1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249
|
// -*- mode: C++; c-file-style: "cc-mode" -*-
//=============================================================================
//
// Code available from: https://verilator.org
//
// Copyright 2012-2025 by Wilson Snyder. This program is free software; you
// can redistribute it and/or modify it under the terms of either the GNU
// Lesser General Public License Version 3 or the Perl Artistic License
// Version 2.0.
// SPDX-License-Identifier: LGPL-3.0-only OR Artistic-2.0
//
//=============================================================================
///
/// \file
/// \brief Verilated thread pool and profiling header
///
/// This file is not part of the Verilated public-facing API.
/// It is only for internal use by Verilated library multithreaded
/// routines.
///
//=============================================================================
#ifndef VERILATOR_VERILATED_THREADS_H_
#define VERILATOR_VERILATED_THREADS_H_
#include "verilatedos.h"
#include "verilated.h" // for VerilatedMutex and clang annotations
#include <atomic>
#include <condition_variable>
#include <set>
#include <stack>
#include <thread>
#include <vector>
class VlExecutionProfiler;
class VlThreadPool;
// VlMTaskVertex and VlThreadpool will work with multiple model class types.
// Since the type is opaque to VlMTaskVertex and VlThreadPool, represent it
// as a void* here.
using VlSelfP = void*;
using VlExecFnp = void (*)(VlSelfP, bool);
// Track dependencies for a single MTask.
class VlMTaskVertex final {
// MEMBERS
static std::atomic<uint64_t> s_yields; // Statistics
// On even cycles, _upstreamDepsDone increases as upstream
// dependencies complete. When it reaches _upstreamDepCount,
// this MTaskVertex is ready.
//
// On odd cycles, _upstreamDepsDone decreases as upstream
// dependencies complete, and when it reaches zero this MTaskVertex
// is ready.
//
// An atomic is smaller than a mutex, and lock-free.
//
// (Why does the size of this class matter? If an mtask has many
// downstream mtasks to notify, we hope these will pack into a
// small number of cache lines to reduce the cost of pointer chasing
// during done-notification. Nobody's quantified that cost though.
// If we were really serious about shrinking this class, we could
// use 16-bit types here...)
std::atomic<uint32_t> m_upstreamDepsDone;
const uint32_t m_upstreamDepCount;
public:
// CONSTRUCTORS
// 'upstreamDepCount' is the number of upstream MTaskVertex's
// that must notify this MTaskVertex before it will become ready
// to run.
explicit VlMTaskVertex(uint32_t upstreamDepCount);
~VlMTaskVertex() = default;
static uint64_t yields() { return s_yields; }
static void yieldThread() {
++s_yields; // Statistics
std::this_thread::yield();
}
// Upstream mtasks must call this when they complete.
// Returns true when the current MTaskVertex becomes ready to execute,
// false while it's still waiting on more dependencies.
bool signalUpstreamDone(bool evenCycle) {
if (evenCycle) {
const uint32_t upstreamDepsDone
= 1 + m_upstreamDepsDone.fetch_add(1, std::memory_order_release);
assert(upstreamDepsDone <= m_upstreamDepCount);
return (upstreamDepsDone == m_upstreamDepCount);
} else {
const uint32_t upstreamDepsDone_prev
= m_upstreamDepsDone.fetch_sub(1, std::memory_order_release);
assert(upstreamDepsDone_prev > 0);
return (upstreamDepsDone_prev == 1);
}
}
bool areUpstreamDepsDone(bool evenCycle) const {
const uint32_t target = evenCycle ? m_upstreamDepCount : 0;
return m_upstreamDepsDone.load(std::memory_order_acquire) == target;
}
void waitUntilUpstreamDone(bool evenCycle) const {
unsigned ct = 0;
while (VL_UNLIKELY(!areUpstreamDepsDone(evenCycle))) {
VL_CPU_RELAX();
++ct;
if (VL_UNLIKELY(ct > VL_LOCK_SPINS)) {
ct = 0;
yieldThread();
}
}
}
};
class VlWorkerThread final {
private:
// TYPES
struct ExecRec final {
VlExecFnp m_fnp = nullptr; // Function to execute
VlSelfP m_selfp = nullptr; // Symbol table to execute
bool m_evenCycle = false; // Even/odd for flag alternation
ExecRec() = default;
ExecRec(VlExecFnp fnp, VlSelfP selfp, bool evenCycle)
: m_fnp{fnp}
, m_selfp{selfp}
, m_evenCycle{evenCycle} {}
};
// MEMBERS
mutable VerilatedMutex m_mutex;
std::condition_variable_any m_cv;
// Only notify the condition_variable if the worker is waiting
bool m_waiting VL_GUARDED_BY(m_mutex) = false;
// Why a vector? We expect the pending list to be very short, typically
// 0 or 1 or 2, so popping from the front shouldn't be
// expensive. Revisit if we ever have longer queues...
std::vector<ExecRec> m_ready VL_GUARDED_BY(m_mutex);
// Store the size atomically, so we can spin wait
std::atomic<size_t> m_ready_size;
std::thread m_cthread; // Underlying C++ thread record
VL_UNCOPYABLE(VlWorkerThread);
protected:
friend class VlThreadPool;
const std::thread& cthread() const { return m_cthread; }
public:
// CONSTRUCTORS
explicit VlWorkerThread(VerilatedContext* contextp);
~VlWorkerThread();
// METHODS
template <bool N_SpinWait>
void dequeWork(ExecRec* workp) VL_MT_SAFE_EXCLUDES(m_mutex) {
// Spin for a while, waiting for new data
if VL_CONSTEXPR_CXX17 (N_SpinWait) {
for (unsigned i = 0; i < VL_LOCK_SPINS; ++i) {
if (VL_LIKELY(m_ready_size.load(std::memory_order_relaxed))) break;
VL_CPU_RELAX();
}
}
VerilatedLockGuard lock{m_mutex};
while (m_ready.empty()) {
m_waiting = true;
m_cv.wait(m_mutex);
}
m_waiting = false;
// As noted above this is inefficient if our ready list is ever
// long (but it shouldn't be)
*workp = m_ready.front();
m_ready.erase(m_ready.begin());
m_ready_size.fetch_sub(1, std::memory_order_relaxed);
}
void addTask(VlExecFnp fnp, VlSelfP selfp, bool evenCycle = false)
VL_MT_SAFE_EXCLUDES(m_mutex) {
bool notify;
{
const VerilatedLockGuard lock{m_mutex};
m_ready.emplace_back(fnp, selfp, evenCycle);
m_ready_size.fetch_add(1, std::memory_order_relaxed);
notify = m_waiting;
}
if (notify) m_cv.notify_one();
}
void shutdown(); // Finish current tasks, then terminate thread
void wait(); // Blocks calling thread until all tasks complete in this thread
void workerLoop();
static void startWorker(VlWorkerThread* workerp, VerilatedContext* contextp);
};
class VlThreadPool final : public VerilatedVirtualBase {
// MEMBERS
std::vector<VlWorkerThread*> m_workers; // our workers
mutable VerilatedMutex m_mutex; // Guards indexes of unassigned workers
// Indexes of unassigned workers
std::stack<size_t> m_unassignedWorkers VL_GUARDED_BY(m_mutex);
// For sequentially generating task IDs to avoid shadowing
std::atomic<unsigned> m_assignedTasks{0};
std::string m_numaStatus; // Status of NUMA assignment
public:
// CONSTRUCTORS
// Construct a thread pool with 'nThreads' dedicated threads. The thread
// pool will create these threads and make them available to execute tasks
// via this->workerp(index)->addTask(...)
VlThreadPool(VerilatedContext* contextp, unsigned nThreads);
~VlThreadPool() override;
// METHODS
size_t assignWorkerIndex() {
const VerilatedLockGuard lock{m_mutex};
assert(!m_unassignedWorkers.empty());
const size_t index = m_unassignedWorkers.top();
m_unassignedWorkers.pop();
return index;
}
void freeWorkerIndexes(std::vector<size_t>& indexes) {
const VerilatedLockGuard lock{m_mutex};
for (size_t index : indexes) m_unassignedWorkers.push(index);
indexes.clear();
}
unsigned assignTaskIndex() { return m_assignedTasks++; }
int numThreads() const { return static_cast<int>(m_workers.size()); }
std::string numaStatus() const { return m_numaStatus; }
VlWorkerThread* workerp(int index) {
assert(index >= 0);
assert(index < static_cast<int>(m_workers.size()));
return m_workers[index];
}
private:
VL_UNCOPYABLE(VlThreadPool);
// cppcheck-suppress unusedPrivateFunction
static bool isNumactlRunning();
std::string numaAssign();
};
#endif
|