File: verilated_random.h

package info (click to toggle)
verilator 5.038-1
  • links: PTS, VCS
  • area: main
  • in suites: forky, sid
  • size: 162,552 kB
  • sloc: cpp: 139,204; python: 20,931; ansic: 10,222; yacc: 6,000; lex: 1,925; makefile: 1,260; sh: 494; perl: 282; fortran: 22
file content (583 lines) | stat: -rw-r--r-- 26,195 bytes parent folder | download
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
525
526
527
528
529
530
531
532
533
534
535
536
537
538
539
540
541
542
543
544
545
546
547
548
549
550
551
552
553
554
555
556
557
558
559
560
561
562
563
564
565
566
567
568
569
570
571
572
573
574
575
576
577
578
579
580
581
582
583
// -*- mode: C++; c-file-style: "cc-mode" -*-
//*************************************************************************
//
// Code available from: https://verilator.org
//
// Copyright 2024 by Wilson Snyder.  This program is free software; you can
// redistribute it and/or modify it under the terms of either the GNU Lesser
// General Public License Version 3 or the Perl Artistic License Version 2.0.
// SPDX-License-Identifier: LGPL-3.0-only OR Artistic-2.0
//
//*************************************************************************
///
/// \file
/// \brief Verilated randomization header
///
/// This file is included automatically by Verilator in some of the C++ files
/// it generates if randomization features are used.
///
/// This file is not part of the Verilated public-facing API.
/// It is only for internal use.
///
/// See the internals documentation docs/internals.rst for details.
///
//*************************************************************************
#ifndef VERILATOR_VERILATED_RANDOM_H_
#define VERILATOR_VERILATED_RANDOM_H_

#include "verilated.h"

#include <iomanip>
#include <iostream>
#include <ostream>
#include <sstream>

//=============================================================================
// VlRandomExpr and subclasses represent expressions for the constraint solver.
class ArrayInfo final {
public:
    const std::string
        m_name;  // Name of the array variable, including index notation (e.g., arr[2][1])
    void* const m_datap;  // Reference to the array variable data
    const int m_index;  // Flattened (1D) index of the array element
    const std::vector<IData> m_indices;  // Multi-dimensional indices of the array element
    const std::vector<size_t> m_idxWidths;  // Multi-dimensional indices' bit widths

    ArrayInfo(const std::string& name, void* datap, int index, const std::vector<IData>& indices,
              const std::vector<size_t>& idxWidths)
        : m_name{name}
        , m_datap{datap}
        , m_index{index}
        , m_indices{indices}
        , m_idxWidths{idxWidths} {}
};
using ArrayInfoMap = std::map<std::string, std::shared_ptr<const ArrayInfo>>;

class VlRandomVar VL_NOT_FINAL {
    std::string m_name;  // Variable name
    void* const m_datap;  // Reference to variable data
    const int m_width;  // Variable width in bits
    const int m_dimension;  //Variable dimension, default is 0
    const std::uint32_t m_randModeIdx;  // rand_mode index

public:
    VlRandomVar(const std::string& name, int width, void* datap, int dimension,
                std::uint32_t randModeIdx)
        : m_name{name}
        , m_datap{datap}
        , m_width{width}
        , m_dimension{dimension}
        , m_randModeIdx{randModeIdx} {}
    virtual ~VlRandomVar() = default;
    std::string name() const { return m_name; }
    int width() const { return m_width; }
    int dimension() const { return m_dimension; }
    virtual void* datap(int idx) const { return m_datap; }
    std::uint32_t randModeIdx() const { return m_randModeIdx; }
    bool randModeIdxNone() const { return randModeIdx() == std::numeric_limits<unsigned>::max(); }
    bool set(const std::string& idx, const std::string& val) const;
    virtual void emitGetValue(std::ostream& s) const;
    virtual void emitExtract(std::ostream& s, int i) const;
    virtual void emitType(std::ostream& s) const;
    virtual int totalWidth() const;
    mutable std::shared_ptr<const ArrayInfoMap> m_arrVarsRefp;
    void setArrayInfo(const std::shared_ptr<const ArrayInfoMap>& arrVarsRefp) const {
        m_arrVarsRefp = arrVarsRefp;
    }
    mutable std::map<std::string, int> count_cache;
    int countMatchingElements(const ArrayInfoMap& arr_vars, const std::string& base_name) const {
        if (VL_LIKELY(count_cache.find(base_name) != count_cache.end()))
            return count_cache[base_name];
        int count = 0;
        for (int index = 0; arr_vars.find(base_name + std::to_string(index)) != arr_vars.end();
             ++index) {
            ++count;
        }
        count_cache[base_name] = count;
        return count;
    }
};
template <typename T>
class VlRandomArrayVarTemplate final : public VlRandomVar {
public:
    VlRandomArrayVarTemplate(const std::string& name, int width, void* datap, int dimension,
                             std::uint32_t randModeIdx)
        : VlRandomVar{name, width, datap, dimension, randModeIdx} {}
    void* datap(int idx) const override {
        const std::string indexed_name = name() + std::to_string(idx);
        const auto it = m_arrVarsRefp->find(indexed_name);
        if (it != m_arrVarsRefp->end()) {
            return it->second->m_datap;
        } else {
            VL_FATAL_MT(__FILE__, __LINE__, "randomize", "indexed_name not found in m_arr_vars");
            return nullptr;
        }
    }
    void emitHexs(std::ostream& s, const std::vector<IData>& indices, const size_t bit_width,
                  size_t idx) const {
        for (int j = bit_width - 4; j >= 0; j -= 4) {
            s << "0123456789abcdef"[(indices[idx] >> j) & 0xf];
        }
    }
    void emitSelect(std::ostream& s, const std::vector<IData>& indices,
                    const std::vector<size_t>& idxWidths) const {
        const size_t num_indices = idxWidths.size();
        size_t wide_size = 0;

        for (size_t idx = 0; idx < num_indices; ++idx) s << "(select ";
        s << name();

        for (size_t idx = 0; idx < num_indices; ++idx) {
            const size_t bit_width = idxWidths[idx];
            s << " #x";

            const size_t emit_count = (bit_width > 32) ? (idxWidths[idx] / 32) : 1;

            for (size_t i = 0; i < emit_count; ++i) {
                emitHexs(s, indices, (bit_width > 32) ? 32 : bit_width, wide_size + i);
            }

            wide_size += (idxWidths[idx] > 32) ? (idxWidths[idx] / 32) : 1;
            s << ")";
        }
    }
    void emitGetValue(std::ostream& s) const override {
        const int elementCounts = countMatchingElements(*m_arrVarsRefp, name());
        for (int i = 0; i < elementCounts; ++i) {
            const std::string indexed_name = name() + std::to_string(i);
            const auto it = m_arrVarsRefp->find(indexed_name);
            if (it != m_arrVarsRefp->end()) {
                const std::vector<IData>& indices = it->second->m_indices;
                const std::vector<size_t>& idxWidths = it->second->m_idxWidths;
                emitSelect(s, indices, idxWidths);
            } else {
                VL_FATAL_MT(__FILE__, __LINE__, "randomize",
                            "indexed_name not found in m_arr_vars");
            }
        }
    }
    void emitType(std::ostream& s) const override {
        const std::string indexed_name = name() + std::to_string(0);
        const auto it = m_arrVarsRefp->find(indexed_name);
        if (it != m_arrVarsRefp->end()) {
            const std::vector<size_t>& idxWidths = it->second->m_idxWidths;
            if (dimension() > 0) {
                for (int i = 0; i < dimension(); ++i) {
                    s << "(Array (_ BitVec " << idxWidths[i] << ") ";
                }
                s << "(_ BitVec " << width() << ")";
                for (int i = 0; i < dimension(); ++i) s << ")";
            }
        } else {
            VL_FATAL_MT(__FILE__, __LINE__, "randomize", "indexed_name not found in m_arr_vars");
        }
    }
    int totalWidth() const override {
        const int elementCounts = countMatchingElements(*m_arrVarsRefp, name());
        return width() * elementCounts;
    }
    void emitExtract(std::ostream& s, int i) const override {
        const int j = i / width();
        i = i % width();
        s << " ((_ extract " << i << ' ' << i << ')';
        const std::string indexed_name = name() + std::to_string(j);
        const auto it = m_arrVarsRefp->find(indexed_name);
        if (it != m_arrVarsRefp->end()) {
            const std::vector<IData>& indices = it->second->m_indices;
            const std::vector<size_t>& idxWidths = it->second->m_idxWidths;
            emitSelect(s, indices, idxWidths);
        } else {
            VL_FATAL_MT(__FILE__, __LINE__, "randomize", "indexed_name not found in m_arr_vars");
        }
        s << ')';
    }
};
//=============================================================================
// VlRandomizer is the object holding constraints and variable references.
class VlRandomizer final {
    // MEMBERS
    std::vector<std::string> m_constraints;  // Solver-dependent constraints
    std::map<std::string, std::shared_ptr<const VlRandomVar>> m_vars;  // Solver-dependent
                                                                       // variables
    ArrayInfoMap m_arr_vars;  // Tracks each element in array structures for iteration
    const VlQueue<CData>* m_randmode;  // rand_mode state;
    int m_index = 0;  // Internal counter for key generation

    // PRIVATE METHODS
    void randomConstraint(std::ostream& os, VlRNG& rngr, int bits);
    bool parseSolution(std::iostream& file);

public:
    // CONSTRUCTORS
    VlRandomizer() = default;
    ~VlRandomizer() = default;

    // METHODS
    // Finds the next solution satisfying the constraints
    bool next(VlRNG& rngr);

    // -----------------------------------------------
    // ---  Process the key for associative array  ---
    // -----------------------------------------------

    // process_key: Handle integral keys (<= 32-bit)
    template <typename T_Key>
    typename std::enable_if<std::is_integral<T_Key>::value && (sizeof(T_Key) <= 4)>::type
    process_key(const T_Key& key, std::string& indexed_name, std::vector<size_t>& integral_index,
                const std::string& base_name, size_t& idx_width) {
        integral_index.push_back(static_cast<size_t>(key));
        indexed_name
            = base_name + "[" + std::to_string(integral_index[integral_index.size() - 1]) + "]";
        idx_width = sizeof(T_Key) * 8;
    }

    // process_key: Handle integral keys (> 32-bit), split into 2 x 32-bit segments
    template <typename T_Key>
    typename std::enable_if<std::is_integral<T_Key>::value && (sizeof(T_Key) > 4)>::type
    process_key(const T_Key& key, std::string& indexed_name, std::vector<size_t>& integral_index,
                const std::string& base_name, size_t& idx_width) {
        constexpr size_t segment_bits = 32;
        constexpr T_Key mask = (static_cast<T_Key>(1) << segment_bits) - 1;
        integral_index.push_back(static_cast<size_t>(key >> segment_bits));
        integral_index.push_back(static_cast<size_t>(key & mask));

        std::ostringstream hex_stream;
        hex_stream << std::hex << key;
        std::string index_string = hex_stream.str();
        index_string.erase(0, index_string.find_first_not_of('0'));
        index_string = index_string.empty() ? "0" : index_string;

        indexed_name = base_name + "[" + index_string + "]";

        idx_width = sizeof(T_Key) * 8;
    }

    // process_key: Handle wide keys (VlWide-like), segment is 32-bit per element
    template <typename T_Key>
    typename std::enable_if<VlIsVlWide<T_Key>::value>::type
    process_key(const T_Key& key, std::string& indexed_name, std::vector<size_t>& integral_index,
                const std::string& base_name, size_t& idx_width) {
        std::ostringstream hex_stream;
        for (size_t i = key.size(); i > 0; --i) {
            const size_t segment_value = key.at(i - 1);
            hex_stream << std::hex << segment_value;
            integral_index.push_back(segment_value);
        }
        std::string index_string = hex_stream.str();
        index_string.erase(0, index_string.find_first_not_of('0'));
        index_string = index_string.empty() ? "0" : index_string;

        indexed_name = base_name + "[" + index_string + "]";
        idx_width = key.size() * 32;
    }

    // process_key: Handle string key, encoded as 128-bit hex
    template <typename T_Key>
    typename std::enable_if<std::is_same<T_Key, std::string>::value>::type
    process_key(const T_Key& key, std::string& indexed_name, std::vector<size_t>& integral_index,
                const std::string& base_name, size_t& idx_width) {
        // Convert the input string to its ASCII hexadecimal representation
        std::ostringstream oss;
        for (unsigned char c : key) {
            oss << std::hex << std::setw(2) << std::setfill('0') << static_cast<int>(c);
        }
        std::string hex_str = oss.str();
        // Ensure the hex string is exactly 128 bits (32 hex characters)
        hex_str = hex_str.size() > 32 ? hex_str.substr(0, 32)
                                      : std::string(32 - hex_str.size(), '0') + hex_str;

        // Split the hex string into 4 segments (32-bit per segment)
        integral_index.clear();
        for (size_t i = 0; i < hex_str.size(); i += 8) {
            integral_index.push_back(std::stoul(hex_str.substr(i, 8), nullptr, 16));
        }

        indexed_name = base_name + "["
                       + (hex_str.find_first_not_of('0') == std::string::npos
                              ? "0"
                              : hex_str.substr(hex_str.find_first_not_of('0')))
                       + "]";

        idx_width = 128;
    }

    // process_key: Unsupported key type fallback
    template <typename T_Key>
    typename std::enable_if<!std::is_integral<T_Key>::value
                            && !std::is_same<T_Key, std::string>::value
                            && !VlIsVlWide<T_Key>::value>::type
    process_key(const T_Key& key, std::string& indexed_name, std::vector<size_t>& integral_index,
                const std::string& base_name, size_t& idx_width) {
        VL_FATAL_MT(__FILE__, __LINE__, "randomize",
                    "Unsupported: Only integral and string index of associative array is "
                    "supported currently.");
    }

    // -----------------------------------------
    // ---  write_var to register variables  ---
    // -----------------------------------------

    // Register scalar variable (non-struct, basic type)
    template <typename T>
    typename std::enable_if<!VlContainsCustomStruct<T>::value, void>::type
    write_var(T& var, int width, const char* name, int dimension,
              std::uint32_t randmodeIdx = std::numeric_limits<std::uint32_t>::max()) {
        if (m_vars.find(name) != m_vars.end()) return;
        // TODO: make_unique once VlRandomizer is per-instance not per-ref
        m_vars[name]
            = std::make_shared<const VlRandomVar>(name, width, &var, dimension, randmodeIdx);
    }

    // Register user-defined struct variable by recursively writing members
    template <typename T>
    typename std::enable_if<VlIsCustomStruct<T>::value, void>::type
    write_var(T& var, int width, const char* name, int dimension,
              std::uint32_t randmodeIdx = std::numeric_limits<std::uint32_t>::max()) {
        modifyMembers(var, var.memberIndices(), name);
    }

    // Register queue of non-struct types
    template <typename T>
    typename std::enable_if<!VlContainsCustomStruct<T>::value, void>::type
    write_var(VlQueue<T>& var, int width, const char* name, int dimension,
              std::uint32_t randmodeIdx = std::numeric_limits<std::uint32_t>::max()) {
        if (m_vars.find(name) != m_vars.end()) return;
        m_vars[name] = std::make_shared<const VlRandomArrayVarTemplate<VlQueue<T>>>(
            name, width, &var, dimension, randmodeIdx);
        if (dimension > 0) {
            m_index = 0;
            record_arr_table(var, name, dimension, {}, {});
        }
    }

    // Register queue of structs
    template <typename T>
    typename std::enable_if<VlContainsCustomStruct<T>::value, void>::type
    write_var(VlQueue<T>& var, int width, const char* name, int dimension,
              std::uint32_t randmodeIdx = std::numeric_limits<std::uint32_t>::max()) {
        if (dimension > 0) record_struct_arr(var, name, dimension, {}, {});
    }

    // Register unpacked array of non-struct types
    template <typename T, std::size_t N_Depth>
    typename std::enable_if<!VlContainsCustomStruct<T>::value, void>::type
    write_var(VlUnpacked<T, N_Depth>& var, int width, const char* name, int dimension,
              std::uint32_t randmodeIdx = std::numeric_limits<std::uint32_t>::max()) {
        if (m_vars.find(name) != m_vars.end()) return;
        m_vars[name] = std::make_shared<const VlRandomArrayVarTemplate<VlUnpacked<T, N_Depth>>>(
            name, width, &var, dimension, randmodeIdx);
        if (dimension > 0) {
            m_index = 0;
            record_arr_table(var, name, dimension, {}, {});
        }
    }

    // Register unpacked array of structs
    template <typename T, std::size_t N_Depth>
    typename std::enable_if<VlContainsCustomStruct<T>::value, void>::type
    write_var(VlUnpacked<T, N_Depth>& var, int width, const char* name, int dimension,
              std::uint32_t randmodeIdx = std::numeric_limits<std::uint32_t>::max()) {
        if (dimension > 0) record_struct_arr(var, name, dimension, {}, {});
    }

    // Register associative array of non-struct types
    template <typename T_Key, typename T_Value>
    typename std::enable_if<!VlContainsCustomStruct<T_Value>::value, void>::type
    write_var(VlAssocArray<T_Key, T_Value>& var, int width, const char* name, int dimension,
              std::uint32_t randmodeIdx = std::numeric_limits<std::uint32_t>::max()) {
        if (m_vars.find(name) != m_vars.end()) return;
        m_vars[name]
            = std::make_shared<const VlRandomArrayVarTemplate<VlAssocArray<T_Key, T_Value>>>(
                name, width, &var, dimension, randmodeIdx);
        if (dimension > 0) {
            m_index = 0;
            record_arr_table(var, name, dimension, {}, {});
        }
    }

    // Register associative array of structs
    template <typename T_Key, typename T_Value>
    typename std::enable_if<VlContainsCustomStruct<T_Value>::value, void>::type
    write_var(VlAssocArray<T_Key, T_Value>& var, int width, const char* name, int dimension,
              std::uint32_t randmodeIdx = std::numeric_limits<std::uint32_t>::max()) {
        if (dimension > 0) record_struct_arr(var, name, dimension, {}, {});
    }
    // ----------------------------------------
    // ---  Record Arrays: flat and struct  ---
    // ----------------------------------------

    // Record a flat (non-class) element into the array variable table
    template <typename T>
    typename std::enable_if<!std::is_class<T>::value, void>::type
    record_arr_table(T& var, const std::string& name, int dimension, std::vector<IData> indices,
                     std::vector<size_t> idxWidths) {
        const std::string key = generateKey(name, m_index);
        m_arr_vars[key] = std::make_shared<ArrayInfo>(name, &var, m_index, indices, idxWidths);
        ++m_index;
    }

    // Recursively record all elements in an unpacked array
    template <typename T, std::size_t N_Depth>
    void record_arr_table(VlUnpacked<T, N_Depth>& var, const std::string& name, int dimension,
                          std::vector<IData> indices, std::vector<size_t> idxWidths) {
        if ((dimension > 0) && (N_Depth != 0)) {
            idxWidths.push_back(32);
            for (size_t i = 0; i < N_Depth; ++i) {
                const std::string indexed_name = name + "[" + std::to_string(i) + "]";
                indices.push_back(i);
                record_arr_table(var.operator[](i), indexed_name, dimension - 1, indices,
                                 idxWidths);
                indices.pop_back();
            }
        }
    }

    // Recursively record all elements in a queue
    template <typename T>
    void record_arr_table(VlQueue<T>& var, const std::string& name, int dimension,
                          std::vector<IData> indices, std::vector<size_t> idxWidths) {
        if ((dimension > 0) && (var.size() != 0)) {
            idxWidths.push_back(32);
            for (size_t i = 0; i < var.size(); ++i) {
                const std::string indexed_name = name + "[" + std::to_string(i) + "]";
                indices.push_back(i);
                record_arr_table(var.atWrite(i), indexed_name, dimension - 1, indices, idxWidths);
                indices.pop_back();
            }
        }
    }

    // Recursively record all elements in an associative array
    template <typename T_Key, typename T_Value>
    void record_arr_table(VlAssocArray<T_Key, T_Value>& var, const std::string& name,
                          int dimension, std::vector<IData> indices,
                          std::vector<size_t> idxWidths) {
        if ((dimension > 0) && (var.size() != 0)) {
            for (auto it = var.begin(); it != var.end(); ++it) {
                const T_Key& key = it->first;
                const T_Value& value = it->second;

                std::string indexed_name;
                std::vector<size_t> integral_index;
                size_t idx_width = 0;

                process_key(key, indexed_name, integral_index, name, idx_width);

                // Update indices and widths
                idxWidths.push_back(idx_width);
                indices.insert(indices.end(), integral_index.begin(), integral_index.end());

                record_arr_table(var.at(key), indexed_name, dimension - 1, indices, idxWidths);

                // Cleanup indices and widths
                idxWidths.pop_back();
                indices.resize(indices.size() - integral_index.size());
            }
        }
    }

    // Register a single structArray element via write_var
    template <typename T>
    typename std::enable_if<VlContainsCustomStruct<T>::value, void>::type
    record_struct_arr(T& var, const std::string& name, int dimension, std::vector<IData> indices,
                      std::vector<size_t> idxWidths) {
        std::ostringstream oss;
        for (size_t i = 0; i < indices.size(); ++i) {
            oss << std::hex << std::setw(int(idxWidths[i] / 4)) << std::setfill('0')
                << static_cast<int>(indices[i]);
            if (i < indices.size() - 1) oss << ".";
        }
        write_var(var, 1ULL,
                  oss.str().length() > 0 ? (name + "." + oss.str()).c_str() : name.c_str(), 1ULL);
    }

    // Recursively process VlUnpacked of structs
    template <typename T, std::size_t N_Depth>
    void record_struct_arr(VlUnpacked<T, N_Depth>& var, const std::string& name, int dimension,
                           std::vector<IData> indices, std::vector<size_t> idxWidths) {
        if (dimension > 0 && N_Depth != 0) {
            constexpr size_t idx_width = 1 << VL_CLOG2_CE_Q(VL_CLOG2_CE_Q(N_Depth) + 1);
            idxWidths.push_back(idx_width);
            for (size_t i = 0; i < N_Depth; ++i) {
                indices.push_back(i);
                record_struct_arr(var.operator[](i), name, dimension - 1, indices, idxWidths);
                indices.pop_back();
            }
        }
    }

    // Recursively process VlQueue of structs
    template <typename T>
    void record_struct_arr(VlQueue<T>& var, const std::string& name, int dimension,
                           std::vector<IData> indices, std::vector<size_t> idxWidths) {
        if ((dimension > 0) && (var.size() != 0)) {
            idxWidths.push_back(32);
            for (size_t i = 0; i < var.size(); ++i) {
                indices.push_back(i);
                record_struct_arr(var.atWrite(i), name, dimension - 1, indices, idxWidths);
                indices.pop_back();
            }
        }
    }

    // Recursively process associative arrays of structs
    template <typename T_Key, typename T_Value>
    void record_struct_arr(VlAssocArray<T_Key, T_Value>& var, const std::string& name,
                           int dimension, const std::vector<IData>& indices,
                           const std::vector<size_t>& idxWidths) {
        if ((dimension > 0) && (!var.empty())) {
            for (auto it = var.begin(); it != var.end(); ++it) {
                const T_Key& key = it->first;
                const T_Value& value = it->second;

                std::string indexed_name;
                std::vector<size_t> integral_index;
                size_t idx_width = 0;

                process_key(key, indexed_name, integral_index, name, idx_width);
                std::ostringstream oss;
                for (int i = 0; i < integral_index.size(); ++i)
                    oss << std::hex << static_cast<int>(integral_index[i]);

                std::string result = oss.str();
                result.insert(result.begin(), int(idx_width / 4) - result.size(), '0');
                record_struct_arr(var.at(key), name + "." + result, dimension - 1, indices,
                                  idxWidths);
            }
        }
    }
    // --------------------------
    // ---  Helper functions  ---
    // --------------------------

    // Helper: Register all members of a user-defined struct
    template <typename T, std::size_t... I>
    void modifyMembers(T& obj, std::index_sequence<I...>, const std::string& baseName) {
        // Use the indices to access each member via std::get
        (void)std::initializer_list<int>{
            (write_var(std::get<I>(obj.getMembers(obj)), obj.memberWidth()[I],
                       (baseName + "." + obj.memberNames()[I]).c_str(), obj.memberDimension()[I]),
             0)...};
    }

    // Helper: Generate unique variable key from name and index
    std::string generateKey(const std::string& name, int idx) {
        if (!name.empty() && name[0] == '\\') {
            const size_t space_pos = name.find(' ');
            return (space_pos != std::string::npos ? name.substr(0, space_pos) : name)
                   + std::to_string(idx);
        }
        const size_t bracket_pos = name.find('[');
        return (bracket_pos != std::string::npos ? name.substr(0, bracket_pos) : name)
               + std::to_string(idx);
    }

    void hard(std::string&& constraint);
    void clear();
    void set_randmode(const VlQueue<CData>& randmode) { m_randmode = &randmode; }
#ifdef VL_DEBUG
    void dump() const;
#endif
};

#endif  // Guard