1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 300 301 302 303 304 305 306 307 308 309 310 311 312 313 314 315 316 317 318 319 320 321 322 323 324 325 326 327 328 329 330 331 332 333 334 335 336 337 338 339 340 341 342 343 344 345 346 347 348 349 350 351 352 353 354 355 356 357 358 359 360 361 362 363 364 365 366 367 368 369 370 371 372 373 374 375 376 377 378 379 380 381 382 383 384 385 386 387 388 389 390 391 392 393 394 395 396 397 398 399 400 401 402 403 404 405 406 407 408 409 410 411 412 413 414 415 416 417 418 419 420 421 422 423 424 425 426 427 428 429 430 431 432 433 434 435 436 437 438 439 440 441 442 443 444 445 446 447 448 449 450 451 452 453 454 455 456 457 458 459 460 461 462 463 464 465 466 467 468 469 470 471 472 473 474 475 476 477 478 479 480 481 482 483 484 485 486 487 488 489 490 491 492 493 494 495 496 497 498 499 500 501 502 503 504 505 506 507 508 509 510 511 512 513 514 515 516 517 518 519 520 521 522 523 524 525 526 527 528 529 530 531 532 533 534 535 536 537 538 539 540 541 542 543 544 545 546 547 548 549 550 551 552 553 554 555 556 557 558 559 560 561 562 563 564 565 566 567 568 569 570 571 572 573 574 575 576 577 578 579 580 581 582 583
|
// -*- mode: C++; c-file-style: "cc-mode" -*-
//*************************************************************************
//
// Code available from: https://verilator.org
//
// Copyright 2024 by Wilson Snyder. This program is free software; you can
// redistribute it and/or modify it under the terms of either the GNU Lesser
// General Public License Version 3 or the Perl Artistic License Version 2.0.
// SPDX-License-Identifier: LGPL-3.0-only OR Artistic-2.0
//
//*************************************************************************
///
/// \file
/// \brief Verilated randomization header
///
/// This file is included automatically by Verilator in some of the C++ files
/// it generates if randomization features are used.
///
/// This file is not part of the Verilated public-facing API.
/// It is only for internal use.
///
/// See the internals documentation docs/internals.rst for details.
///
//*************************************************************************
#ifndef VERILATOR_VERILATED_RANDOM_H_
#define VERILATOR_VERILATED_RANDOM_H_
#include "verilated.h"
#include <iomanip>
#include <iostream>
#include <ostream>
#include <sstream>
//=============================================================================
// VlRandomExpr and subclasses represent expressions for the constraint solver.
class ArrayInfo final {
public:
const std::string
m_name; // Name of the array variable, including index notation (e.g., arr[2][1])
void* const m_datap; // Reference to the array variable data
const int m_index; // Flattened (1D) index of the array element
const std::vector<IData> m_indices; // Multi-dimensional indices of the array element
const std::vector<size_t> m_idxWidths; // Multi-dimensional indices' bit widths
ArrayInfo(const std::string& name, void* datap, int index, const std::vector<IData>& indices,
const std::vector<size_t>& idxWidths)
: m_name{name}
, m_datap{datap}
, m_index{index}
, m_indices{indices}
, m_idxWidths{idxWidths} {}
};
using ArrayInfoMap = std::map<std::string, std::shared_ptr<const ArrayInfo>>;
class VlRandomVar VL_NOT_FINAL {
std::string m_name; // Variable name
void* const m_datap; // Reference to variable data
const int m_width; // Variable width in bits
const int m_dimension; //Variable dimension, default is 0
const std::uint32_t m_randModeIdx; // rand_mode index
public:
VlRandomVar(const std::string& name, int width, void* datap, int dimension,
std::uint32_t randModeIdx)
: m_name{name}
, m_datap{datap}
, m_width{width}
, m_dimension{dimension}
, m_randModeIdx{randModeIdx} {}
virtual ~VlRandomVar() = default;
std::string name() const { return m_name; }
int width() const { return m_width; }
int dimension() const { return m_dimension; }
virtual void* datap(int idx) const { return m_datap; }
std::uint32_t randModeIdx() const { return m_randModeIdx; }
bool randModeIdxNone() const { return randModeIdx() == std::numeric_limits<unsigned>::max(); }
bool set(const std::string& idx, const std::string& val) const;
virtual void emitGetValue(std::ostream& s) const;
virtual void emitExtract(std::ostream& s, int i) const;
virtual void emitType(std::ostream& s) const;
virtual int totalWidth() const;
mutable std::shared_ptr<const ArrayInfoMap> m_arrVarsRefp;
void setArrayInfo(const std::shared_ptr<const ArrayInfoMap>& arrVarsRefp) const {
m_arrVarsRefp = arrVarsRefp;
}
mutable std::map<std::string, int> count_cache;
int countMatchingElements(const ArrayInfoMap& arr_vars, const std::string& base_name) const {
if (VL_LIKELY(count_cache.find(base_name) != count_cache.end()))
return count_cache[base_name];
int count = 0;
for (int index = 0; arr_vars.find(base_name + std::to_string(index)) != arr_vars.end();
++index) {
++count;
}
count_cache[base_name] = count;
return count;
}
};
template <typename T>
class VlRandomArrayVarTemplate final : public VlRandomVar {
public:
VlRandomArrayVarTemplate(const std::string& name, int width, void* datap, int dimension,
std::uint32_t randModeIdx)
: VlRandomVar{name, width, datap, dimension, randModeIdx} {}
void* datap(int idx) const override {
const std::string indexed_name = name() + std::to_string(idx);
const auto it = m_arrVarsRefp->find(indexed_name);
if (it != m_arrVarsRefp->end()) {
return it->second->m_datap;
} else {
VL_FATAL_MT(__FILE__, __LINE__, "randomize", "indexed_name not found in m_arr_vars");
return nullptr;
}
}
void emitHexs(std::ostream& s, const std::vector<IData>& indices, const size_t bit_width,
size_t idx) const {
for (int j = bit_width - 4; j >= 0; j -= 4) {
s << "0123456789abcdef"[(indices[idx] >> j) & 0xf];
}
}
void emitSelect(std::ostream& s, const std::vector<IData>& indices,
const std::vector<size_t>& idxWidths) const {
const size_t num_indices = idxWidths.size();
size_t wide_size = 0;
for (size_t idx = 0; idx < num_indices; ++idx) s << "(select ";
s << name();
for (size_t idx = 0; idx < num_indices; ++idx) {
const size_t bit_width = idxWidths[idx];
s << " #x";
const size_t emit_count = (bit_width > 32) ? (idxWidths[idx] / 32) : 1;
for (size_t i = 0; i < emit_count; ++i) {
emitHexs(s, indices, (bit_width > 32) ? 32 : bit_width, wide_size + i);
}
wide_size += (idxWidths[idx] > 32) ? (idxWidths[idx] / 32) : 1;
s << ")";
}
}
void emitGetValue(std::ostream& s) const override {
const int elementCounts = countMatchingElements(*m_arrVarsRefp, name());
for (int i = 0; i < elementCounts; ++i) {
const std::string indexed_name = name() + std::to_string(i);
const auto it = m_arrVarsRefp->find(indexed_name);
if (it != m_arrVarsRefp->end()) {
const std::vector<IData>& indices = it->second->m_indices;
const std::vector<size_t>& idxWidths = it->second->m_idxWidths;
emitSelect(s, indices, idxWidths);
} else {
VL_FATAL_MT(__FILE__, __LINE__, "randomize",
"indexed_name not found in m_arr_vars");
}
}
}
void emitType(std::ostream& s) const override {
const std::string indexed_name = name() + std::to_string(0);
const auto it = m_arrVarsRefp->find(indexed_name);
if (it != m_arrVarsRefp->end()) {
const std::vector<size_t>& idxWidths = it->second->m_idxWidths;
if (dimension() > 0) {
for (int i = 0; i < dimension(); ++i) {
s << "(Array (_ BitVec " << idxWidths[i] << ") ";
}
s << "(_ BitVec " << width() << ")";
for (int i = 0; i < dimension(); ++i) s << ")";
}
} else {
VL_FATAL_MT(__FILE__, __LINE__, "randomize", "indexed_name not found in m_arr_vars");
}
}
int totalWidth() const override {
const int elementCounts = countMatchingElements(*m_arrVarsRefp, name());
return width() * elementCounts;
}
void emitExtract(std::ostream& s, int i) const override {
const int j = i / width();
i = i % width();
s << " ((_ extract " << i << ' ' << i << ')';
const std::string indexed_name = name() + std::to_string(j);
const auto it = m_arrVarsRefp->find(indexed_name);
if (it != m_arrVarsRefp->end()) {
const std::vector<IData>& indices = it->second->m_indices;
const std::vector<size_t>& idxWidths = it->second->m_idxWidths;
emitSelect(s, indices, idxWidths);
} else {
VL_FATAL_MT(__FILE__, __LINE__, "randomize", "indexed_name not found in m_arr_vars");
}
s << ')';
}
};
//=============================================================================
// VlRandomizer is the object holding constraints and variable references.
class VlRandomizer final {
// MEMBERS
std::vector<std::string> m_constraints; // Solver-dependent constraints
std::map<std::string, std::shared_ptr<const VlRandomVar>> m_vars; // Solver-dependent
// variables
ArrayInfoMap m_arr_vars; // Tracks each element in array structures for iteration
const VlQueue<CData>* m_randmode; // rand_mode state;
int m_index = 0; // Internal counter for key generation
// PRIVATE METHODS
void randomConstraint(std::ostream& os, VlRNG& rngr, int bits);
bool parseSolution(std::iostream& file);
public:
// CONSTRUCTORS
VlRandomizer() = default;
~VlRandomizer() = default;
// METHODS
// Finds the next solution satisfying the constraints
bool next(VlRNG& rngr);
// -----------------------------------------------
// --- Process the key for associative array ---
// -----------------------------------------------
// process_key: Handle integral keys (<= 32-bit)
template <typename T_Key>
typename std::enable_if<std::is_integral<T_Key>::value && (sizeof(T_Key) <= 4)>::type
process_key(const T_Key& key, std::string& indexed_name, std::vector<size_t>& integral_index,
const std::string& base_name, size_t& idx_width) {
integral_index.push_back(static_cast<size_t>(key));
indexed_name
= base_name + "[" + std::to_string(integral_index[integral_index.size() - 1]) + "]";
idx_width = sizeof(T_Key) * 8;
}
// process_key: Handle integral keys (> 32-bit), split into 2 x 32-bit segments
template <typename T_Key>
typename std::enable_if<std::is_integral<T_Key>::value && (sizeof(T_Key) > 4)>::type
process_key(const T_Key& key, std::string& indexed_name, std::vector<size_t>& integral_index,
const std::string& base_name, size_t& idx_width) {
constexpr size_t segment_bits = 32;
constexpr T_Key mask = (static_cast<T_Key>(1) << segment_bits) - 1;
integral_index.push_back(static_cast<size_t>(key >> segment_bits));
integral_index.push_back(static_cast<size_t>(key & mask));
std::ostringstream hex_stream;
hex_stream << std::hex << key;
std::string index_string = hex_stream.str();
index_string.erase(0, index_string.find_first_not_of('0'));
index_string = index_string.empty() ? "0" : index_string;
indexed_name = base_name + "[" + index_string + "]";
idx_width = sizeof(T_Key) * 8;
}
// process_key: Handle wide keys (VlWide-like), segment is 32-bit per element
template <typename T_Key>
typename std::enable_if<VlIsVlWide<T_Key>::value>::type
process_key(const T_Key& key, std::string& indexed_name, std::vector<size_t>& integral_index,
const std::string& base_name, size_t& idx_width) {
std::ostringstream hex_stream;
for (size_t i = key.size(); i > 0; --i) {
const size_t segment_value = key.at(i - 1);
hex_stream << std::hex << segment_value;
integral_index.push_back(segment_value);
}
std::string index_string = hex_stream.str();
index_string.erase(0, index_string.find_first_not_of('0'));
index_string = index_string.empty() ? "0" : index_string;
indexed_name = base_name + "[" + index_string + "]";
idx_width = key.size() * 32;
}
// process_key: Handle string key, encoded as 128-bit hex
template <typename T_Key>
typename std::enable_if<std::is_same<T_Key, std::string>::value>::type
process_key(const T_Key& key, std::string& indexed_name, std::vector<size_t>& integral_index,
const std::string& base_name, size_t& idx_width) {
// Convert the input string to its ASCII hexadecimal representation
std::ostringstream oss;
for (unsigned char c : key) {
oss << std::hex << std::setw(2) << std::setfill('0') << static_cast<int>(c);
}
std::string hex_str = oss.str();
// Ensure the hex string is exactly 128 bits (32 hex characters)
hex_str = hex_str.size() > 32 ? hex_str.substr(0, 32)
: std::string(32 - hex_str.size(), '0') + hex_str;
// Split the hex string into 4 segments (32-bit per segment)
integral_index.clear();
for (size_t i = 0; i < hex_str.size(); i += 8) {
integral_index.push_back(std::stoul(hex_str.substr(i, 8), nullptr, 16));
}
indexed_name = base_name + "["
+ (hex_str.find_first_not_of('0') == std::string::npos
? "0"
: hex_str.substr(hex_str.find_first_not_of('0')))
+ "]";
idx_width = 128;
}
// process_key: Unsupported key type fallback
template <typename T_Key>
typename std::enable_if<!std::is_integral<T_Key>::value
&& !std::is_same<T_Key, std::string>::value
&& !VlIsVlWide<T_Key>::value>::type
process_key(const T_Key& key, std::string& indexed_name, std::vector<size_t>& integral_index,
const std::string& base_name, size_t& idx_width) {
VL_FATAL_MT(__FILE__, __LINE__, "randomize",
"Unsupported: Only integral and string index of associative array is "
"supported currently.");
}
// -----------------------------------------
// --- write_var to register variables ---
// -----------------------------------------
// Register scalar variable (non-struct, basic type)
template <typename T>
typename std::enable_if<!VlContainsCustomStruct<T>::value, void>::type
write_var(T& var, int width, const char* name, int dimension,
std::uint32_t randmodeIdx = std::numeric_limits<std::uint32_t>::max()) {
if (m_vars.find(name) != m_vars.end()) return;
// TODO: make_unique once VlRandomizer is per-instance not per-ref
m_vars[name]
= std::make_shared<const VlRandomVar>(name, width, &var, dimension, randmodeIdx);
}
// Register user-defined struct variable by recursively writing members
template <typename T>
typename std::enable_if<VlIsCustomStruct<T>::value, void>::type
write_var(T& var, int width, const char* name, int dimension,
std::uint32_t randmodeIdx = std::numeric_limits<std::uint32_t>::max()) {
modifyMembers(var, var.memberIndices(), name);
}
// Register queue of non-struct types
template <typename T>
typename std::enable_if<!VlContainsCustomStruct<T>::value, void>::type
write_var(VlQueue<T>& var, int width, const char* name, int dimension,
std::uint32_t randmodeIdx = std::numeric_limits<std::uint32_t>::max()) {
if (m_vars.find(name) != m_vars.end()) return;
m_vars[name] = std::make_shared<const VlRandomArrayVarTemplate<VlQueue<T>>>(
name, width, &var, dimension, randmodeIdx);
if (dimension > 0) {
m_index = 0;
record_arr_table(var, name, dimension, {}, {});
}
}
// Register queue of structs
template <typename T>
typename std::enable_if<VlContainsCustomStruct<T>::value, void>::type
write_var(VlQueue<T>& var, int width, const char* name, int dimension,
std::uint32_t randmodeIdx = std::numeric_limits<std::uint32_t>::max()) {
if (dimension > 0) record_struct_arr(var, name, dimension, {}, {});
}
// Register unpacked array of non-struct types
template <typename T, std::size_t N_Depth>
typename std::enable_if<!VlContainsCustomStruct<T>::value, void>::type
write_var(VlUnpacked<T, N_Depth>& var, int width, const char* name, int dimension,
std::uint32_t randmodeIdx = std::numeric_limits<std::uint32_t>::max()) {
if (m_vars.find(name) != m_vars.end()) return;
m_vars[name] = std::make_shared<const VlRandomArrayVarTemplate<VlUnpacked<T, N_Depth>>>(
name, width, &var, dimension, randmodeIdx);
if (dimension > 0) {
m_index = 0;
record_arr_table(var, name, dimension, {}, {});
}
}
// Register unpacked array of structs
template <typename T, std::size_t N_Depth>
typename std::enable_if<VlContainsCustomStruct<T>::value, void>::type
write_var(VlUnpacked<T, N_Depth>& var, int width, const char* name, int dimension,
std::uint32_t randmodeIdx = std::numeric_limits<std::uint32_t>::max()) {
if (dimension > 0) record_struct_arr(var, name, dimension, {}, {});
}
// Register associative array of non-struct types
template <typename T_Key, typename T_Value>
typename std::enable_if<!VlContainsCustomStruct<T_Value>::value, void>::type
write_var(VlAssocArray<T_Key, T_Value>& var, int width, const char* name, int dimension,
std::uint32_t randmodeIdx = std::numeric_limits<std::uint32_t>::max()) {
if (m_vars.find(name) != m_vars.end()) return;
m_vars[name]
= std::make_shared<const VlRandomArrayVarTemplate<VlAssocArray<T_Key, T_Value>>>(
name, width, &var, dimension, randmodeIdx);
if (dimension > 0) {
m_index = 0;
record_arr_table(var, name, dimension, {}, {});
}
}
// Register associative array of structs
template <typename T_Key, typename T_Value>
typename std::enable_if<VlContainsCustomStruct<T_Value>::value, void>::type
write_var(VlAssocArray<T_Key, T_Value>& var, int width, const char* name, int dimension,
std::uint32_t randmodeIdx = std::numeric_limits<std::uint32_t>::max()) {
if (dimension > 0) record_struct_arr(var, name, dimension, {}, {});
}
// ----------------------------------------
// --- Record Arrays: flat and struct ---
// ----------------------------------------
// Record a flat (non-class) element into the array variable table
template <typename T>
typename std::enable_if<!std::is_class<T>::value, void>::type
record_arr_table(T& var, const std::string& name, int dimension, std::vector<IData> indices,
std::vector<size_t> idxWidths) {
const std::string key = generateKey(name, m_index);
m_arr_vars[key] = std::make_shared<ArrayInfo>(name, &var, m_index, indices, idxWidths);
++m_index;
}
// Recursively record all elements in an unpacked array
template <typename T, std::size_t N_Depth>
void record_arr_table(VlUnpacked<T, N_Depth>& var, const std::string& name, int dimension,
std::vector<IData> indices, std::vector<size_t> idxWidths) {
if ((dimension > 0) && (N_Depth != 0)) {
idxWidths.push_back(32);
for (size_t i = 0; i < N_Depth; ++i) {
const std::string indexed_name = name + "[" + std::to_string(i) + "]";
indices.push_back(i);
record_arr_table(var.operator[](i), indexed_name, dimension - 1, indices,
idxWidths);
indices.pop_back();
}
}
}
// Recursively record all elements in a queue
template <typename T>
void record_arr_table(VlQueue<T>& var, const std::string& name, int dimension,
std::vector<IData> indices, std::vector<size_t> idxWidths) {
if ((dimension > 0) && (var.size() != 0)) {
idxWidths.push_back(32);
for (size_t i = 0; i < var.size(); ++i) {
const std::string indexed_name = name + "[" + std::to_string(i) + "]";
indices.push_back(i);
record_arr_table(var.atWrite(i), indexed_name, dimension - 1, indices, idxWidths);
indices.pop_back();
}
}
}
// Recursively record all elements in an associative array
template <typename T_Key, typename T_Value>
void record_arr_table(VlAssocArray<T_Key, T_Value>& var, const std::string& name,
int dimension, std::vector<IData> indices,
std::vector<size_t> idxWidths) {
if ((dimension > 0) && (var.size() != 0)) {
for (auto it = var.begin(); it != var.end(); ++it) {
const T_Key& key = it->first;
const T_Value& value = it->second;
std::string indexed_name;
std::vector<size_t> integral_index;
size_t idx_width = 0;
process_key(key, indexed_name, integral_index, name, idx_width);
// Update indices and widths
idxWidths.push_back(idx_width);
indices.insert(indices.end(), integral_index.begin(), integral_index.end());
record_arr_table(var.at(key), indexed_name, dimension - 1, indices, idxWidths);
// Cleanup indices and widths
idxWidths.pop_back();
indices.resize(indices.size() - integral_index.size());
}
}
}
// Register a single structArray element via write_var
template <typename T>
typename std::enable_if<VlContainsCustomStruct<T>::value, void>::type
record_struct_arr(T& var, const std::string& name, int dimension, std::vector<IData> indices,
std::vector<size_t> idxWidths) {
std::ostringstream oss;
for (size_t i = 0; i < indices.size(); ++i) {
oss << std::hex << std::setw(int(idxWidths[i] / 4)) << std::setfill('0')
<< static_cast<int>(indices[i]);
if (i < indices.size() - 1) oss << ".";
}
write_var(var, 1ULL,
oss.str().length() > 0 ? (name + "." + oss.str()).c_str() : name.c_str(), 1ULL);
}
// Recursively process VlUnpacked of structs
template <typename T, std::size_t N_Depth>
void record_struct_arr(VlUnpacked<T, N_Depth>& var, const std::string& name, int dimension,
std::vector<IData> indices, std::vector<size_t> idxWidths) {
if (dimension > 0 && N_Depth != 0) {
constexpr size_t idx_width = 1 << VL_CLOG2_CE_Q(VL_CLOG2_CE_Q(N_Depth) + 1);
idxWidths.push_back(idx_width);
for (size_t i = 0; i < N_Depth; ++i) {
indices.push_back(i);
record_struct_arr(var.operator[](i), name, dimension - 1, indices, idxWidths);
indices.pop_back();
}
}
}
// Recursively process VlQueue of structs
template <typename T>
void record_struct_arr(VlQueue<T>& var, const std::string& name, int dimension,
std::vector<IData> indices, std::vector<size_t> idxWidths) {
if ((dimension > 0) && (var.size() != 0)) {
idxWidths.push_back(32);
for (size_t i = 0; i < var.size(); ++i) {
indices.push_back(i);
record_struct_arr(var.atWrite(i), name, dimension - 1, indices, idxWidths);
indices.pop_back();
}
}
}
// Recursively process associative arrays of structs
template <typename T_Key, typename T_Value>
void record_struct_arr(VlAssocArray<T_Key, T_Value>& var, const std::string& name,
int dimension, const std::vector<IData>& indices,
const std::vector<size_t>& idxWidths) {
if ((dimension > 0) && (!var.empty())) {
for (auto it = var.begin(); it != var.end(); ++it) {
const T_Key& key = it->first;
const T_Value& value = it->second;
std::string indexed_name;
std::vector<size_t> integral_index;
size_t idx_width = 0;
process_key(key, indexed_name, integral_index, name, idx_width);
std::ostringstream oss;
for (int i = 0; i < integral_index.size(); ++i)
oss << std::hex << static_cast<int>(integral_index[i]);
std::string result = oss.str();
result.insert(result.begin(), int(idx_width / 4) - result.size(), '0');
record_struct_arr(var.at(key), name + "." + result, dimension - 1, indices,
idxWidths);
}
}
}
// --------------------------
// --- Helper functions ---
// --------------------------
// Helper: Register all members of a user-defined struct
template <typename T, std::size_t... I>
void modifyMembers(T& obj, std::index_sequence<I...>, const std::string& baseName) {
// Use the indices to access each member via std::get
(void)std::initializer_list<int>{
(write_var(std::get<I>(obj.getMembers(obj)), obj.memberWidth()[I],
(baseName + "." + obj.memberNames()[I]).c_str(), obj.memberDimension()[I]),
0)...};
}
// Helper: Generate unique variable key from name and index
std::string generateKey(const std::string& name, int idx) {
if (!name.empty() && name[0] == '\\') {
const size_t space_pos = name.find(' ');
return (space_pos != std::string::npos ? name.substr(0, space_pos) : name)
+ std::to_string(idx);
}
const size_t bracket_pos = name.find('[');
return (bracket_pos != std::string::npos ? name.substr(0, bracket_pos) : name)
+ std::to_string(idx);
}
void hard(std::string&& constraint);
void clear();
void set_randmode(const VlQueue<CData>& randmode) { m_randmode = &randmode; }
#ifdef VL_DEBUG
void dump() const;
#endif
};
#endif // Guard
|