File: verilated_trace_imp.h

package info (click to toggle)
verilator 5.038-1
  • links: PTS, VCS
  • area: main
  • in suites: forky, sid
  • size: 162,552 kB
  • sloc: cpp: 139,204; python: 20,931; ansic: 10,222; yacc: 6,000; lex: 1,925; makefile: 1,260; sh: 494; perl: 282; fortran: 22
file content (915 lines) | stat: -rw-r--r-- 36,095 bytes parent folder | download
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
525
526
527
528
529
530
531
532
533
534
535
536
537
538
539
540
541
542
543
544
545
546
547
548
549
550
551
552
553
554
555
556
557
558
559
560
561
562
563
564
565
566
567
568
569
570
571
572
573
574
575
576
577
578
579
580
581
582
583
584
585
586
587
588
589
590
591
592
593
594
595
596
597
598
599
600
601
602
603
604
605
606
607
608
609
610
611
612
613
614
615
616
617
618
619
620
621
622
623
624
625
626
627
628
629
630
631
632
633
634
635
636
637
638
639
640
641
642
643
644
645
646
647
648
649
650
651
652
653
654
655
656
657
658
659
660
661
662
663
664
665
666
667
668
669
670
671
672
673
674
675
676
677
678
679
680
681
682
683
684
685
686
687
688
689
690
691
692
693
694
695
696
697
698
699
700
701
702
703
704
705
706
707
708
709
710
711
712
713
714
715
716
717
718
719
720
721
722
723
724
725
726
727
728
729
730
731
732
733
734
735
736
737
738
739
740
741
742
743
744
745
746
747
748
749
750
751
752
753
754
755
756
757
758
759
760
761
762
763
764
765
766
767
768
769
770
771
772
773
774
775
776
777
778
779
780
781
782
783
784
785
786
787
788
789
790
791
792
793
794
795
796
797
798
799
800
801
802
803
804
805
806
807
808
809
810
811
812
813
814
815
816
817
818
819
820
821
822
823
824
825
826
827
828
829
830
831
832
833
834
835
836
837
838
839
840
841
842
843
844
845
846
847
848
849
850
851
852
853
854
855
856
857
858
859
860
861
862
863
864
865
866
867
868
869
870
871
872
873
874
875
876
877
878
879
880
881
882
883
884
885
886
887
888
889
890
891
892
893
894
895
896
897
898
899
900
901
902
903
904
905
906
907
908
909
910
911
912
913
914
915
// -*- mode: C++; c-file-style: "cc-mode" -*-
//=============================================================================
//
// Code available from: https://verilator.org
//
// Copyright 2001-2025 by Wilson Snyder. This program is free software; you
// can redistribute it and/or modify it under the terms of either the GNU
// Lesser General Public License Version 3 or the Perl Artistic License
// Version 2.0.
// SPDX-License-Identifier: LGPL-3.0-only OR Artistic-2.0
//
//=============================================================================
//
// Verilated tracing implementation code template common to all formats.
// This file is included by the format-specific implementations and
// should not be used otherwise.
//
//=============================================================================

// clang-format off

#ifndef VL_CPPCHECK
#if !defined(VL_SUB_T) || !defined(VL_BUF_T)
# error "This file should be included in trace format implementations"
#endif

#include "verilated_intrinsics.h"
#include "verilated_trace.h"
#include "verilated_threads.h"
#include <list>

#if 0
# include <iostream>
# define VL_TRACE_OFFLOAD_DEBUG(msg) std::cout << "TRACE OFFLOAD THREAD: " << msg << "\n"
#else
# define VL_TRACE_OFFLOAD_DEBUG(msg)
#endif

// clang-format on

//=============================================================================
// Static utility functions

static double timescaleToDouble(const char* unitp) VL_PURE {
    char* endp = nullptr;
    double value = std::strtod(unitp, &endp);
    // On error so we allow just "ns" to return 1e-9.
    if (value == 0.0 && endp == unitp) value = 1;
    unitp = endp;
    for (; *unitp && std::isspace(*unitp); ++unitp) {}
    switch (*unitp) {
    case 's': value *= 1e0; break;
    case 'm': value *= 1e-3; break;
    case 'u': value *= 1e-6; break;
    case 'n': value *= 1e-9; break;
    case 'p': value *= 1e-12; break;
    case 'f': value *= 1e-15; break;
    case 'a': value *= 1e-18; break;
    }
    return value;
}

//=========================================================================
// Buffer management

template <>
uint32_t* VerilatedTrace<VL_SUB_T, VL_BUF_T>::getOffloadBuffer() {
    uint32_t* bufferp;
    // Some jitter is expected, so some number of alternative offload buffers are
    // required, but don't allocate more than 8 buffers.
    if (m_numOffloadBuffers < 8) {
        // Allocate a new buffer if none is available
        if (!m_offloadBuffersFromWorker.tryGet(bufferp)) {
            ++m_numOffloadBuffers;
            // Note: over allocate a bit so pointer comparison is well defined
            // if we overflow only by a small amount
            bufferp = new uint32_t[m_offloadBufferSize + 16];
        }
    } else {
        // Block until a buffer becomes available
        bufferp = m_offloadBuffersFromWorker.get();
    }
    return bufferp;
}

template <>
void VerilatedTrace<VL_SUB_T, VL_BUF_T>::waitForOffloadBuffer(const uint32_t* buffp) {
    // Slow path code only called on flush/shutdown, so use a simple algorithm.
    // Collect buffers from worker and stash them until we get the one we want.
    std::deque<uint32_t*> stash;
    do { stash.push_back(m_offloadBuffersFromWorker.get()); } while (stash.back() != buffp);
    // Now put them back in the queue, in the original order.
    while (!stash.empty()) {
        m_offloadBuffersFromWorker.put_front(stash.back());
        stash.pop_back();
    }
}

//=========================================================================
// Worker thread

template <>
void VerilatedTrace<VL_SUB_T, VL_BUF_T>::offloadWorkerThreadMain() {
    bool shutdown = false;

    do {
        uint32_t* const bufferp = m_offloadBuffersToWorker.get();

        VL_TRACE_OFFLOAD_DEBUG("");
        VL_TRACE_OFFLOAD_DEBUG("Got buffer: " << bufferp);

        const uint32_t* readp = bufferp;

        std::unique_ptr<Buffer> traceBufp;  // We own the passed tracebuffer

        while (true) {
            const uint32_t cmd = readp[0];
            const uint32_t top = cmd >> 4;
            // Always set this up, as it is almost always needed
            uint32_t* const oldp = m_sigs_oldvalp + readp[1];
            // Note this increment needs to be undone on commands which do not
            // actually contain a code, but those are the rare cases.
            readp += 2;

            switch (cmd & 0xF) {
                //===
                // CHG_* commands
            case VerilatedTraceOffloadCommand::CHG_BIT_0:
                VL_TRACE_OFFLOAD_DEBUG("Command CHG_BIT_0 " << top);
                traceBufp->chgBit(oldp, 0);
                continue;
            case VerilatedTraceOffloadCommand::CHG_BIT_1:
                VL_TRACE_OFFLOAD_DEBUG("Command CHG_BIT_1 " << top);
                traceBufp->chgBit(oldp, 1);
                continue;
            case VerilatedTraceOffloadCommand::CHG_CDATA:
                VL_TRACE_OFFLOAD_DEBUG("Command CHG_CDATA " << top);
                // Bits stored in bottom byte of command
                traceBufp->chgCData(oldp, *readp, top);
                readp += 1;
                continue;
            case VerilatedTraceOffloadCommand::CHG_SDATA:
                VL_TRACE_OFFLOAD_DEBUG("Command CHG_SDATA " << top);
                // Bits stored in bottom byte of command
                traceBufp->chgSData(oldp, *readp, top);
                readp += 1;
                continue;
            case VerilatedTraceOffloadCommand::CHG_IDATA:
                VL_TRACE_OFFLOAD_DEBUG("Command CHG_IDATA " << top);
                // Bits stored in bottom byte of command
                traceBufp->chgIData(oldp, *readp, top);
                readp += 1;
                continue;
            case VerilatedTraceOffloadCommand::CHG_QDATA:
                VL_TRACE_OFFLOAD_DEBUG("Command CHG_QDATA " << top);
                // Bits stored in bottom byte of command
                traceBufp->chgQData(oldp, *reinterpret_cast<const QData*>(readp), top);
                readp += 2;
                continue;
            case VerilatedTraceOffloadCommand::CHG_WDATA:
                VL_TRACE_OFFLOAD_DEBUG("Command CHG_WDATA " << top);
                traceBufp->chgWData(oldp, readp, top);
                readp += VL_WORDS_I(top);
                continue;
            case VerilatedTraceOffloadCommand::CHG_DOUBLE:
                VL_TRACE_OFFLOAD_DEBUG("Command CHG_DOUBLE " << top);
                traceBufp->chgDouble(oldp, *reinterpret_cast<const double*>(readp));
                readp += 2;
                continue;
            case VerilatedTraceOffloadCommand::CHG_EVENT:
                VL_TRACE_OFFLOAD_DEBUG("Command CHG_EVENT " << top);
                traceBufp->chgEventTriggered(oldp);
                continue;

                //===
                // Rare commands
            case VerilatedTraceOffloadCommand::TIME_CHANGE: {
                VL_TRACE_OFFLOAD_DEBUG("Command TIME_CHANGE " << top);
                readp -= 1;  // No code in this command, undo increment
                const uint64_t timeui
                    = static_cast<uint64_t>(*reinterpret_cast<const uint32_t*>(readp)) << 32ULL
                      | static_cast<uint64_t>(*reinterpret_cast<const uint32_t*>(readp + 1));
                emitTimeChange(timeui);
                readp += 2;
                continue;
            }
            case VerilatedTraceOffloadCommand::TRACE_BUFFER:
                VL_TRACE_OFFLOAD_DEBUG("Command TRACE_BUFFER " << top);
                readp -= 1;  // No code in this command, undo increment
                traceBufp.reset(*reinterpret_cast<Buffer* const*>(readp));
                readp += 2;
                continue;

                //===
                // Commands ending this buffer
            case VerilatedTraceOffloadCommand::END:  //
                VL_TRACE_OFFLOAD_DEBUG("Command END");
                break;
            case VerilatedTraceOffloadCommand::SHUTDOWN:
                VL_TRACE_OFFLOAD_DEBUG("Command SHUTDOWN");
                shutdown = true;
                break;

            //===
            // Unknown command
            default: {  // LCOV_EXCL_START
                VL_TRACE_OFFLOAD_DEBUG("Command UNKNOWN " << cmd);
                VL_FATAL_MT(__FILE__, __LINE__, "", "Unknown trace command");
                break;
            }  // LCOV_EXCL_STOP
            }

            // The above switch will execute 'continue' when necessary,
            // so if we ever reach here, we are done with the buffer.
            break;
        }

        VL_TRACE_OFFLOAD_DEBUG("Returning buffer");

        // Return buffer
        m_offloadBuffersFromWorker.put(bufferp);
    } while (VL_LIKELY(!shutdown));
}

template <>
void VerilatedTrace<VL_SUB_T, VL_BUF_T>::shutdownOffloadWorker() {
    // If the worker thread is not running, done..
    if (!m_workerThread) return;

    // Hand an buffer with a shutdown command to the worker thread
    uint32_t* const bufferp = getOffloadBuffer();
    bufferp[0] = VerilatedTraceOffloadCommand::SHUTDOWN;
    m_offloadBuffersToWorker.put(bufferp);
    // Wait for it to return
    waitForOffloadBuffer(bufferp);
    // Join the thread and delete it
    m_workerThread->join();
    m_workerThread.reset(nullptr);
}

//=============================================================================
// Life cycle

template <>
void VerilatedTrace<VL_SUB_T, VL_BUF_T>::closeBase() {
    if (offload()) {
        shutdownOffloadWorker();
        while (m_numOffloadBuffers) {
            delete[] m_offloadBuffersFromWorker.get();
            --m_numOffloadBuffers;
        }
    }
}

template <>
void VerilatedTrace<VL_SUB_T, VL_BUF_T>::flushBase() {
    if (offload()) {
        // Hand an empty buffer to the worker thread
        uint32_t* const bufferp = getOffloadBuffer();
        *bufferp = VerilatedTraceOffloadCommand::END;
        m_offloadBuffersToWorker.put(bufferp);
        // Wait for it to be returned. As the processing is in-order,
        // this ensures all previous buffers have been processed.
        waitForOffloadBuffer(bufferp);
    }
}

//=============================================================================
// Callbacks to run on global events

template <>
void VerilatedTrace<VL_SUB_T, VL_BUF_T>::onFlush(void* selfp) {
    // This calls 'flush' on the derived class (which must then get any mutex)
    reinterpret_cast<VL_SUB_T*>(selfp)->flush();
}

template <>
void VerilatedTrace<VL_SUB_T, VL_BUF_T>::onExit(void* selfp) {
    // This calls 'close' on the derived class (which must then get any mutex)
    reinterpret_cast<VL_SUB_T*>(selfp)->close();
}

//=============================================================================
// VerilatedTrace

template <>
VerilatedTrace<VL_SUB_T, VL_BUF_T>::VerilatedTrace() {
    set_time_unit(Verilated::threadContextp()->timeunitString());
    set_time_resolution(Verilated::threadContextp()->timeprecisionString());
}

template <>
VerilatedTrace<VL_SUB_T, VL_BUF_T>::~VerilatedTrace() {
    if (m_sigs_oldvalp) VL_DO_CLEAR(delete[] m_sigs_oldvalp, m_sigs_oldvalp = nullptr);
    if (m_sigs_enabledp) VL_DO_CLEAR(delete[] m_sigs_enabledp, m_sigs_enabledp = nullptr);
    Verilated::removeFlushCb(VerilatedTrace<VL_SUB_T, VL_BUF_T>::onFlush, this);
    Verilated::removeExitCb(VerilatedTrace<VL_SUB_T, VL_BUF_T>::onExit, this);
    if (offload()) closeBase();
}

//=========================================================================
// Internals available to format-specific implementations

template <>
void VerilatedTrace<VL_SUB_T, VL_BUF_T>::traceInit() VL_MT_UNSAFE {
    // Note: It is possible to re-open a trace file (VCD in particular),
    // so we must reset the next code here, but it must have the same number
    // of codes on re-open
    const uint32_t expectedCodes = nextCode();
    m_nextCode = 1;
    m_numSignals = 0;
    m_maxBits = 0;
    m_sigs_enabledVec.clear();

    // Call all initialize callbacks, which will:
    // - Call decl* for each signal (these eventually call ::declCode)
    // - Store the base code
    for (const CallbackRecord& cbr : m_initCbs) cbr.m_initCb(cbr.m_userp, self(), nextCode());

    if (expectedCodes && nextCode() != expectedCodes) {
        VL_FATAL_MT(__FILE__, __LINE__, "",
                    "Reopening trace file with different number of signals");
    }

    // Now that we know the number of codes, allocate space for the buffer
    // holding previous signal values.
    if (!m_sigs_oldvalp) m_sigs_oldvalp = new uint32_t[nextCode()];

    // Apply enables
    if (m_sigs_enabledp) VL_DO_CLEAR(delete[] m_sigs_enabledp, m_sigs_enabledp = nullptr);
    if (!m_sigs_enabledVec.empty()) {
        // Else if was empty, m_sigs_enabledp = nullptr to short circuit tests
        // But it isn't, so alloc one bit for each code to indicate enablement
        // We don't want to still use m_signs_enabledVec as std::vector<bool> is not
        // guaranteed to be fast
        m_sigs_enabledp = new uint32_t[1 + VL_WORDS_I(nextCode())]{0};
        m_sigs_enabledVec.reserve(nextCode());
        for (size_t code = 0; code < nextCode(); ++code) {
            if (m_sigs_enabledVec[code]) {
                m_sigs_enabledp[VL_BITWORD_I(code)] |= 1U << VL_BITBIT_I(code);
            }
        }
        m_sigs_enabledVec.clear();
    }

    // Set callback so flush/abort will flush this file
    Verilated::addFlushCb(VerilatedTrace<VL_SUB_T, VL_BUF_T>::onFlush, this);
    Verilated::addExitCb(VerilatedTrace<VL_SUB_T, VL_BUF_T>::onExit, this);

    if (offload()) {
        // Compute offload buffer size. we need to be able to store a new value for
        // each signal, which is 'nextCode()' entries after the init callbacks
        // above have been run, plus up to 2 more words of metadata per signal,
        // plus fixed overhead of 1 for a termination flag and 3 for a time stamp
        // update.
        m_offloadBufferSize = nextCode() + numSignals() * 2 + 4;

        // Start the worker thread
        m_workerThread.reset(
            new std::thread{&VerilatedTrace<VL_SUB_T, VL_BUF_T>::offloadWorkerThreadMain, this});
    }
}

template <>
bool VerilatedTrace<VL_SUB_T, VL_BUF_T>::declCode(uint32_t code, const std::string& declName,
                                                  uint32_t bits) {
    if (VL_UNCOVERABLE(!code)) {
        VL_FATAL_MT(__FILE__, __LINE__, "", "Internal: internal trace problem, code 0 is illegal");
    }
    // To keep it simple, this is O(enables * signals), but we expect few enables
    bool enabled = false;
    if (m_dumpvars.empty()) enabled = true;
    for (const auto& item : m_dumpvars) {
        const int dumpvarsLevel = item.first;
        const char* dvp = item.second.c_str();
        const char* np = declName.c_str();
        while (*dvp && *dvp == *np) {
            ++dvp;
            ++np;
        }
        if (*dvp) continue;  // Didn't match dumpvar item
        if (*np && *np != ' ') continue;  // e.g. "t" isn't a match for "top"
        int levels = 0;
        while (*np) {
            if (*np++ == ' ') ++levels;
        }
        if (levels > dumpvarsLevel) continue;  // Too deep
        // We only need to set first code word if it's a multicode signal
        // as that's all we'll check for later
        if (m_sigs_enabledVec.size() <= code) m_sigs_enabledVec.resize((code + 1024) * 2);
        m_sigs_enabledVec[code] = true;
        enabled = true;
        break;
    }

    int codesNeeded = VL_WORDS_I(bits);
    m_nextCode = std::max(m_nextCode, code + codesNeeded);
    ++m_numSignals;
    m_maxBits = std::max(m_maxBits, bits);
    return enabled;
}

//=========================================================================
// Internals available to format-specific implementations

template <>
std::string VerilatedTrace<VL_SUB_T, VL_BUF_T>::timeResStr() const {
    return vl_timescaled_double(m_timeRes);
}

//=========================================================================
// External interface to client code

template <>
void VerilatedTrace<VL_SUB_T, VL_BUF_T>::set_time_unit(const char* unitp) VL_MT_SAFE {
    m_timeUnit = timescaleToDouble(unitp);
}
template <>
void VerilatedTrace<VL_SUB_T, VL_BUF_T>::set_time_unit(const std::string& unit) VL_MT_SAFE {
    set_time_unit(unit.c_str());
}
template <>
void VerilatedTrace<VL_SUB_T, VL_BUF_T>::set_time_resolution(const char* unitp) VL_MT_SAFE {
    m_timeRes = timescaleToDouble(unitp);
}
template <>
void VerilatedTrace<VL_SUB_T, VL_BUF_T>::set_time_resolution(const std::string& unit) VL_MT_SAFE {
    set_time_resolution(unit.c_str());
}
template <>
void VerilatedTrace<VL_SUB_T, VL_BUF_T>::dumpvars(int level, const std::string& hier) VL_MT_SAFE {
    if (level == 0) {
        m_dumpvars.clear();  // empty = everything on
    } else {
        // Convert Verilog . separators to trace space separators
        std::string hierSpaced = hier;
        for (auto& i : hierSpaced) {
            if (i == '.') i = ' ';
        }
        m_dumpvars.emplace_back(level, hierSpaced);
    }
}

template <>
void VerilatedTrace<VL_SUB_T, VL_BUF_T>::parallelWorkerTask(void* datap, bool) {
    ParallelWorkerData* const wdp = reinterpret_cast<ParallelWorkerData*>(datap);
    // Run the task
    wdp->m_cb(wdp->m_userp, wdp->m_bufp);
    // Mark buffer as ready
    const VerilatedLockGuard lock{wdp->m_mutex};
    wdp->m_ready.store(true);
    if (wdp->m_waiting) wdp->m_cv.notify_one();
}

template <>
VL_ATTR_NOINLINE void VerilatedTrace<VL_SUB_T, VL_BUF_T>::ParallelWorkerData::wait() {
    // Spin for a while, waiting for the buffer to become ready
    for (int i = 0; i < VL_LOCK_SPINS; ++i) {
        if (VL_LIKELY(m_ready.load(std::memory_order_relaxed))) return;
        VL_CPU_RELAX();
    }
    // We have been spinning for a while, so yield the thread
    VerilatedLockGuard lock{m_mutex};
    m_waiting = true;
    m_cv.wait(m_mutex, [this] { return m_ready.load(std::memory_order_relaxed); });
    m_waiting = false;
}

template <>
void VerilatedTrace<VL_SUB_T, VL_BUF_T>::runCallbacks(const std::vector<CallbackRecord>& cbVec) {
    if (parallel()) {
        // If tracing in parallel, dispatch to the thread pool
        VlThreadPool* threadPoolp = static_cast<VlThreadPool*>(m_contextp->threadPoolp());
        // List of work items for thread (std::list, as ParallelWorkerData is not movable)
        std::list<ParallelWorkerData> workerData;
        // We use the whole pool + the main thread
        const unsigned threads = threadPoolp->numThreads() + 1;
        // Main thread executes all jobs with index % threads == 0
        std::vector<ParallelWorkerData*> mainThreadWorkerData;
        // Enqueue all the jobs
        for (const CallbackRecord& cbr : cbVec) {
            // Always get the trace buffer on the main thread
            Buffer* const bufp = getTraceBuffer(cbr.m_fidx);
            // Create new work item
            workerData.emplace_back(cbr.m_dumpCb, cbr.m_userp, bufp);
            // Grab the new work item
            ParallelWorkerData* const itemp = &workerData.back();
            // Enqueue task to thread pool, or main thread
            if (unsigned rem = cbr.m_fidx % threads) {
                threadPoolp->workerp(rem - 1)->addTask(parallelWorkerTask, itemp);
            } else {
                mainThreadWorkerData.push_back(itemp);
            }
        }
        // Execute main thread jobs
        for (ParallelWorkerData* const itemp : mainThreadWorkerData) {
            parallelWorkerTask(itemp, false);
        }
        // Commit all trace buffers in order
        for (ParallelWorkerData& item : workerData) {
            // Wait until ready
            item.wait();
            // Commit the buffer
            commitTraceBuffer(item.m_bufp);
        }

        // Done
        return;
    }
    // Fall back on sequential execution
    for (const CallbackRecord& cbr : cbVec) {
        Buffer* const traceBufferp = getTraceBuffer(cbr.m_fidx);
        cbr.m_dumpCb(cbr.m_userp, traceBufferp);
        commitTraceBuffer(traceBufferp);
    }
}

template <>
void VerilatedTrace<VL_SUB_T, VL_BUF_T>::runOffloadedCallbacks(
    const std::vector<CallbackRecord>& cbVec) {
    // Fall back on sequential execution
    for (const CallbackRecord& cbr : cbVec) {
        Buffer* traceBufferp = getTraceBuffer(cbr.m_fidx);
        cbr.m_dumpOffloadCb(cbr.m_userp, static_cast<OffloadBuffer*>(traceBufferp));
        commitTraceBuffer(traceBufferp);
    }
}

template <>
void VerilatedTrace<VL_SUB_T, VL_BUF_T>::dump(uint64_t timeui) VL_MT_SAFE_EXCLUDES(m_mutex) {
    // Not really VL_MT_SAFE but more VL_MT_UNSAFE_ONE.
    // This does get the mutex, but if multiple threads are trying to dump
    // chances are the data being dumped will have other problems
    const VerilatedLockGuard lock{m_mutex};
    if (VL_UNCOVERABLE(m_didSomeDump && timeui <= m_timeLastDump)) {  // LCOV_EXCL_START
        VL_PRINTF_MT("%%Warning: previous dump at t=%" PRIu64 ", requesting t=%" PRIu64
                     ", dump call ignored\n",
                     m_timeLastDump, timeui);
        return;
    }  // LCOV_EXCL_STOP
    m_timeLastDump = timeui;
    m_didSomeDump = true;

    Verilated::quiesce();

    // Call hook for format-specific behaviour
    if (VL_UNLIKELY(m_fullDump)) {
        if (!preFullDump()) return;
    } else {
        if (!preChangeDump()) return;
    }

    uint32_t* bufferp = nullptr;
    if (offload()) {
        // Currently only incremental dumps run on the worker thread
        if (VL_LIKELY(!m_fullDump)) {
            // Get the offload buffer we are about to fill
            bufferp = getOffloadBuffer();
            m_offloadBufferWritep = bufferp;
            m_offloadBufferEndp = bufferp + m_offloadBufferSize;

            // Tell worker to update time point
            m_offloadBufferWritep[0] = VerilatedTraceOffloadCommand::TIME_CHANGE;
            *reinterpret_cast<uint32_t*>(m_offloadBufferWritep + 1)
                = static_cast<uint32_t>(timeui >> 32ULL);
            *reinterpret_cast<uint32_t*>(m_offloadBufferWritep + 2)
                = static_cast<uint32_t>(timeui);
            m_offloadBufferWritep += 3;
        } else {
            // Update time point
            flushBase();
            emitTimeChange(timeui);
        }
    } else {
        // Update time point
        emitTimeChange(timeui);
    }

    // Run the callbacks
    if (VL_UNLIKELY(m_fullDump)) {
        m_fullDump = false;  // No more need for next dump to be full
        if (offload()) {
            runOffloadedCallbacks(m_fullOffloadCbs);
        } else {
            runCallbacks(m_fullCbs);
        }
    } else {
        if (offload()) {
            runOffloadedCallbacks(m_chgOffloadCbs);
        } else {
            runCallbacks(m_chgCbs);
        }
    }

    if (VL_UNLIKELY(m_constDump)) {
        m_constDump = false;
        if (offload()) {
            runOffloadedCallbacks(m_constOffloadCbs);
        } else {
            runCallbacks(m_constCbs);
        }
    }

    for (const CallbackRecord& cbr : m_cleanupCbs) cbr.m_cleanupCb(cbr.m_userp, self());

    if (offload() && VL_LIKELY(bufferp)) {
        // Mark end of the offload buffer we just filled
        *m_offloadBufferWritep++ = VerilatedTraceOffloadCommand::END;

        // Assert no buffer overflow
        assert(static_cast<size_t>(m_offloadBufferWritep - bufferp) <= m_offloadBufferSize);

        // Reset our pointers as we are giving up the buffer
        m_offloadBufferWritep = nullptr;
        m_offloadBufferEndp = nullptr;

        // Pass it to the worker thread
        m_offloadBuffersToWorker.put(bufferp);
    }
}

//=============================================================================
// Non-hot path internal interface to Verilator generated code

template <>
void VerilatedTrace<VL_SUB_T, VL_BUF_T>::addModel(VerilatedModel* modelp)
    VL_MT_SAFE_EXCLUDES(m_mutex) {
    const VerilatedLockGuard lock{m_mutex};

    const bool firstModel = m_models.empty();
    const bool newModel = m_models.insert(modelp).second;
    VerilatedContext* const contextp = modelp->contextp();

    // Validate
    if (!newModel) {  // LCOV_EXCL_START
        VL_FATAL_MT(
            __FILE__, __LINE__, "",
            "The same model has already been added to this trace file or VerilatedContext");
    }
    if (VL_UNCOVERABLE(m_contextp && contextp != m_contextp)) {
        VL_FATAL_MT(__FILE__, __LINE__, "",
                    "A trace file instance can only handle models from the same VerilatedContext");
    }
    if (VL_UNCOVERABLE(m_didSomeDump)) {
        VL_FATAL_MT(__FILE__, __LINE__, "",
                    "Cannot add models to a trace file if 'dump' has already been called");
    }  // LCOV_EXCL_STOP

    // Keep hold of the context
    m_contextp = contextp;

    // Get the desired trace config from the model
    const std::unique_ptr<VerilatedTraceConfig> configp = modelp->traceConfig();

    // Configure trace base class
    if (!firstModel) {
        if (m_offload != configp->m_useOffloading) {
            VL_FATAL_MT(__FILE__, __LINE__, "",
                        "Either all or no models using the same trace file must use offloading");
        }
    }
    m_offload = configp->m_useOffloading;
    // If at least one model requests parallel tracing, then use it
    m_parallel |= configp->m_useParallel;

    if (VL_UNCOVERABLE(m_parallel && m_offload)) {  // LCOV_EXCL_START
        VL_FATAL_MT(__FILE__, __LINE__, "", "Cannot use parallel tracing with offloading");
    }  // LCOV_EXCL_STOP

    // Configure format-specific sub class
    configure(*(configp.get()));
}

template <>
void VerilatedTrace<VL_SUB_T, VL_BUF_T>::addCallbackRecord(std::vector<CallbackRecord>& cbVec,
                                                           CallbackRecord&& cbRec)
    VL_MT_SAFE_EXCLUDES(m_mutex) {
    const VerilatedLockGuard lock{m_mutex};
    cbVec.push_back(cbRec);
}

template <>
void VerilatedTrace<VL_SUB_T, VL_BUF_T>::addInitCb(initCb_t cb, void* userp) VL_MT_SAFE {
    addCallbackRecord(m_initCbs, CallbackRecord{cb, userp});
}
template <>
void VerilatedTrace<VL_SUB_T, VL_BUF_T>::addConstCb(dumpCb_t cb, uint32_t fidx,
                                                    void* userp) VL_MT_SAFE {
    addCallbackRecord(m_constCbs, CallbackRecord{cb, fidx, userp});
}
template <>
void VerilatedTrace<VL_SUB_T, VL_BUF_T>::addConstCb(dumpOffloadCb_t cb, uint32_t fidx,
                                                    void* userp) VL_MT_SAFE {
    addCallbackRecord(m_constOffloadCbs, CallbackRecord{cb, fidx, userp});
}
template <>
void VerilatedTrace<VL_SUB_T, VL_BUF_T>::addFullCb(dumpCb_t cb, uint32_t fidx,
                                                   void* userp) VL_MT_SAFE {
    addCallbackRecord(m_fullCbs, CallbackRecord{cb, fidx, userp});
}
template <>
void VerilatedTrace<VL_SUB_T, VL_BUF_T>::addFullCb(dumpOffloadCb_t cb, uint32_t fidx,
                                                   void* userp) VL_MT_SAFE {
    addCallbackRecord(m_fullOffloadCbs, CallbackRecord{cb, fidx, userp});
}
template <>
void VerilatedTrace<VL_SUB_T, VL_BUF_T>::addChgCb(dumpCb_t cb, uint32_t fidx,
                                                  void* userp) VL_MT_SAFE {
    addCallbackRecord(m_chgCbs, CallbackRecord{cb, fidx, userp});
}
template <>
void VerilatedTrace<VL_SUB_T, VL_BUF_T>::addChgCb(dumpOffloadCb_t cb, uint32_t fidx,
                                                  void* userp) VL_MT_SAFE {
    addCallbackRecord(m_chgOffloadCbs, CallbackRecord{cb, fidx, userp});
}
template <>
void VerilatedTrace<VL_SUB_T, VL_BUF_T>::addCleanupCb(cleanupCb_t cb, void* userp) VL_MT_SAFE {
    addCallbackRecord(m_cleanupCbs, CallbackRecord{cb, userp});
}

//=========================================================================
// Primitives converting binary values to strings...

// All of these take a destination pointer where the string will be emitted,
// and a value to convert. There are a couple of variants for efficiency.

static inline void cvtCDataToStr(char* dstp, CData value) {
#ifdef VL_HAVE_SSE2
    // Similar to cvtSDataToStr but only the bottom 8 byte lanes are used
    const __m128i a = _mm_cvtsi32_si128(value);
    const __m128i b = _mm_unpacklo_epi8(a, a);
    const __m128i c = _mm_shufflelo_epi16(b, 0);
    const __m128i m = _mm_set1_epi64x(0x0102040810204080);
    const __m128i d = _mm_cmpeq_epi8(_mm_and_si128(c, m), m);
    const __m128i result = _mm_sub_epi8(_mm_set1_epi8('0'), d);
    _mm_storel_epi64(reinterpret_cast<__m128i*>(dstp), result);
#else
    dstp[0] = '0' | static_cast<char>((value >> 7) & 1);
    dstp[1] = '0' | static_cast<char>((value >> 6) & 1);
    dstp[2] = '0' | static_cast<char>((value >> 5) & 1);
    dstp[3] = '0' | static_cast<char>((value >> 4) & 1);
    dstp[4] = '0' | static_cast<char>((value >> 3) & 1);
    dstp[5] = '0' | static_cast<char>((value >> 2) & 1);
    dstp[6] = '0' | static_cast<char>((value >> 1) & 1);
    dstp[7] = '0' | static_cast<char>(value & 1);
#endif
}

static inline void cvtSDataToStr(char* dstp, SData value) {
#ifdef VL_HAVE_SSE2
    // We want each bit in the 16-bit input value to end up in a byte lane
    // within the 128-bit XMM register. Note that x86 is little-endian and we
    // want the MSB of the input at the low address, so we will bit-reverse
    // at the same time.

    // Put value in bottom of 128-bit register a[15:0] = value
    const __m128i a = _mm_cvtsi32_si128(value);
    // Interleave bytes with themselves
    // b[15: 0] = {2{a[ 7:0]}} == {2{value[ 7:0]}}
    // b[31:16] = {2{a[15:8]}} == {2{value[15:8]}}
    const __m128i b = _mm_unpacklo_epi8(a, a);
    // Shuffle bottom 64 bits, note swapping high bytes with low bytes
    // c[31: 0] = {2{b[31:16]}} == {4{value[15:8}}
    // c[63:32] = {2{b[15: 0]}} == {4{value[ 7:0}}
    const __m128i c = _mm_shufflelo_epi16(b, 0x05);
    // Shuffle whole register
    // d[ 63: 0] = {2{c[31: 0]}} == {8{value[15:8}}
    // d[126:54] = {2{c[63:32]}} == {8{value[ 7:0}}
    const __m128i d = _mm_shuffle_epi32(c, 0x50);
    // Test each bit within the bytes, this sets each byte lane to 0
    // if the bit for that lane is 0 and to 0xff if the bit is 1.
    const __m128i m = _mm_set1_epi64x(0x0102040810204080);
    const __m128i e = _mm_cmpeq_epi8(_mm_and_si128(d, m), m);
    // Convert to ASCII by subtracting the masks from ASCII '0':
    // '0' - 0 is '0', '0' - -1 is '1'
    const __m128i result = _mm_sub_epi8(_mm_set1_epi8('0'), e);
    // Store the 16 characters to the un-aligned buffer
    _mm_storeu_si128(reinterpret_cast<__m128i*>(dstp), result);
#else
    cvtCDataToStr(dstp, value >> 8);
    cvtCDataToStr(dstp + 8, value);
#endif
}

static inline void cvtIDataToStr(char* dstp, IData value) {
#ifdef VL_HAVE_AVX2
    // Similar to cvtSDataToStr but the bottom 16-bits are processed in the
    // top half of the YMM registers
    const __m256i a = _mm256_insert_epi32(_mm256_undefined_si256(), value, 0);
    const __m256i b = _mm256_permute4x64_epi64(a, 0);
    const __m256i s = _mm256_set_epi8(0, 0, 0, 0, 0, 0, 0, 0, 1, 1, 1, 1, 1, 1, 1, 1, 2, 2, 2, 2,
                                      2, 2, 2, 2, 3, 3, 3, 3, 3, 3, 3, 3);
    const __m256i c = _mm256_shuffle_epi8(b, s);
    const __m256i m = _mm256_set1_epi64x(0x0102040810204080);
    const __m256i d = _mm256_cmpeq_epi8(_mm256_and_si256(c, m), m);
    const __m256i result = _mm256_sub_epi8(_mm256_set1_epi8('0'), d);
    _mm256_storeu_si256(reinterpret_cast<__m256i*>(dstp), result);
#else
    cvtSDataToStr(dstp, value >> 16);
    cvtSDataToStr(dstp + 16, value);
#endif
}

static inline void cvtQDataToStr(char* dstp, QData value) {
    cvtIDataToStr(dstp, value >> 32);
    cvtIDataToStr(dstp + 32, value);
}

#define cvtEDataToStr cvtIDataToStr

//=========================================================================
// VerilatedTraceBuffer

template <>
VerilatedTraceBuffer<VL_BUF_T>::VerilatedTraceBuffer(Trace& owner)
    : VL_BUF_T{owner}
    , m_sigs_oldvalp{owner.m_sigs_oldvalp}
    , m_sigs_enabledp{owner.m_sigs_enabledp} {}

// These functions must write the new value back into the old value store,
// and subsequently call the format-specific emit* implementations. Note
// that this file must be included in the format-specific implementation, so
// the emit* functions can be inlined for performance.

template <>
void VerilatedTraceBuffer<VL_BUF_T>::fullBit(uint32_t* oldp, CData newval) {
    const uint32_t code = oldp - m_sigs_oldvalp;
    *oldp = newval;  // Still copy even if not tracing so chg doesn't call full
    if (VL_UNLIKELY(m_sigs_enabledp && !(VL_BITISSET_W(m_sigs_enabledp, code)))) return;
    emitBit(code, newval);
}

template <>
void VerilatedTraceBuffer<VL_BUF_T>::fullEvent(uint32_t* oldp, const VlEventBase* newvalp) {
    const uint32_t code = oldp - m_sigs_oldvalp;
    // No need to update *oldp
    if (newvalp->isTriggered()) emitEvent(code);
}

template <>
void VerilatedTraceBuffer<VL_BUF_T>::fullEventTriggered(uint32_t* oldp) {
    const uint32_t code = oldp - m_sigs_oldvalp;
    // No need to update *oldp
    emitEvent(code);
}

template <>
void VerilatedTraceBuffer<VL_BUF_T>::fullCData(uint32_t* oldp, CData newval, int bits) {
    const uint32_t code = oldp - m_sigs_oldvalp;
    *oldp = newval;  // Still copy even if not tracing so chg doesn't call full
    if (VL_UNLIKELY(m_sigs_enabledp && !(VL_BITISSET_W(m_sigs_enabledp, code)))) return;
    emitCData(code, newval, bits);
}

template <>
void VerilatedTraceBuffer<VL_BUF_T>::fullSData(uint32_t* oldp, SData newval, int bits) {
    const uint32_t code = oldp - m_sigs_oldvalp;
    *oldp = newval;  // Still copy even if not tracing so chg doesn't call full
    if (VL_UNLIKELY(m_sigs_enabledp && !(VL_BITISSET_W(m_sigs_enabledp, code)))) return;
    emitSData(code, newval, bits);
}

template <>
void VerilatedTraceBuffer<VL_BUF_T>::fullIData(uint32_t* oldp, IData newval, int bits) {
    const uint32_t code = oldp - m_sigs_oldvalp;
    *oldp = newval;  // Still copy even if not tracing so chg doesn't call full
    if (VL_UNLIKELY(m_sigs_enabledp && !(VL_BITISSET_W(m_sigs_enabledp, code)))) return;
    emitIData(code, newval, bits);
}

template <>
void VerilatedTraceBuffer<VL_BUF_T>::fullQData(uint32_t* oldp, QData newval, int bits) {
    const uint32_t code = oldp - m_sigs_oldvalp;
    std::memcpy(oldp, &newval, sizeof(newval));
    if (VL_UNLIKELY(m_sigs_enabledp && !(VL_BITISSET_W(m_sigs_enabledp, code)))) return;
    emitQData(code, newval, bits);
}

template <>
void VerilatedTraceBuffer<VL_BUF_T>::fullWData(uint32_t* oldp, const WData* newvalp, int bits) {
    const uint32_t code = oldp - m_sigs_oldvalp;
    for (int i = 0; i < VL_WORDS_I(bits); ++i) oldp[i] = newvalp[i];
    if (VL_UNLIKELY(m_sigs_enabledp && !(VL_BITISSET_W(m_sigs_enabledp, code)))) return;
    emitWData(code, newvalp, bits);
}

template <>
void VerilatedTraceBuffer<VL_BUF_T>::fullDouble(uint32_t* oldp, double newval) {
    const uint32_t code = oldp - m_sigs_oldvalp;
    std::memcpy(oldp, &newval, sizeof(newval));
    if (VL_UNLIKELY(m_sigs_enabledp && !(VL_BITISSET_W(m_sigs_enabledp, code)))) return;
    // cppcheck-suppress invalidPointerCast
    emitDouble(code, newval);
}

//=========================================================================
// VerilatedTraceOffloadBuffer

template <>
VerilatedTraceOffloadBuffer<VL_BUF_T>::VerilatedTraceOffloadBuffer(VL_SUB_T& owner)
    : VerilatedTraceBuffer<VL_BUF_T>{owner}
    , m_offloadBufferWritep{owner.m_offloadBufferWritep}
    , m_offloadBufferEndp{owner.m_offloadBufferEndp} {
    if (m_offloadBufferWritep) {
        using This = VerilatedTraceBuffer<VL_BUF_T>*;
        // Tack on the buffer address
        static_assert(2 * sizeof(uint32_t) >= sizeof(This),
                      "This should be enough on all plafrorms");
        *m_offloadBufferWritep++ = VerilatedTraceOffloadCommand::TRACE_BUFFER;
        *reinterpret_cast<This*>(m_offloadBufferWritep) = static_cast<This>(this);
        m_offloadBufferWritep += 2;
    }
}

#endif  // VL_CPPCHECK