File: verilated_random.cpp

package info (click to toggle)
verilator 5.038-1
  • links: PTS, VCS
  • area: main
  • in suites: forky, sid
  • size: 162,552 kB
  • sloc: cpp: 139,204; python: 20,931; ansic: 10,222; yacc: 6,000; lex: 1,925; makefile: 1,260; sh: 494; perl: 282; fortran: 22
file content (516 lines) | stat: -rw-r--r-- 17,665 bytes parent folder | download
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
// -*- mode: C++; c-file-style: "cc-mode" -*-
//*************************************************************************
//
// Code available from: https://verilator.org
//
// Copyright 2024 by Wilson Snyder.  This program is free software; you can
// redistribute it and/or modify it under the terms of either the GNU Lesser
// General Public License Version 3 or the Perl Artistic License Version 2.0.
// SPDX-License-Identifier: LGPL-3.0-only OR Artistic-2.0
//
//=========================================================================
///
/// \file
/// \brief Verilated randomization implementation code
///
/// This file must be compiled and linked against all Verilated objects
/// that use randomization features.
///
/// See the internals documentation docs/internals.rst for details.
///
//=========================================================================

#include "verilated_random.h"

#include <iomanip>
#include <iostream>
#include <sstream>
#include <streambuf>

#define _VL_SOLVER_HASH_LEN 1
#define _VL_SOLVER_HASH_LEN_TOTAL 4

// clang-format off
#if defined(__unix__) || defined(__unix) || (defined(__APPLE__) && defined(__MACH__))
# define _VL_SOLVER_PIPE  // Allow pipe SMT solving.  Needs fork()
#endif

#ifdef _VL_SOLVER_PIPE
# include <sys/wait.h>
# include <fcntl.h>
#endif

#if defined(_WIN32) || defined(__MINGW32__)
# include <io.h>  // open, read, write, close
#endif
// clang-format on

class Process final : private std::streambuf, public std::iostream {
    static constexpr int BUFFER_SIZE = 4096;
    const char* const* m_cmd = nullptr;  // fork() process argv
#ifdef _VL_SOLVER_PIPE
    pid_t m_pid = 0;  // fork() process id
#else
    int m_pid = 0;  // fork() process id - always zero as disabled
#endif
    bool m_pidExited = true;  // If subprocess has exited and can be opened
    int m_pidStatus = 0;  // fork() process exit status, valid if m_pidExited
    int m_writeFd = -1;  // File descriptor TO subprocess
    int m_readFd = -1;  // File descriptor FROM subprocess
    char m_readBuf[BUFFER_SIZE];
    char m_writeBuf[BUFFER_SIZE];

public:
    typedef std::streambuf::traits_type traits_type;

protected:
    int overflow(int c = traits_type::eof()) override {
        char c2 = static_cast<char>(c);
        if (pbase() == pptr()) return 0;
        size_t size = pptr() - pbase();
        ssize_t n = ::write(m_writeFd, pbase(), size);
        if (n == -1) perror("write");
        if (n <= 0) {
            wait_report();
            return traits_type::eof();
        }
        if (n == size)
            setp(m_writeBuf, m_writeBuf + sizeof(m_writeBuf));
        else
            setp(m_writeBuf + n, m_writeBuf + sizeof(m_writeBuf));
        if (c != traits_type::eof()) sputc(c2);
        return 0;
    }
    int underflow() override {
        sync();
        ssize_t n = ::read(m_readFd, m_readBuf, sizeof(m_readBuf));
        if (n == -1) perror("read");
        if (n <= 0) {
            wait_report();
            return traits_type::eof();
        }
        setg(m_readBuf, m_readBuf, m_readBuf + n);
        return traits_type::to_int_type(m_readBuf[0]);
    }
    int sync() override {
        overflow();
        return 0;
    }

public:
    explicit Process(const char* const* const cmd = nullptr)
        : std::streambuf{}
        , std::iostream{this}
        , m_cmd{cmd} {
        open(cmd);
    }

    void wait_report() {
        if (m_pidExited) return;
#ifdef _VL_SOLVER_PIPE
        if (waitpid(m_pid, &m_pidStatus, 0) != m_pid) return;
        if (m_pidStatus) {
            std::stringstream msg;
            msg << "Subprocess command `" << m_cmd[0];
            for (const char* const* arg = m_cmd + 1; *arg; ++arg) msg << ' ' << *arg;
            msg << "' failed: ";
            if (WIFSIGNALED(m_pidStatus))
                msg << strsignal(WTERMSIG(m_pidStatus))
                    << (WCOREDUMP(m_pidStatus) ? " (core dumped)" : "");
            else if (WIFEXITED(m_pidStatus))
                msg << "exit status " << WEXITSTATUS(m_pidStatus);
            const std::string str = msg.str();
            VL_WARN_MT("", 0, "Process", str.c_str());
        }
#endif
        m_pidExited = true;
        m_pid = 0;
        closeFds();
    }

    void closeFds() {
        if (m_writeFd != -1) {
            close(m_writeFd);
            m_writeFd = -1;
        }
        if (m_readFd != -1) {
            close(m_readFd);
            m_readFd = -1;
        }
    }

    bool open(const char* const* const cmd) {
        setp(std::begin(m_writeBuf), std::end(m_writeBuf));
        setg(m_readBuf, m_readBuf, m_readBuf);
#ifdef _VL_SOLVER_PIPE
        if (!cmd || !cmd[0]) return false;
        m_cmd = cmd;
        int fd_stdin[2];  // Can't use std::array
        int fd_stdout[2];  // Can't use std::array
        constexpr int P_RD = 0;
        constexpr int P_WR = 1;

        if (pipe(fd_stdin) != 0) {
            perror("Process::open: pipe");
            return false;
        }
        if (pipe(fd_stdout) != 0) {
            perror("Process::open: pipe");
            close(fd_stdin[P_RD]);
            close(fd_stdin[P_WR]);
            return false;
        }

        if (fd_stdin[P_RD] <= 2 || fd_stdin[P_WR] <= 2 || fd_stdout[P_RD] <= 2
            || fd_stdout[P_WR] <= 2) {
            // We'd have to rearrange all of the FD usages in this case.
            // Too unlikely; verilator isn't a daemon.
            fprintf(stderr, "stdin/stdout closed before pipe opened\n");
            close(fd_stdin[P_RD]);
            close(fd_stdin[P_WR]);
            close(fd_stdout[P_RD]);
            close(fd_stdout[P_WR]);
            return false;
        }

        const pid_t pid = fork();
        if (pid < 0) {
            perror("Process::open: fork");
            close(fd_stdin[P_RD]);
            close(fd_stdin[P_WR]);
            close(fd_stdout[P_RD]);
            close(fd_stdout[P_WR]);
            return false;
        }
        if (pid == 0) {
            // Child
            close(fd_stdin[P_WR]);
            dup2(fd_stdin[P_RD], STDIN_FILENO);
            close(fd_stdout[P_RD]);
            dup2(fd_stdout[P_WR], STDOUT_FILENO);
            execvp(cmd[0], const_cast<char* const*>(cmd));
            std::stringstream msg;
            msg << "Process::open: execvp(" << cmd[0] << ")";
            const std::string str = msg.str();
            perror(str.c_str());
            _exit(127);
        }
        // Parent
        m_pid = pid;
        m_pidExited = false;
        m_pidStatus = 0;
        m_readFd = fd_stdout[P_RD];
        m_writeFd = fd_stdin[P_WR];

        close(fd_stdin[P_RD]);
        close(fd_stdout[P_WR]);

        return true;
#else
        return false;
#endif
    }
};

static Process& getSolver() {
    static Process s_solver;
    static bool s_done = false;
    if (s_done) return s_solver;
    s_done = true;

    static std::vector<const char*> s_argv;
    static std::string s_program = Verilated::threadContextp()->solverProgram();
    s_argv.emplace_back(&s_program[0]);
    for (char* arg = &s_program[0]; *arg; ++arg) {
        if (*arg == ' ') {
            *arg = '\0';
            s_argv.emplace_back(arg + 1);
        }
    }
    s_argv.emplace_back(nullptr);

    const char* const* const cmd = &s_argv[0];
    s_solver.open(cmd);
    s_solver << "(set-logic QF_ABV)\n";
    s_solver << "(check-sat)\n";
    s_solver << "(reset)\n";
    std::string s;
    getline(s_solver, s);
    if (s == "sat") return s_solver;

    std::stringstream msg;
    msg << "Unable to communicate with SAT solver, please check its installation or specify a "
           "different one in VERILATOR_SOLVER environment variable.\n";
    msg << " ... Tried: $";
    for (const char* const* arg = cmd; *arg; ++arg) msg << ' ' << *arg;
    msg << '\n';
    const std::string str = msg.str();
    VL_WARN_MT("", 0, "randomize", str.c_str());

    while (getline(s_solver, s)) {}
    return s_solver;
}

std::string readUntilBalanced(std::istream& stream) {
    std::string result;
    std::string token;
    int parenCount = 1;
    while (stream >> token) {
        for (const char c : token) {
            if (c == '(') {
                ++parenCount;
            } else if (c == ')') {
                --parenCount;
            }
        }
        result += token + " ";
        if (parenCount == 0) break;
    }
    return result;
}

std::string parseNestedSelect(const std::string& nested_select_expr,
                              std::vector<std::string>& indices) {
    std::istringstream nestedStream(nested_select_expr);
    std::string name, idx;
    nestedStream >> name;
    if (name == "(select") {
        const std::string further_nested_expr = readUntilBalanced(nestedStream);
        name = parseNestedSelect(further_nested_expr, indices);
    }
    std::getline(nestedStream, idx, ')');
    indices.push_back(idx);
    return name;
}

//======================================================================
// VlRandomizer:: Methods

void VlRandomVar::emitGetValue(std::ostream& s) const { s << ' ' << m_name; }
void VlRandomVar::emitExtract(std::ostream& s, int i) const {
    s << " ((_ extract " << i << ' ' << i << ") " << m_name << ')';
}
void VlRandomVar::emitType(std::ostream& s) const { s << "(_ BitVec " << width() << ')'; }
int VlRandomVar::totalWidth() const { return m_width; }
static bool parseSMTNum(int obits, WDataOutP owp, const std::string& val) {
    int i;
    for (i = 0; val[i] && val[i] != '#'; ++i) {}
    if (val[i++] != '#') return false;
    switch (val[i++]) {
    case 'b': _vl_vsss_based(owp, obits, 1, &val[i], 0, val.size() - i); break;
    case 'o': _vl_vsss_based(owp, obits, 3, &val[i], 0, val.size() - i); break;
    case 'h':  // FALLTHRU
    case 'x': _vl_vsss_based(owp, obits, 4, &val[i], 0, val.size() - i); break;
    default:
        VL_WARN_MT(__FILE__, __LINE__, "randomize",
                   "Internal: Unable to parse solver's randomized number");
        return false;
    }
    return true;
}
bool VlRandomVar::set(const std::string& idx, const std::string& val) const {
    VlWide<VL_WQ_WORDS_E> qowp;
    VL_SET_WQ(qowp, 0ULL);
    WDataOutP owp = qowp;
    const int obits = width();
    VlWide<VL_WQ_WORDS_E> qiwp;
    VL_SET_WQ(qiwp, 0ULL);
    if (!idx.empty() && !parseSMTNum(64, qiwp, idx)) return false;
    const int nidx = qiwp[0];
    if (obits > VL_QUADSIZE) owp = reinterpret_cast<WDataOutP>(datap(nidx));
    if (!parseSMTNum(obits, owp, val)) return false;

    if (obits <= VL_BYTESIZE) {
        CData* const p = static_cast<CData*>(datap(nidx));
        *p = VL_CLEAN_II(obits, obits, owp[0]);
    } else if (obits <= VL_SHORTSIZE) {
        SData* const p = static_cast<SData*>(datap(nidx));
        *p = VL_CLEAN_II(obits, obits, owp[0]);
    } else if (obits <= VL_IDATASIZE) {
        IData* const p = static_cast<IData*>(datap(nidx));
        *p = VL_CLEAN_II(obits, obits, owp[0]);
    } else if (obits <= VL_QUADSIZE) {
        QData* const p = static_cast<QData*>(datap(nidx));
        *p = VL_CLEAN_QQ(obits, obits, VL_SET_QW(owp));
    } else {
        _vl_clean_inplace_w(obits, owp);
    }
    return true;
}

void VlRandomizer::randomConstraint(std::ostream& os, VlRNG& rngr, int bits) {
    const IData hash = VL_RANDOM_RNG_I(rngr) & ((1 << bits) - 1);
    int varBits = 0;
    for (const auto& var : m_vars) varBits += var.second->totalWidth();
    os << "(= #b";
    for (int i = bits - 1; i >= 0; i--) os << (VL_BITISSET_I(hash, i) ? '1' : '0');
    if (bits > 1) os << " (concat";
    for (int i = 0; i < bits; ++i) {
        IData varBitsLeft = varBits;
        IData varBitsWant = (varBits + 1) / 2;
        if (varBits > 2) os << " (bvxor";
        for (const auto& var : m_vars) {
            for (int j = 0; j < var.second->totalWidth(); j++, varBitsLeft--) {
                const bool doEmit = (VL_RANDOM_RNG_I(rngr) % varBitsLeft) < varBitsWant;
                if (doEmit) {
                    var.second->emitExtract(os, j);
                    if (--varBitsWant == 0) break;
                }
            }
            if (varBitsWant == 0) break;
        }
        if (varBits > 2) os << ')';
    }
    if (bits > 1) os << ')';
    os << ')';
}

bool VlRandomizer::next(VlRNG& rngr) {
    if (m_vars.empty()) return true;
    std::iostream& f = getSolver();
    if (!f) return false;

    f << "(set-option :produce-models true)\n";
    f << "(set-logic QF_ABV)\n";
    f << "(define-fun __Vbv ((b Bool)) (_ BitVec 1) (ite b #b1 #b0))\n";
    f << "(define-fun __Vbool ((v (_ BitVec 1))) Bool (= #b1 v))\n";
    for (const auto& var : m_vars) {
        if (var.second->dimension() > 0) {
            auto arrVarsp = std::make_shared<const ArrayInfoMap>(m_arr_vars);
            var.second->setArrayInfo(arrVarsp);
        }
        f << "(declare-fun " << var.first << " () ";
        var.second->emitType(f);
        f << ")\n";
    }
    for (const std::string& constraint : m_constraints) {
        f << "(assert (= #b1 " << constraint << "))\n";
    }
    f << "(check-sat)\n";

    bool sat = parseSolution(f);
    if (!sat) {
        f << "(reset)\n";
        return false;
    }
    for (int i = 0; i < _VL_SOLVER_HASH_LEN_TOTAL && sat; ++i) {
        f << "(assert ";
        randomConstraint(f, rngr, _VL_SOLVER_HASH_LEN);
        f << ")\n";
        f << "\n(check-sat)\n";
        sat = parseSolution(f);
    }

    f << "(reset)\n";
    return true;
}

bool VlRandomizer::parseSolution(std::iostream& f) {
    std::string sat;
    do { std::getline(f, sat); } while (sat == "");

    if (sat == "unsat") return false;
    if (sat != "sat") {
        std::stringstream msg;
        msg << "Internal: Solver error: " << sat;
        const std::string str = msg.str();
        VL_WARN_MT(__FILE__, __LINE__, "randomize", str.c_str());
        return false;
    }

    f << "(get-value (";
    for (const auto& var : m_vars) {
        if (var.second->dimension() > 0) {
            auto arrVarsp = std::make_shared<const ArrayInfoMap>(m_arr_vars);
            var.second->setArrayInfo(arrVarsp);
        }
        var.second->emitGetValue(f);
    }
    f << "))\n";
    // Quasi-parse S-expression of the form ((x #xVALUE) (y #bVALUE) (z #xVALUE))
    char c;
    f >> c;
    if (c != '(') {
        VL_WARN_MT(__FILE__, __LINE__, "randomize",
                   "Internal: Unable to parse solver's response: invalid S-expression");
        return false;
    }
    while (true) {
        f >> c;
        if (c == ')') break;
        if (c != '(') {
            VL_WARN_MT(__FILE__, __LINE__, "randomize",
                       "Internal: Unable to parse solver's response: invalid S-expression");
            return false;
        }
        std::string name, idx, value;
        std::vector<std::string> indices;
        f >> name;
        indices.clear();
        if (name == "(select") {
            const std::string selectExpr = readUntilBalanced(f);
            name = parseNestedSelect(selectExpr, indices);
        }
        std::getline(f, value, ')');
        const auto it = m_vars.find(name);
        if (it == m_vars.end()) continue;
        const VlRandomVar& varr = *it->second;
        if (m_randmode && !varr.randModeIdxNone()) {
            if (!(m_randmode->at(varr.randModeIdx()))) continue;
        }
        if (!indices.empty()) {
            std::ostringstream oss;
            oss << varr.name();
            for (const auto& hex_index : indices) {
                const size_t start = hex_index.find_first_not_of(" ");
                if (start == std::string::npos || hex_index.substr(start, 2) != "#x") {
                    VL_FATAL_MT(__FILE__, __LINE__, "randomize",
                                "hex_index contains invalid format");
                    continue;
                }
                std::string trimmed_hex = hex_index.substr(start + 2);

                if (trimmed_hex.size() <= 8) {  // Small numbers: <= 32 bits
                    // Convert to decimal and output directly
                    oss << "[" << std::to_string(std::stoll(trimmed_hex, nullptr, 16)) << "]";
                } else {  // Large numbers: > 32 bits
                    // Trim leading zeros and handle empty case
                    trimmed_hex.erase(0, trimmed_hex.find_first_not_of('0'));
                    oss << "[" << (trimmed_hex.empty() ? "0" : trimmed_hex) << "]";
                }
            }
            const std::string indexed_name = oss.str();

            const auto iti = std::find_if(m_arr_vars.begin(), m_arr_vars.end(),
                                          [&indexed_name](const auto& entry) {
                                              return entry.second->m_name == indexed_name;
                                          });
            if (iti != m_arr_vars.end()) {
                std::ostringstream ss;
                ss << "#x" << std::hex << std::setw(8) << std::setfill('0')
                   << iti->second->m_index;
                idx = ss.str();
            } else {
                VL_FATAL_MT(__FILE__, __LINE__, "randomize",
                            "indexed_name not found in m_arr_vars");
            }
        }
        varr.set(idx, value);
    }
    return true;
}

void VlRandomizer::hard(std::string&& constraint) {
    m_constraints.emplace_back(std::move(constraint));
}

void VlRandomizer::clear() { m_constraints.clear(); }

#ifdef VL_DEBUG
void VlRandomizer::dump() const {
    for (const auto& var : m_vars) {
        VL_PRINTF("Variable (%d): %s\n", var.second->width(), var.second->name().c_str());
    }
    for (const std::string& c : m_constraints) VL_PRINTF("Constraint: %s\n", c.c_str());
}
#endif