[0] = d0;  o[1] = d1;  o[2] = d2;  o[3] = d3;
    o[4] = d4;
    VL_C_END_(obits, 5);
}
static inline WDataOutP VL_CONST_W_6X(int obits, WDataOutP o,
                                      EData d5, EData d4,
                                      EData d3, EData d2, EData d1, EData d0) VL_MT_SAFE {
    o[0] = d0;  o[1] = d1;  o[2] = d2;  o[3] = d3;
    o[4] = d4;  o[5] = d5;
    VL_C_END_(obits, 6);
}
static inline WDataOutP VL_CONST_W_7X(int obits, WDataOutP o,
                                      EData d6, EData d5, EData d4,
                                      EData d3, EData d2, EData d1, EData d0) VL_MT_SAFE {
    o[0] = d0;  o[1] = d1;  o[2] = d2;  o[3] = d3;
    o[4] = d4;  o[5] = d5;  o[6] = d6;
    VL_C_END_(obits, 7);
}
static inline WDataOutP VL_CONST_W_8X(int obits, WDataOutP o,
                                      EData d7, EData d6, EData d5, EData d4,
                                      EData d3, EData d2, EData d1, EData d0) VL_MT_SAFE {
    o[0] = d0;  o[1] = d1;  o[2] = d2;  o[3] = d3;
    o[4] = d4;  o[5] = d5;  o[6] = d6;  o[7] = d7;
    VL_C_END_(obits, 8);
}
//
static inline WDataOutP VL_CONSTHI_W_1X(int obits, int lsb, WDataOutP o,
                                        EData d0) VL_MT_SAFE {
    WDataOutP ohi = o + VL_WORDS_I(lsb);
    ohi[0] = d0;
    VL_C_END_(obits, VL_WORDS_I(lsb) + 1);
}
static inline WDataOutP VL_CONSTHI_W_2X(int obits, int lsb, WDataOutP o,
                                        EData d1, EData d0) VL_MT_SAFE {
    WDataOutP ohi = o + VL_WORDS_I(lsb);
    ohi[0] = d0;  ohi[1] = d1;
    VL_C_END_(obits, VL_WORDS_I(lsb) + 2);
}
static inline WDataOutP VL_CONSTHI_W_3X(int obits, int lsb, WDataOutP o,
                                        EData d2, EData d1, EData d0) VL_MT_SAFE {
    WDataOutP ohi = o + VL_WORDS_I(lsb);
    ohi[0] = d0;  ohi[1] = d1;  ohi[2] = d2;
    VL_C_END_(obits, VL_WORDS_I(lsb) + 3);
}
static inline WDataOutP VL_CONSTHI_W_4X(int obits, int lsb, WDataOutP o,
                                        EData d3, EData d2, EData d1, EData d0) VL_MT_SAFE {
    WDataOutP ohi = o + VL_WORDS_I(lsb);
    ohi[0] = d0;  ohi[1] = d1;  ohi[2] = d2;  ohi[3] = d3;
    VL_C_END_(obits, VL_WORDS_I(lsb) + 4);
}
static inline WDataOutP VL_CONSTHI_W_5X(int obits, int lsb, WDataOutP o,
                                        EData d4,
                                        EData d3, EData d2, EData d1, EData d0) VL_MT_SAFE {
    WDataOutP ohi = o + VL_WORDS_I(lsb);
    ohi[0] = d0;  ohi[1] = d1;  ohi[2] = d2;  ohi[3] = d3;
    ohi[4] = d4;
    VL_C_END_(obits, VL_WORDS_I(lsb) + 5);
}
static inline WDataOutP VL_CONSTHI_W_6X(int obits, int lsb, WDataOutP o,
                                        EData d5, EData d4,
                                        EData d3, EData d2, EData d1, EData d0) VL_MT_SAFE {
    WDataOutP ohi = o + VL_WORDS_I(lsb);
    ohi[0] = d0;  ohi[1] = d1;  ohi[2] = d2;  ohi[3] = d3;
    ohi[4] = d4;  ohi[5] = d5;
    VL_C_END_(obits, VL_WORDS_I(lsb) + 6);
}
static inline WDataOutP VL_CONSTHI_W_7X(int obits, int lsb, WDataOutP o,
                                        EData d6, EData d5, EData d4,
                                        EData d3, EData d2, EData d1, EData d0) VL_MT_SAFE {
    WDataOutP ohi = o + VL_WORDS_I(lsb);
    ohi[0] = d0;  ohi[1] = d1;  ohi[2] = d2;  ohi[3] = d3;
    ohi[4] = d4;  ohi[5] = d5;  ohi[6] = d6;
    VL_C_END_(obits, VL_WORDS_I(lsb) + 7);
}
static inline WDataOutP VL_CONSTHI_W_8X(int obits, int lsb, WDataOutP o,
                                        EData d7, EData d6, EData d5, EData d4,
                                        EData d3, EData d2, EData d1, EData d0) VL_MT_SAFE {
    WDataOutP ohi = o + VL_WORDS_I(lsb);
    ohi[0] = d0;  ohi[1] = d1;  ohi[2] = d2;  ohi[3] = d3;
    ohi[4] = d4;  ohi[5] = d5;  ohi[6] = d6;  ohi[7] = d7;
    VL_C_END_(obits, VL_WORDS_I(lsb) + 8);
}

#undef VL_C_END_

// Partial constant, lower words of vector wider than 8*32, starting at bit number lsb
static inline void VL_CONSTLO_W_8X(int lsb, WDataOutP obase,
                                   EData d7, EData d6, EData d5, EData d4,
                                   EData d3, EData d2, EData d1, EData d0) VL_MT_SAFE {
    WDataOutP o = obase + VL_WORDS_I(lsb);
    o[0] = d0; o[1] = d1; o[2] = d2; o[3] = d3; o[4] = d4; o[5] = d5; o[6] = d6; o[7] = d7;
}
// clang-format on

//======================================================================
// Strings

extern std::string VL_PUTC_N(const std::string& lhs, IData rhs, CData ths) VL_PURE;
extern CData VL_GETC_N(const std::string& lhs, IData rhs) VL_PURE;
extern std::string VL_SUBSTR_N(const std::string& lhs, IData rhs, IData ths) VL_PURE;

inline IData VL_CMP_NN(const std::string& lhs, const std::string& rhs, bool ignoreCase) VL_PURE {
    // SystemVerilog does not allow a string variable to contain '\0'.
    // So C functions such as strcmp() can correctly compare strings.
    if (ignoreCase) {
        return VL_STRCASECMP(lhs.c_str(), rhs.c_str());
    } else {
        return std::strcmp(lhs.c_str(), rhs.c_str());
    }
}

extern IData VL_ATOI_N(const std::string& str, int base) VL_PURE;
extern IData VL_NTOI_I(int obits, const std::string& str) VL_PURE;
extern QData VL_NTOI_Q(int obits, const std::string& str) VL_PURE;
extern void VL_NTOI_W(int obits, WDataOutP owp, const std::string& str) VL_PURE;

extern IData VL_FGETS_NI(std::string& dest, IData fpi) VL_MT_SAFE;

//======================================================================
// Dist functions

extern IData VL_DIST_CHI_SQUARE(IData& seedr, IData udeg_of_free) VL_MT_SAFE;
extern IData VL_DIST_ERLANG(IData& seedr, IData uk, IData umean) VL_MT_SAFE;
extern IData VL_DIST_EXPONENTIAL(IData& seedr, IData umean) VL_MT_SAFE;
extern IData VL_DIST_NORMAL(IData& seedr, IData umean, IData udeviation) VL_MT_SAFE;
extern IData VL_DIST_POISSON(IData& seedr, IData umean) VL_MT_SAFE;
extern IData VL_DIST_T(IData& seedr, IData udeg_of_free) VL_MT_SAFE;
extern IData VL_DIST_UNIFORM(IData& seedr, IData ustart, IData uend) VL_MT_SAFE;

//======================================================================
// Conversion functions

extern std::string VL_CVT_PACK_STR_NW(int lwords, const WDataInP lwp) VL_PURE;
extern std::string VL_CVT_PACK_STR_ND(const VlQueue<std::string>& q) VL_PURE;
inline std::string VL_CVT_PACK_STR_NQ(QData lhs) VL_PURE {
    VlWide<VL_WQ_WORDS_E> lw;
    VL_SET_WQ(lw, lhs);
    return VL_CVT_PACK_STR_NW(VL_WQ_WORDS_E, lw);
}
inline std::string VL_CVT_PACK_STR_NN(const std::string& lhs) VL_PURE { return lhs; }
inline std::string& VL_CVT_PACK_STR_NN(std::string& lhs) VL_PURE { return lhs; }
inline std::string VL_CVT_PACK_STR_NI(IData lhs) VL_PURE {
    VlWide<VL_WQ_WORDS_E> lw;
    VL_SET_WI(lw, lhs);
    return VL_CVT_PACK_STR_NW(1, lw);
}
inline std::string VL_CONCATN_NNN(const std::string& lhs, const std::string& rhs) VL_PURE {
    return lhs + rhs;
}
inline std::string VL_REPLICATEN_NNQ(const std::string& lhs, IData rep) VL_PURE {
    std::string result;
    result.reserve(lhs.length() * rep);
    for (unsigned times = 0; times < rep; ++times) result += lhs;
    return result;
}
inline std::string VL_REPLICATEN_NNI(const std::string& lhs, IData rep) VL_PURE {
    return VL_REPLICATEN_NNQ(lhs, rep);
}

inline IData VL_LEN_IN(const std::string& ld) { return static_cast<IData>(ld.length()); }
extern std::string VL_TOLOWER_NN(const std::string& ld) VL_PURE;
extern std::string VL_TOUPPER_NN(const std::string& ld) VL_PURE;

extern IData VL_FERROR_IN(IData fpi, std::string& outputr) VL_MT_SAFE;
extern IData VL_FERROR_IW(IData fpi, int obits, WDataOutP outwp) VL_MT_SAFE;
extern IData VL_FOPEN_NN(const std::string& filename, const std::string& mode) VL_MT_SAFE;
extern IData VL_FOPEN_MCD_N(const std::string& filename) VL_MT_SAFE;
extern void VL_READMEM_N(bool hex, int bits, QData depth, int array_lsb,
                         const std::string& filename, void* memp, QData start,
                         QData end) VL_MT_SAFE;
extern void VL_WRITEMEM_N(bool hex, int bits, QData depth, int array_lsb,
                          const std::string& filename, const void* memp, QData start,
                          QData end) VL_MT_SAFE;
extern IData VL_SSCANF_INNX(int lbits, const std::string& ld, const std::string& format, int argc,
                            ...) VL_MT_SAFE;
extern void VL_SFORMAT_NX(int obits_ignored, std::string& output, const std::string& format,
                          int argc, ...) VL_MT_SAFE;
extern std::string VL_SFORMATF_N_NX(const std::string& format, int argc, ...) VL_MT_SAFE;
extern void VL_TIMEFORMAT_IINI(bool hasUnits, int units, bool hasPrecision, int precision,
                               bool hasSuffix, const std::string& suffix, bool hasWidth, int width,
                               VerilatedContext* contextp) VL_MT_SAFE;
extern IData VL_VALUEPLUSARGS_INW(int rbits, const std::string& ld, WDataOutP rwp) VL_MT_SAFE;
inline IData VL_VALUEPLUSARGS_INI(int rbits, const std::string& ld, CData& rdr) VL_MT_SAFE {
    VlWide<2> rwp;
    const IData got = VL_VALUEPLUSARGS_INW(rbits, ld, rwp);
    if (got) rdr = rwp[0];
    return got;
}
inline IData VL_VALUEPLUSARGS_INI(int rbits, const std::string& ld, SData& rdr) VL_MT_SAFE {
    VlWide<2> rwp;
    const IData got = VL_VALUEPLUSARGS_INW(rbits, ld, rwp);
    if (got) rdr = rwp[0];
    return got;
}
inline IData VL_VALUEPLUSARGS_INI(int rbits, const std::string& ld, IData& rdr) VL_MT_SAFE {
    VlWide<2> rwp;
    const IData got = VL_VALUEPLUSARGS_INW(rbits, ld, rwp);
    if (got) rdr = rwp[0];
    return got;
}
inline IData VL_VALUEPLUSARGS_INQ(int rbits, const std::string& ld, QData& rdr) VL_MT_SAFE {
    VlWide<2> rwp;
    const IData got = VL_VALUEPLUSARGS_INW(rbits, ld, rwp);
    if (got) rdr = VL_SET_QW(rwp);
    return got;
}
inline IData VL_VALUEPLUSARGS_INQ(int rbits, const std::string& ld, double& rdr) VL_MT_SAFE {
    VlWide<2> rwp;
    const IData got = VL_VALUEPLUSARGS_INW(rbits, ld, rwp);
    if (got) rdr = VL_CVT_D_Q(VL_SET_QW(rwp));
    return got;
}
extern IData VL_VALUEPLUSARGS_INN(int, const std::string& ld, std::string& rdr) VL_MT_SAFE;

uint64_t VL_MURMUR64_HASH(const char* key) VL_PURE;

//======================================================================

#endif  // Guard