1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259
|
// -*- mode: C++; c-file-style: "cc-mode" -*-
//=============================================================================
//
// Code available from: https://verilator.org
//
// Copyright 2012-2025 by Wilson Snyder. This program is free software; you can
// redistribute it and/or modify it under the terms of either the GNU
// Lesser General Public License Version 3 or the Perl Artistic License
// Version 2.0.
// SPDX-License-Identifier: LGPL-3.0-only OR Artistic-2.0
//
//=============================================================================
///
/// \file
/// \brief Verilated thread pool implementation code
///
/// This file must be compiled and linked against all Verilated objects
/// that use --threads.
///
/// Use "verilator --threads" to add this to the Makefile for the linker.
///
//=============================================================================
#include "verilatedos.h"
#include "verilated_threads.h"
#include <cstdio>
#include <fstream>
#include <iostream>
#include <memory>
#include <string>
#ifdef __FreeBSD__
#include <pthread_np.h>
#endif
//=============================================================================
// Globals
// Internal note: Globals may multi-construct, see verilated.cpp top.
std::atomic<uint64_t> VlMTaskVertex::s_yields;
//=============================================================================
// VlMTaskVertex
VlMTaskVertex::VlMTaskVertex(uint32_t upstreamDepCount)
: m_upstreamDepsDone{0}
, m_upstreamDepCount{upstreamDepCount} {
assert(atomic_is_lock_free(&m_upstreamDepsDone));
}
//=============================================================================
// VlWorkerThread
VlWorkerThread::VlWorkerThread(VerilatedContext* contextp)
: m_ready_size{0}
, m_cthread{startWorker, this, contextp} {}
VlWorkerThread::~VlWorkerThread() {
shutdown();
// The thread should exit; join it.
m_cthread.join();
}
static void shutdownTask(void*, bool) { // LCOV_EXCL_LINE
// Deliberately empty, we use the address of this function as a magic number
}
void VlWorkerThread::shutdown() { addTask(shutdownTask, nullptr); }
void VlWorkerThread::wait() {
// Enqueue a task that sets this flag. Execution is in-order so this ensures completion.
std::atomic<bool> flag{false};
addTask([](void* flagp, bool) { static_cast<std::atomic<bool>*>(flagp)->store(true); }, &flag);
// Spin wait
for (unsigned i = 0; i < VL_LOCK_SPINS; ++i) {
if (flag.load()) return;
VL_CPU_RELAX();
}
// Yield wait
while (!flag.load()) std::this_thread::yield();
}
void VlWorkerThread::workerLoop() {
ExecRec work;
// Wait for the first task without spinning, in case the thread is never actually used.
dequeWork</* SpinWait: */ false>(&work);
while (true) {
if (VL_UNLIKELY(work.m_fnp == shutdownTask)) break;
work.m_fnp(work.m_selfp, work.m_evenCycle);
// Wait for next task with spinning.
dequeWork</* SpinWait: */ true>(&work);
}
}
void VlWorkerThread::startWorker(VlWorkerThread* workerp, VerilatedContext* contextp) {
Verilated::threadContextp(contextp);
workerp->workerLoop();
}
//=============================================================================
// VlThreadPool
VlThreadPool::VlThreadPool(VerilatedContext* contextp, unsigned nThreads) {
for (unsigned i = 0; i < nThreads; ++i) {
m_workers.push_back(new VlWorkerThread{contextp});
m_unassignedWorkers.push(i);
}
m_numaStatus = numaAssign();
}
VlThreadPool::~VlThreadPool() {
// Each ~WorkerThread will wait for its thread to exit.
for (auto& i : m_workers) delete i;
}
bool VlThreadPool::isNumactlRunning() {
// We assume if current thread is CPU-masked, then under numactl, otherwise not.
// This shows that numactl is visible through the affinity mask
#if defined(__linux) || defined(CPU_ZERO) // Linux-like; assume we have pthreads etc
const unsigned num_cpus = std::thread::hardware_concurrency();
cpu_set_t cpuset;
CPU_ZERO(&cpuset);
const int rc = pthread_getaffinity_np(pthread_self(), sizeof(cpu_set_t), &cpuset);
if (rc != 0) return true; // Error; assuming returning true is the least-damage option
for (unsigned c = 0; c < std::min(num_cpus, static_cast<unsigned>(CPU_SETSIZE)); ++c) {
if (!CPU_ISSET(c, &cpuset)) return true;
}
#endif
return false;
}
std::string VlThreadPool::numaAssign() {
#if defined(__linux) || defined(CPU_ZERO) || defined(VL_CPPCHECK) // Linux-like pthreads
// If not under numactl, make a reasonable processor affinity selection
if (isNumactlRunning()) return "running under numactl"; // User presumably set affinity
const int num_threads = static_cast<int>(m_workers.size());
const int num_proc = static_cast<int>(std::thread::hardware_concurrency());
if (num_threads < 2) return "too few threads";
if (num_threads > num_proc) return "too many threads";
// Read CPU info.
// Uncertain if any modern system has gaps in the processor id (Solaris
// did), but just in case use vectors instead of processor number math.
//
// Currently ignoring socket number "physical id".
// If processor numbers are sequential on sockets, algorithm works out ok.
// If processor numbers are strided on sockets, algorithm also works out ok.
std::ifstream is{"/proc/cpuinfo"};
if (VL_UNLIKELY(!is)) return "%Warning: no /proc/cpuinfo";
std::vector<int> unassigned_processors; // Processors to assign in sorted order
std::map<int, int> processor_core;
std::multimap<int, int> core_processors;
std::set<int> cores;
{
int processor = -1;
while (!is.eof()) {
std::string line;
std::getline(is, line);
static std::string::size_type pos = line.find(":");
int number = -1;
if (pos != std::string::npos) number = atoi(line.c_str() + pos + 1);
if (line.compare(0, std::strlen("processor"), "processor") == 0) {
processor = number;
} else if (line.compare(0, std::strlen("core id"), "core id") == 0) {
const int core = number;
// std::cout << "p" << processor << " socket " << socket << " c" << core <<
// std::endl;
cores.emplace(core);
processor_core[processor] = core;
core_processors.emplace(core, processor);
unassigned_processors.push_back(processor);
}
}
}
// Start scheduling on the current CPU + 1.
// This will help to land on the same socket as current CPU, and also
// help make sure that different processes have different masks (when
// num_threads is not a common-factor of the processor count).
std::sort(unassigned_processors.begin(), unassigned_processors.end());
{
const int on_cpu = sched_getcpu(); // TODO: this is a system call. Not exactly cheap.
bool hit = false;
std::vector<int> new_front;
std::vector<int> new_back;
for (const int processor : unassigned_processors) {
if (hit) {
new_front.push_back(processor);
} else {
new_back.push_back(processor);
}
if (processor == on_cpu) hit = true;
}
unassigned_processors = new_front;
unassigned_processors.insert(unassigned_processors.end(), new_back.begin(),
new_back.end());
}
// If less threads than cores, we can schedule per-core
const bool core_per_thread = num_threads <= cores.size();
// Compute core mapping
std::multimap<int, int> thread_processors;
{
std::set<int> assigned_processors;
int thread = 0;
for (const int processor : unassigned_processors) {
// Find free processor, the current thread can use that
if (assigned_processors.find(processor) != assigned_processors.end()) continue;
assigned_processors.emplace(processor);
thread_processors.emplace(thread, processor);
if (core_per_thread) {
// Also include all other processors same core,
// so that another thread doesn't land on different processor in same core
const int core = processor_core[processor];
const auto bounds = core_processors.equal_range(core);
for (auto it{bounds.first}; it != bounds.second; ++it) {
if (assigned_processors.find(it->second) != assigned_processors.end())
continue;
if (it->second == processor) continue;
thread_processors.emplace(thread, it->second);
assigned_processors.emplace(it->second);
}
}
// Prepare for next loop
thread = (thread + 1) % num_threads;
}
}
// Set affinity
std::string status = "assigned ";
for (int thread = 0; thread < num_threads; ++thread) {
cpu_set_t cpuset;
CPU_ZERO(&cpuset);
const auto bounds = thread_processors.equal_range(thread);
for (auto it{bounds.first}; it != bounds.second; ++it) {
if (it != bounds.first) status += ',';
status += std::to_string(it->second);
CPU_SET(it->second, &cpuset);
}
status += ";";
const int rc = pthread_setaffinity_np(m_workers[thread]->m_cthread.native_handle(),
sizeof(cpu_set_t), &cpuset);
if (rc != 0) return "%Warning: pthread_setaffinity_np failed";
}
// std::cout << "Status: " << status << std::endl;
return status;
#else
return "non-supported host OS";
#endif
}
|