File: verilated_types.h

package info (click to toggle)
verilator 5.038-1
  • links: PTS, VCS
  • area: main
  • in suites: forky, sid
  • size: 162,552 kB
  • sloc: cpp: 139,204; python: 20,931; ansic: 10,222; yacc: 6,000; lex: 1,925; makefile: 1,260; sh: 494; perl: 282; fortran: 22
file content (2070 lines) | stat: -rw-r--r-- 76,860 bytes parent folder | download
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
525
526
527
528
529
530
531
532
533
534
535
536
537
538
539
540
541
542
543
544
545
546
547
548
549
550
551
552
553
554
555
556
557
558
559
560
561
562
563
564
565
566
567
568
569
570
571
572
573
574
575
576
577
578
579
580
581
582
583
584
585
586
587
588
589
590
591
592
593
594
595
596
597
598
599
600
601
602
603
604
605
606
607
608
609
610
611
612
613
614
615
616
617
618
619
620
621
622
623
624
625
626
627
628
629
630
631
632
633
634
635
636
637
638
639
640
641
642
643
644
645
646
647
648
649
650
651
652
653
654
655
656
657
658
659
660
661
662
663
664
665
666
667
668
669
670
671
672
673
674
675
676
677
678
679
680
681
682
683
684
685
686
687
688
689
690
691
692
693
694
695
696
697
698
699
700
701
702
703
704
705
706
707
708
709
710
711
712
713
714
715
716
717
718
719
720
721
722
723
724
725
726
727
728
729
730
731
732
733
734
735
736
737
738
739
740
741
742
743
744
745
746
747
748
749
750
751
752
753
754
755
756
757
758
759
760
761
762
763
764
765
766
767
768
769
770
771
772
773
774
775
776
777
778
779
780
781
782
783
784
785
786
787
788
789
790
791
792
793
794
795
796
797
798
799
800
801
802
803
804
805
806
807
808
809
810
811
812
813
814
815
816
817
818
819
820
821
822
823
824
825
826
827
828
829
830
831
832
833
834
835
836
837
838
839
840
841
842
843
844
845
846
847
848
849
850
851
852
853
854
855
856
857
858
859
860
861
862
863
864
865
866
867
868
869
870
871
872
873
874
875
876
877
878
879
880
881
882
883
884
885
886
887
888
889
890
891
892
893
894
895
896
897
898
899
900
901
902
903
904
905
906
907
908
909
910
911
912
913
914
915
916
917
918
919
920
921
922
923
924
925
926
927
928
929
930
931
932
933
934
935
936
937
938
939
940
941
942
943
944
945
946
947
948
949
950
951
952
953
954
955
956
957
958
959
960
961
962
963
964
965
966
967
968
969
970
971
972
973
974
975
976
977
978
979
980
981
982
983
984
985
986
987
988
989
990
991
992
993
994
995
996
997
998
999
1000
1001
1002
1003
1004
1005
1006
1007
1008
1009
1010
1011
1012
1013
1014
1015
1016
1017
1018
1019
1020
1021
1022
1023
1024
1025
1026
1027
1028
1029
1030
1031
1032
1033
1034
1035
1036
1037
1038
1039
1040
1041
1042
1043
1044
1045
1046
1047
1048
1049
1050
1051
1052
1053
1054
1055
1056
1057
1058
1059
1060
1061
1062
1063
1064
1065
1066
1067
1068
1069
1070
1071
1072
1073
1074
1075
1076
1077
1078
1079
1080
1081
1082
1083
1084
1085
1086
1087
1088
1089
1090
1091
1092
1093
1094
1095
1096
1097
1098
1099
1100
1101
1102
1103
1104
1105
1106
1107
1108
1109
1110
1111
1112
1113
1114
1115
1116
1117
1118
1119
1120
1121
1122
1123
1124
1125
1126
1127
1128
1129
1130
1131
1132
1133
1134
1135
1136
1137
1138
1139
1140
1141
1142
1143
1144
1145
1146
1147
1148
1149
1150
1151
1152
1153
1154
1155
1156
1157
1158
1159
1160
1161
1162
1163
1164
1165
1166
1167
1168
1169
1170
1171
1172
1173
1174
1175
1176
1177
1178
1179
1180
1181
1182
1183
1184
1185
1186
1187
1188
1189
1190
1191
1192
1193
1194
1195
1196
1197
1198
1199
1200
1201
1202
1203
1204
1205
1206
1207
1208
1209
1210
1211
1212
1213
1214
1215
1216
1217
1218
1219
1220
1221
1222
1223
1224
1225
1226
1227
1228
1229
1230
1231
1232
1233
1234
1235
1236
1237
1238
1239
1240
1241
1242
1243
1244
1245
1246
1247
1248
1249
1250
1251
1252
1253
1254
1255
1256
1257
1258
1259
1260
1261
1262
1263
1264
1265
1266
1267
1268
1269
1270
1271
1272
1273
1274
1275
1276
1277
1278
1279
1280
1281
1282
1283
1284
1285
1286
1287
1288
1289
1290
1291
1292
1293
1294
1295
1296
1297
1298
1299
1300
1301
1302
1303
1304
1305
1306
1307
1308
1309
1310
1311
1312
1313
1314
1315
1316
1317
1318
1319
1320
1321
1322
1323
1324
1325
1326
1327
1328
1329
1330
1331
1332
1333
1334
1335
1336
1337
1338
1339
1340
1341
1342
1343
1344
1345
1346
1347
1348
1349
1350
1351
1352
1353
1354
1355
1356
1357
1358
1359
1360
1361
1362
1363
1364
1365
1366
1367
1368
1369
1370
1371
1372
1373
1374
1375
1376
1377
1378
1379
1380
1381
1382
1383
1384
1385
1386
1387
1388
1389
1390
1391
1392
1393
1394
1395
1396
1397
1398
1399
1400
1401
1402
1403
1404
1405
1406
1407
1408
1409
1410
1411
1412
1413
1414
1415
1416
1417
1418
1419
1420
1421
1422
1423
1424
1425
1426
1427
1428
1429
1430
1431
1432
1433
1434
1435
1436
1437
1438
1439
1440
1441
1442
1443
1444
1445
1446
1447
1448
1449
1450
1451
1452
1453
1454
1455
1456
1457
1458
1459
1460
1461
1462
1463
1464
1465
1466
1467
1468
1469
1470
1471
1472
1473
1474
1475
1476
1477
1478
1479
1480
1481
1482
1483
1484
1485
1486
1487
1488
1489
1490
1491
1492
1493
1494
1495
1496
1497
1498
1499
1500
1501
1502
1503
1504
1505
1506
1507
1508
1509
1510
1511
1512
1513
1514
1515
1516
1517
1518
1519
1520
1521
1522
1523
1524
1525
1526
1527
1528
1529
1530
1531
1532
1533
1534
1535
1536
1537
1538
1539
1540
1541
1542
1543
1544
1545
1546
1547
1548
1549
1550
1551
1552
1553
1554
1555
1556
1557
1558
1559
1560
1561
1562
1563
1564
1565
1566
1567
1568
1569
1570
1571
1572
1573
1574
1575
1576
1577
1578
1579
1580
1581
1582
1583
1584
1585
1586
1587
1588
1589
1590
1591
1592
1593
1594
1595
1596
1597
1598
1599
1600
1601
1602
1603
1604
1605
1606
1607
1608
1609
1610
1611
1612
1613
1614
1615
1616
1617
1618
1619
1620
1621
1622
1623
1624
1625
1626
1627
1628
1629
1630
1631
1632
1633
1634
1635
1636
1637
1638
1639
1640
1641
1642
1643
1644
1645
1646
1647
1648
1649
1650
1651
1652
1653
1654
1655
1656
1657
1658
1659
1660
1661
1662
1663
1664
1665
1666
1667
1668
1669
1670
1671
1672
1673
1674
1675
1676
1677
1678
1679
1680
1681
1682
1683
1684
1685
1686
1687
1688
1689
1690
1691
1692
1693
1694
1695
1696
1697
1698
1699
1700
1701
1702
1703
1704
1705
1706
1707
1708
1709
1710
1711
1712
1713
1714
1715
1716
1717
1718
1719
1720
1721
1722
1723
1724
1725
1726
1727
1728
1729
1730
1731
1732
1733
1734
1735
1736
1737
1738
1739
1740
1741
1742
1743
1744
1745
1746
1747
1748
1749
1750
1751
1752
1753
1754
1755
1756
1757
1758
1759
1760
1761
1762
1763
1764
1765
1766
1767
1768
1769
1770
1771
1772
1773
1774
1775
1776
1777
1778
1779
1780
1781
1782
1783
1784
1785
1786
1787
1788
1789
1790
1791
1792
1793
1794
1795
1796
1797
1798
1799
1800
1801
1802
1803
1804
1805
1806
1807
1808
1809
1810
1811
1812
1813
1814
1815
1816
1817
1818
1819
1820
1821
1822
1823
1824
1825
1826
1827
1828
1829
1830
1831
1832
1833
1834
1835
1836
1837
1838
1839
1840
1841
1842
1843
1844
1845
1846
1847
1848
1849
1850
1851
1852
1853
1854
1855
1856
1857
1858
1859
1860
1861
1862
1863
1864
1865
1866
1867
1868
1869
1870
1871
1872
1873
1874
1875
1876
1877
1878
1879
1880
1881
1882
1883
1884
1885
1886
1887
1888
1889
1890
1891
1892
1893
1894
1895
1896
1897
1898
1899
1900
1901
1902
1903
1904
1905
1906
1907
1908
1909
1910
1911
1912
1913
1914
1915
1916
1917
1918
1919
1920
1921
1922
1923
1924
1925
1926
1927
1928
1929
1930
1931
1932
1933
1934
1935
1936
1937
1938
1939
1940
1941
1942
1943
1944
1945
1946
1947
1948
1949
1950
1951
1952
1953
1954
1955
1956
1957
1958
1959
1960
1961
1962
1963
1964
1965
1966
1967
1968
1969
1970
1971
1972
1973
1974
1975
1976
1977
1978
1979
1980
1981
1982
1983
1984
1985
1986
1987
1988
1989
1990
1991
1992
1993
1994
1995
1996
1997
1998
1999
2000
2001
2002
2003
2004
2005
2006
2007
2008
2009
2010
2011
2012
2013
2014
2015
2016
2017
2018
2019
2020
2021
2022
2023
2024
2025
2026
2027
2028
2029
2030
2031
2032
2033
2034
2035
2036
2037
2038
2039
2040
2041
2042
2043
2044
2045
2046
2047
2048
2049
2050
2051
2052
2053
2054
2055
2056
2057
2058
2059
2060
2061
2062
2063
2064
2065
2066
2067
2068
2069
2070
// -*- mode: C++; c-file-style: "cc-mode" -*-
//*************************************************************************
//
// Code available from: https://verilator.org
//
// Copyright 2003-2025 by Wilson Snyder. This program is free software; you can
// redistribute it and/or modify it under the terms of either the GNU
// Lesser General Public License Version 3 or the Perl Artistic License
// Version 2.0.
// SPDX-License-Identifier: LGPL-3.0-only OR Artistic-2.0
//
//*************************************************************************
///
/// \file
/// \brief Verilated common data type containers
///
/// verilated.h should be included instead of this file.
///
/// Those macro/function/variable starting or ending in _ are internal,
/// however many of the other function/macros here are also internal.
///
//*************************************************************************

#ifndef VERILATOR_VERILATED_TYPES_H_
#define VERILATOR_VERILATED_TYPES_H_

#ifndef VERILATOR_VERILATED_H_INTERNAL_
#error "verilated_types.h should only be included by verilated.h"
#endif

#include <algorithm>
#include <array>
#include <atomic>
#include <deque>
#include <map>
#include <memory>
#include <set>
#include <string>
#include <utility>

//=========================================================================
// Debug functions

#ifdef VL_DEBUG
/// Evaluate statement if VL_DEBUG defined
#define VL_DEBUG_IFDEF(stmt) \
    do { stmt } while (false)
/// Evaluate statement if VL_DEBUG defined and Verilated::debug() enabled
#define VL_DEBUG_IF(stmt) \
    do { \
        if (VL_UNLIKELY(Verilated::debug())) { stmt } \
    } while (false)
#else
// We intentionally do not compile the stmt to improve compile speed
#define VL_DEBUG_IFDEF(stmt) \
    do { \
    } while (false)
#define VL_DEBUG_IF(stmt) \
    do { \
    } while (false)
#endif

//===================================================================
// String formatters (required by below containers)

extern std::string VL_TO_STRING(CData lhs);
extern std::string VL_TO_STRING(SData lhs);
extern std::string VL_TO_STRING(IData lhs);
extern std::string VL_TO_STRING(QData lhs);
extern std::string VL_TO_STRING(double lhs);
inline std::string VL_TO_STRING(const std::string& obj) { return "\"" + obj + "\""; }
extern std::string VL_TO_STRING_W(int words, const WDataInP obj);

//=========================================================================
// Declare net data types

#define VL_SIG8(name, msb, lsb) CData name  ///< Declare signal, 1-8 bits
#define VL_SIG16(name, msb, lsb) SData name  ///< Declare signal, 9-16 bits
#define VL_SIG64(name, msb, lsb) QData name  ///< Declare signal, 33-64 bits
#define VL_SIG(name, msb, lsb) IData name  ///< Declare signal, 17-32 bits
#define VL_SIGW(name, msb, lsb, words) VlWide<words> name  ///< Declare signal, 65+ bits
#define VL_IN8(name, msb, lsb) CData name  ///< Declare input signal, 1-8 bits
#define VL_IN16(name, msb, lsb) SData name  ///< Declare input signal, 9-16 bits
#define VL_IN64(name, msb, lsb) QData name  ///< Declare input signal, 33-64 bits
#define VL_IN(name, msb, lsb) IData name  ///< Declare input signal, 17-32 bits
#define VL_INW(name, msb, lsb, words) VlWide<words> name  ///< Declare input signal, 65+ bits
#define VL_INOUT8(name, msb, lsb) CData name  ///< Declare bidir signal, 1-8 bits
#define VL_INOUT16(name, msb, lsb) SData name  ///< Declare bidir signal, 9-16 bits
#define VL_INOUT64(name, msb, lsb) QData name  ///< Declare bidir signal, 33-64 bits
#define VL_INOUT(name, msb, lsb) IData name  ///< Declare bidir signal, 17-32 bits
#define VL_INOUTW(name, msb, lsb, words) VlWide<words> name  ///< Declare bidir signal, 65+ bits
#define VL_OUT8(name, msb, lsb) CData name  ///< Declare output signal, 1-8 bits
#define VL_OUT16(name, msb, lsb) SData name  ///< Declare output signal, 9-16 bits
#define VL_OUT64(name, msb, lsb) QData name  ///< Declare output signal, 33-64 bits
#define VL_OUT(name, msb, lsb) IData name  ///< Declare output signal, 17-32 bits
#define VL_OUTW(name, msb, lsb, words) VlWide<words> name  ///< Declare output signal, 65+ bits

//===================================================================
// Functions needed here

constexpr IData VL_CLOG2_CE_Q(QData lhs) VL_PURE {
    // constexpr usage only! Recuses to meet C++11 constexpr func limitations
    return lhs <= 1 ? 0 : VL_CLOG2_CE_Q((lhs + 1) >> 1ULL) + 1;
}

// Metadata of processes
class VlProcess;

using VlProcessRef = std::shared_ptr<VlProcess>;

class VlProcess final {
    // MEMBERS
    int m_state;  // Current state of the process
    VlProcessRef m_parentp = nullptr;  // Parent process, if exists
    std::set<VlProcess*> m_children;  // Active child processes

public:
    // TYPES
    enum : int {  // Type int for compatibility with $c
        FINISHED = 0,
        RUNNING = 1,
        WAITING = 2,
        SUSPENDED = 3,
        KILLED = 4,
    };

    // CONSTRUCTORS
    // Construct independent process
    VlProcess()
        : m_state{RUNNING} {}
    // Construct child process of parent
    explicit VlProcess(VlProcessRef parentp)
        : m_state{RUNNING}
        , m_parentp{parentp} {
        m_parentp->attach(this);
    }

    ~VlProcess() {
        if (m_parentp) m_parentp->detach(this);
    }

    void attach(VlProcess* childp) { m_children.insert(childp); }
    void detach(VlProcess* childp) { m_children.erase(childp); }

    int state() const { return m_state; }
    void state(int s) { m_state = s; }
    void disable() {
        state(KILLED);
        disableFork();
    }
    void disableFork() {
        for (VlProcess* childp : m_children) childp->disable();
    }
    bool completed() const { return state() == FINISHED || state() == KILLED; }
    bool completedFork() const {
        for (const VlProcess* const childp : m_children)
            if (!childp->completed()) return false;
        return true;
    }
};

inline std::string VL_TO_STRING(const VlProcessRef& p) { return std::string("process"); }

//===================================================================
// Activity trigger vector

template <std::size_t N_Size>  //
class VlTriggerVec final {
    // TODO: static assert N_Size > 0, and don't generate when empty

    // MEMBERS
    alignas(16) std::array<uint64_t, roundUpToMultipleOf<64>(N_Size) / 64> m_flags;  // The flags

public:
    // CONSTRUCTOR
    VlTriggerVec() { clear(); }
    ~VlTriggerVec() = default;

    // METHODS

    // Set all elements to false
    void clear() { m_flags.fill(0); }

    // Word at given 'wordIndex'
    uint64_t word(size_t wordIndex) const { return m_flags[wordIndex]; }

    // Set specified word to given value
    void setWord(size_t wordIndex, uint64_t value) { m_flags[wordIndex] = value; }

    // Set specified bit to given value
    void setBit(size_t index, bool value) {
        uint64_t& w = m_flags[index / 64];
        const size_t bitIndex = index % 64;
        w &= ~(1ULL << bitIndex);
        w |= (static_cast<uint64_t>(value) << bitIndex);
    }

    // Return true iff at least one element is set
    bool any() const {
        for (size_t i = 0; i < m_flags.size(); ++i)
            if (m_flags[i]) return true;
        return false;
    }

    // Set all elements true in 'this' that are set in 'other'
    void thisOr(const VlTriggerVec<N_Size>& other) {
        for (size_t i = 0; i < m_flags.size(); ++i) m_flags[i] |= other.m_flags[i];
    }

    // Set elements of 'this' to 'a & !b' element-wise
    void andNot(const VlTriggerVec<N_Size>& a, const VlTriggerVec<N_Size>& b) {
        for (size_t i = 0; i < m_flags.size(); ++i) m_flags[i] = a.m_flags[i] & ~b.m_flags[i];
    }
};

//===================================================================
// SystemVerilog event type

class VlEventBase VL_NOT_FINAL {
public:
    virtual ~VlEventBase() = default;

    virtual void fire() = 0;
    virtual bool isFired() const = 0;
    virtual bool isTriggered() const = 0;
    virtual void clearFired() = 0;
    virtual void clearTriggered() = 0;
};

class VlEvent final : public VlEventBase {
    // MEMBERS
    bool m_fired = false;  // Fired on this scheduling iteration
    bool m_triggered = false;  // Triggered state of event persisting until next time step

public:
    // CONSTRUCTOR
    VlEvent() = default;
    ~VlEvent() override = default;

    friend std::string VL_TO_STRING(const VlEvent& e);
    friend class VlAssignableEvent;
    // METHODS
    void fire() override { m_fired = m_triggered = true; }
    bool isFired() const override { return m_fired; }
    bool isTriggered() const override { return m_triggered; }
    void clearFired() override { m_fired = false; }
    void clearTriggered() override { m_triggered = false; }
};

class VlAssignableEvent final : public std::shared_ptr<VlEvent>, public VlEventBase {
public:
    // Constructor
    VlAssignableEvent()
        : std::shared_ptr<VlEvent>(new VlEvent) {}
    ~VlAssignableEvent() override = default;

    // METHODS
    void fire() override { (*this)->m_fired = (*this)->m_triggered = true; }
    bool isFired() const override { return (*this)->m_fired; }
    bool isTriggered() const override { return (*this)->m_triggered; }
    void clearFired() override { (*this)->m_fired = false; }
    void clearTriggered() override { (*this)->m_triggered = false; }
};

inline std::string VL_TO_STRING(const VlEventBase& e);

inline std::string VL_TO_STRING(const VlEvent& e) {
    return "triggered="s + (e.isTriggered() ? "true" : "false");
}

inline std::string VL_TO_STRING(const VlAssignableEvent& e) {
    return "&{ " + VL_TO_STRING(*e) + " }";
}

inline std::string VL_TO_STRING(const VlEventBase& e) {
    if (const VlAssignableEvent& assignable = dynamic_cast<const VlAssignableEvent&>(e)) {
        return VL_TO_STRING(assignable);
    }
    return "triggered="s + (e.isTriggered() ? "true" : "false");
}

//===================================================================
// Random

// Random Number Generator with internal state
class VlRNG final {
    std::array<uint64_t, 2> m_state;

public:
    // The default constructor simply sets state, to avoid vl_rand64()
    // having to check for construction at each call
    // Alternative: seed with zero and check on rand64() call
    VlRNG() VL_MT_SAFE;
    explicit VlRNG(uint64_t seed0) VL_MT_SAFE : m_state{0x12341234UL, seed0} {}
    void srandom(uint64_t n) VL_MT_UNSAFE;
    std::string get_randstate() const VL_MT_UNSAFE;
    void set_randstate(const std::string& state) VL_MT_UNSAFE;
    uint64_t rand64() VL_MT_UNSAFE;
    // Threadsafe, but requires use on vl_thread_rng
    static uint64_t vl_thread_rng_rand64() VL_MT_SAFE;
    static VlRNG& vl_thread_rng() VL_MT_SAFE;
};

inline uint64_t vl_rand64() VL_MT_SAFE { return VlRNG::vl_thread_rng_rand64(); }

// RNG for shuffle()
class VlURNG final {
public:
    using result_type = size_t;
    static constexpr size_t min() { return 0; }
    static constexpr size_t max() { return 1ULL << 31; }
    size_t operator()() { return VL_MASK_I(31) & vl_rand64(); }
};

template <typename T_Value, uint64_t N_NumValues>
class VlRandC final {
    T_Value m_remaining = 0;  // Number of values to pull before re-randomize
    T_Value m_lfsr = 1;  // LFSR state

public:
    // CONSTRUCTORS
    VlRandC() {
        static_assert(N_NumValues >= 1, "");
        static_assert(sizeof(T_Value) == 8 || (N_NumValues < (1ULL << (8 * sizeof(T_Value)))), "");
    }
    // METHODS
    T_Value randomize(VlRNG& rngr) {
        if (VL_UNLIKELY(!m_remaining)) reseed(rngr);
        // Polynomials are first listed at https://users.ece.cmu.edu/~koopman/lfsr/
        static constexpr uint64_t s_polynomials[] = {
            0x0ULL,  // 0 never used (constant, no randomization)
            0x0ULL,  // 1
            0x3ULL,        0x5ULL,       0x9ULL,        0x12ULL,       0x21ULL,
            0x41ULL,       0x8eULL,      0x108ULL,      0x204ULL,      0x402ULL,
            0x829ULL,      0x100dULL,    0x2015ULL,     0x4001ULL,
            0x8016ULL,  // 16
            0x10004ULL,    0x20040ULL,   0x40013ULL,    0x80004ULL,    0x100002ULL,
            0x200001ULL,   0x400010ULL,  0x80000dULL,   0x1000004ULL,  0x2000023ULL,
            0x4000013ULL,  0x8000004ULL, 0x10000002ULL, 0x20000029ULL, 0x40000004ULL,
            0x80000057ULL,  // 32
            0x100000029ULL  // 33
        };
        constexpr uint32_t clogWidth = VL_CLOG2_CE_Q(N_NumValues) + 1;
        constexpr uint32_t lfsrWidth = (clogWidth < 2) ? 2 : clogWidth;
        constexpr T_Value polynomial = static_cast<T_Value>(s_polynomials[lfsrWidth]);
        // printf("  numV=%ld w=%d poly=%x\n", N_NumValues, lfsrWidth, polynomial);
        //  Loop until get reasonable value. Because we picked a LFSR of at most one
        //  extra bit in width, this will only require at most on average 1.5 loops
        do {
            m_lfsr = (m_lfsr & 1ULL) ? ((m_lfsr >> 1ULL) ^ polynomial) : (m_lfsr >> 1ULL);
        } while (m_lfsr > N_NumValues);  // Note if == then output value 0
        --m_remaining;
        T_Value result = (m_lfsr == N_NumValues) ? 0 : m_lfsr;
        // printf("    result=%x  (numv=%ld, rem=%d)\n", result, N_NumValues, m_remaining);
        return result;
    }
    void reseed(VlRNG& rngr) {
        constexpr uint32_t lfsrWidth = VL_CLOG2_CE_Q(N_NumValues) + 1;
        m_remaining = N_NumValues;
        do {
            m_lfsr = rngr.rand64() & VL_MASK_Q(lfsrWidth);
            // printf("    lfsr.reseed=%x\n", m_lfsr);
        } while (!m_lfsr);  // 0 not a legal seed
    }
};

// These require the class object to have the thread safety lock
inline IData VL_RANDOM_RNG_I(VlRNG& rngr) VL_MT_UNSAFE { return rngr.rand64(); }
inline QData VL_RANDOM_RNG_Q(VlRNG& rngr) VL_MT_UNSAFE { return rngr.rand64(); }
extern WDataOutP VL_RANDOM_RNG_W(VlRNG& rngr, int obits, WDataOutP outwp) VL_MT_UNSAFE;

//===================================================================
// Readmem/Writemem operation classes

class VlReadMem final {
    const bool m_hex;  // Hex format
    const int m_bits;  // Bit width of values
    const std::string& m_filename;  // Filename
    const QData m_end;  // End address (as specified by user)
    FILE* m_fp = nullptr;  // File handle for filename
    QData m_addr = 0;  // Next address to read
    int m_linenum = 0;  // Line number last read from file
    bool m_anyAddr = false;  // Had address directive in the file
public:
    VlReadMem(bool hex, int bits, const std::string& filename, QData start, QData end);
    ~VlReadMem();
    bool isOpen() const { return m_fp != nullptr; }
    int linenum() const { return m_linenum; }
    bool get(QData& addrr, std::string& valuer);
    void setData(void* valuep, const std::string& rhs);
};

class VlWriteMem final {
    const bool m_hex;  // Hex format
    const int m_bits;  // Bit width of values
    FILE* m_fp = nullptr;  // File handle for filename
    QData m_addr = 0;  // Next address to write
public:
    VlWriteMem(bool hex, int bits, const std::string& filename, QData start, QData end);
    ~VlWriteMem();
    bool isOpen() const { return m_fp != nullptr; }
    void print(QData addr, bool addrstamp, const void* valuep);
};

//===================================================================
/// Verilog wide packed bit container.
/// Similar to std::array<WData, N>, but lighter weight, only methods needed
/// by Verilator, to help compile time.
///
/// A 'struct' as we want this to be an aggregate type that allows
/// static aggregate initialization. Consider data members private.
///
/// For example a Verilog "bit [94:0]" will become a VlWide<3> because 3*32
/// bits are needed to hold the 95 bits. The MSB (bit 96) must always be
/// zero in memory, but during intermediate operations in the Verilated
/// internals is unpredictable.

static int _vl_cmp_w(int words, WDataInP const lwp, WDataInP const rwp) VL_PURE;

template <std::size_t N_Words>
struct VlWide;

// Type trait to check if a type is VlWide
template <typename>
struct VlIsVlWide : public std::false_type {};

template <std::size_t N_Words>
struct VlIsVlWide<VlWide<N_Words>> : public std::true_type {};

template <std::size_t N_Words>
struct VlWide final {
    static constexpr size_t Words = N_Words;

    // MEMBERS
    // This should be the only data member, otherwise generated static initializers need updating
    EData m_storage[N_Words];  // Contents of the packed array

    // CONSTRUCTORS
    // Default constructors and destructor are used. Note however that C++20 requires that
    // aggregate types do not have a user declared constructor, not even an explicitly defaulted
    // one.

    // OPERATOR METHODS
    // Default copy assignment operators are used.
    operator WDataOutP() VL_PURE { return &m_storage[0]; }  // This also allows []
    operator WDataInP() const VL_PURE { return &m_storage[0]; }  // This also allows []
    bool operator!=(const VlWide<N_Words>& that) const VL_PURE {
        for (size_t i = 0; i < N_Words; ++i) {
            if (m_storage[i] != that.m_storage[i]) return true;
        }
        return false;
    }

    // METHODS
    const EData& at(size_t index) const { return m_storage[index]; }
    EData& at(size_t index) { return m_storage[index]; }
    size_t size() const { return N_Words; }
    WData* data() { return &m_storage[0]; }
    const WData* data() const { return &m_storage[0]; }
    bool operator<(const VlWide<N_Words>& rhs) const {
        return _vl_cmp_w(N_Words, data(), rhs.data()) < 0;
    }
};

// Convert a C array to std::array reference by pointer magic, without copy.
// Data type (second argument) is so the function template can automatically generate.
template <std::size_t N_Words>
VlWide<N_Words>& VL_CVT_W_A(const WDataInP inp, const VlWide<N_Words>&) {
    return *((VlWide<N_Words>*)inp);
}

template <std::size_t N_Words>
std::string VL_TO_STRING(const VlWide<N_Words>& obj) {
    return VL_TO_STRING_W(N_Words, obj.data());
}

//===================================================================
// Verilog queue and dynamic array container
// There are no multithreaded locks on this; the base variable must
// be protected by other means
//
// Bound here is the maximum size() allowed, e.g. 1 + SystemVerilog bound
// For dynamic arrays it is always zero
template <typename T_Value, size_t N_MaxSize = 0>
class VlQueue final {
private:
    // TYPES
    using Deque = std::deque<T_Value>;

public:
    using const_iterator = typename Deque::const_iterator;
    template <typename T_Func>
    using WithFuncReturnType = decltype(std::declval<T_Func>()(0, std::declval<T_Value>()));

private:
    // MEMBERS
    Deque m_deque;  // State of the assoc array
    T_Value m_defaultValue;  // Default value

public:
    // CONSTRUCTORS
    // m_defaultValue isn't defaulted. Caller's constructor must do it.
    VlQueue() = default;
    ~VlQueue() = default;
    VlQueue(const VlQueue&) = default;
    VlQueue(VlQueue&&) = default;
    VlQueue& operator=(const VlQueue&) = default;
    VlQueue& operator=(VlQueue&&) = default;
    bool operator==(const VlQueue& rhs) const { return m_deque == rhs.m_deque; }
    bool operator!=(const VlQueue& rhs) const { return m_deque != rhs.m_deque; }
    bool operator<(const VlQueue& rhs) const {
        for (int index = 0; index < m_deque.size(); ++index) {
            if (m_deque[index] < rhs.m_deque[index]) return true;
        }
        return false;
    }

    // Standard copy constructor works. Verilog: assoca = assocb
    // Also must allow conversion from a different N_MaxSize queue
    template <size_t N_RhsMaxSize = 0>
    VlQueue operator=(const VlQueue<T_Value, N_RhsMaxSize>& rhs) {
        m_deque = rhs.privateDeque();
        if (VL_UNLIKELY(N_MaxSize && N_MaxSize < m_deque.size())) m_deque.resize(N_MaxSize - 1);
        return *this;
    }

    // Construct new object from _V_alue and/or _C_ontainer child objects
    static VlQueue consV(const T_Value& lhs) {
        VlQueue out;
        out.push_back(lhs);
        return out;
    }
    static VlQueue consVV(const T_Value& lhs, const T_Value& rhs) {
        VlQueue out;
        out.push_back(rhs);
        out.push_back(lhs);
        return out;
    }
    static VlQueue consCV(const VlQueue& lhs, const T_Value& rhs) {
        VlQueue out = lhs;
        out.push_front(rhs);
        return out;
    }
    static VlQueue consVC(const T_Value& lhs, const VlQueue& rhs) {
        VlQueue out = rhs;
        out.push_back(lhs);
        return out;
    }
    static VlQueue consCC(const VlQueue& lhs, const VlQueue& rhs) {
        VlQueue out = rhs;
        for (const auto& i : lhs.m_deque) out.push_back(i);
        return out;
    }

    // METHODS
    T_Value& atDefault() { return m_defaultValue; }
    const T_Value& atDefault() const { return m_defaultValue; }
    const Deque& privateDeque() const { return m_deque; }

    // Size. Verilog: function int size(), or int num()
    int size() const { return m_deque.size(); }
    // Clear array. Verilog: function void delete([input index])
    void clear() { m_deque.clear(); }
    void erase(int32_t index) {
        if (VL_LIKELY(index >= 0 && index < m_deque.size()))
            m_deque.erase(m_deque.begin() + index);
    }

    // Dynamic array new[] becomes a renew()
    void renew(size_t size) {
        clear();
        m_deque.resize(size, atDefault());
    }
    // Dynamic array new[]() becomes a renew_copy()
    void renew_copy(size_t size, const VlQueue<T_Value, N_MaxSize>& rhs) {
        if (size == 0) {
            clear();
        } else {
            *this = rhs;
            m_deque.resize(size, atDefault());
        }
    }
    void resize(size_t size) { m_deque.resize(size, atDefault()); }

    // function void q.push_front(value)
    void push_front(const T_Value& value) {
        m_deque.push_front(value);
        if (VL_UNLIKELY(N_MaxSize != 0 && m_deque.size() > N_MaxSize)) m_deque.pop_back();
    }
    // function void q.push_back(value)
    void push_back(const T_Value& value) {
        if (VL_LIKELY(N_MaxSize == 0 || m_deque.size() < N_MaxSize)) m_deque.push_back(value);
    }
    // function value_t q.pop_front();
    T_Value pop_front() {
        if (m_deque.empty()) return m_defaultValue;
        T_Value v = m_deque.front();
        m_deque.pop_front();
        return v;
    }
    // function value_t q.pop_back();
    T_Value pop_back() {
        if (m_deque.empty()) return m_defaultValue;
        T_Value v = m_deque.back();
        m_deque.pop_back();
        return v;
    }

    // Setting. Verilog: assoc[index] = v (should only be used by dynamic arrays)
    T_Value& atWrite(int32_t index) {
        // cppcheck-suppress variableScope
        static thread_local T_Value t_throwAway;
        // Needs to work for dynamic arrays, so does not use N_MaxSize
        if (VL_UNLIKELY(index < 0 || index >= m_deque.size())) {
            t_throwAway = atDefault();
            return t_throwAway;
        }
        return m_deque[index];
    }
    // Setting. Verilog: assoc[index] = v (should only be used by queues)
    T_Value& atWriteAppend(int32_t index) {
        // cppcheck-suppress variableScope
        static thread_local T_Value t_throwAway;
        if (VL_UNLIKELY(index < 0 || index >= m_deque.size())) {
            if (index == m_deque.size()) {
                push_back(atDefault());
                return m_deque[index];
            }
            t_throwAway = atDefault();
            return t_throwAway;
        }
        return m_deque[index];
    }
    // Accessing. Verilog: v = assoc[index]
    const T_Value& at(int32_t index) const {
        // Needs to work for dynamic arrays, so does not use N_MaxSize
        if (VL_UNLIKELY(index < 0 || index >= m_deque.size())) {
            return atDefault();
        } else {
            return m_deque[index];
        }
    }
    // Access with an index counted from end (e.g. q[$])
    T_Value& atWriteAppendBack(int32_t index) { return atWriteAppend(m_deque.size() - 1 - index); }
    const T_Value& atBack(int32_t index) const { return at(m_deque.size() - 1 - index); }

    // function void q.insert(index, value);
    void insert(int32_t index, const T_Value& value) {
        if (VL_UNLIKELY(index < 0 || index > m_deque.size())) return;
        m_deque.insert(m_deque.begin() + index, value);
    }

    // inside (set membership operator)
    bool inside(const T_Value& value) const {
        return std::find(m_deque.cbegin(), m_deque.cend(), value) != m_deque.cend();
    }

    // Return slice q[lsb:msb]
    VlQueue slice(int32_t lsb, int32_t msb) const {
        VlQueue out;
        if (VL_UNLIKELY(lsb < 0)) lsb = 0;
        if (VL_UNLIKELY(lsb >= m_deque.size())) lsb = m_deque.size() - 1;
        if (VL_UNLIKELY(msb >= m_deque.size())) msb = m_deque.size() - 1;
        for (int32_t i = lsb; i <= msb; ++i) out.push_back(m_deque[i]);
        return out;
    }
    VlQueue sliceFrontBack(int32_t lsb, int32_t msb) const {
        return slice(lsb, m_deque.size() - 1 - msb);
    }
    VlQueue sliceBackBack(int32_t lsb, int32_t msb) const {
        return slice(m_deque.size() - 1 - lsb, m_deque.size() - 1 - msb);
    }

    // For save/restore
    const_iterator begin() const { return m_deque.begin(); }
    const_iterator end() const { return m_deque.end(); }

    // Methods
    void sort() { std::sort(m_deque.begin(), m_deque.end()); }
    template <typename T_Func>
    void sort(T_Func with_func) {
        // with_func returns arbitrary type to use for the sort comparison
        std::sort(m_deque.begin(), m_deque.end(), [=](const T_Value& a, const T_Value& b) {
            // index number is meaningless with sort, as it changes
            return with_func(0, a) < with_func(0, b);
        });
    }
    void rsort() { std::sort(m_deque.rbegin(), m_deque.rend()); }
    template <typename T_Func>
    void rsort(T_Func with_func) {
        // with_func returns arbitrary type to use for the sort comparison
        std::sort(m_deque.rbegin(), m_deque.rend(), [=](const T_Value& a, const T_Value& b) {
            // index number is meaningless with sort, as it changes
            return with_func(0, a) < with_func(0, b);
        });
    }
    void reverse() { std::reverse(m_deque.begin(), m_deque.end()); }
    void shuffle() { std::shuffle(m_deque.begin(), m_deque.end(), VlURNG{}); }
    VlQueue unique() const {
        VlQueue out;
        std::set<T_Value> saw;
        for (const auto& i : m_deque) {
            const auto it = saw.find(i);
            if (it == saw.end()) {
                saw.insert(it, i);
                out.push_back(i);
            }
        }
        return out;
    }
    template <typename T_Func>
    VlQueue unique(T_Func with_func) const {
        VlQueue out;
        std::set<decltype(with_func(0, m_deque[0]))> saw;
        for (const auto& i : m_deque) {
            const auto i_mapped = with_func(0, i);
            const auto it = saw.find(i_mapped);
            if (it == saw.end()) {
                saw.insert(it, i_mapped);
                out.push_back(i);
            }
        }
        return out;
    }
    VlQueue<IData> unique_index() const {
        VlQueue<IData> out;
        IData index = 0;
        std::set<T_Value> saw;
        for (const auto& i : m_deque) {
            const auto it = saw.find(i);
            if (it == saw.end()) {
                saw.insert(it, i);
                out.push_back(index);
            }
            ++index;
        }
        return out;
    }
    template <typename T_Func>
    VlQueue<IData> unique_index(T_Func with_func) const {
        VlQueue<IData> out;
        IData index = 0;
        std::set<decltype(with_func(0, m_deque[0]))> saw;
        for (const auto& i : m_deque) {
            const auto i_mapped = with_func(index, i);
            auto it = saw.find(i_mapped);
            if (it == saw.end()) {
                saw.insert(it, i_mapped);
                out.push_back(index);
            }
            ++index;
        }
        return out;
    }
    template <typename T_Func>
    VlQueue find(T_Func with_func) const {
        VlQueue out;
        IData index = 0;
        for (const auto& i : m_deque) {
            if (with_func(index, i)) out.push_back(i);
            ++index;
        }
        return out;
    }
    template <typename T_Func>
    VlQueue<IData> find_index(T_Func with_func) const {
        VlQueue<IData> out;
        IData index = 0;
        for (const auto& i : m_deque) {
            if (with_func(index, i)) out.push_back(index);
            ++index;
        }
        return out;
    }
    template <typename T_Func>
    VlQueue find_first(T_Func with_func) const {
        // Can't use std::find_if as need index number
        IData index = 0;
        for (const auto& i : m_deque) {
            if (with_func(index, i)) return VlQueue::consV(i);
            ++index;
        }
        return VlQueue{};
    }
    template <typename T_Func>
    VlQueue<IData> find_first_index(T_Func with_func) const {
        IData index = 0;
        for (const auto& i : m_deque) {
            if (with_func(index, i)) return VlQueue<IData>::consV(index);
            ++index;
        }
        return VlQueue<IData>{};
    }
    template <typename T_Func>
    VlQueue find_last(T_Func with_func) const {
        IData index = m_deque.size() - 1;
        for (auto& item : vlstd::reverse_view(m_deque)) {
            if (with_func(index, item)) return VlQueue::consV(item);
            --index;
        }
        return VlQueue{};
    }
    template <typename T_Func>
    VlQueue<IData> find_last_index(T_Func with_func) const {
        IData index = m_deque.size() - 1;
        for (auto& item : vlstd::reverse_view(m_deque)) {
            if (with_func(index, item)) return VlQueue<IData>::consV(index);
            --index;
        }
        return VlQueue<IData>{};
    }

    // Reduction operators
    VlQueue min() const {
        if (m_deque.empty()) return VlQueue{};
        const auto it = std::min_element(m_deque.cbegin(), m_deque.cend());
        return VlQueue::consV(*it);
    }
    template <typename T_Func>
    VlQueue min(T_Func with_func) const {
        if (m_deque.empty()) return VlQueue{};
        const auto it = std::min_element(m_deque.cbegin(), m_deque.cend(),
                                         [&with_func](const IData& a, const IData& b) {
                                             return with_func(0, a) < with_func(0, b);
                                         });
        return VlQueue::consV(*it);
    }
    VlQueue max() const {
        if (m_deque.empty()) return VlQueue{};
        const auto it = std::max_element(m_deque.cbegin(), m_deque.cend());
        return VlQueue::consV(*it);
    }
    template <typename T_Func>
    VlQueue max(T_Func with_func) const {
        if (m_deque.empty()) return VlQueue{};
        const auto it = std::max_element(m_deque.cbegin(), m_deque.cend(),
                                         [&with_func](const IData& a, const IData& b) {
                                             return with_func(0, a) < with_func(0, b);
                                         });
        return VlQueue::consV(*it);
    }

    T_Value r_sum() const {
        T_Value out(0);  // Type must have assignment operator
        for (const auto& i : m_deque) out += i;
        return out;
    }
    template <typename T_Func>
    WithFuncReturnType<T_Func> r_sum(T_Func with_func) const {
        WithFuncReturnType<T_Func> out = WithFuncReturnType<T_Func>(0);
        IData index = 0;
        for (const auto& i : m_deque) out += with_func(index++, i);
        return out;
    }
    T_Value r_product() const {
        if (m_deque.empty()) return T_Value(0);  // The big three do it this way
        T_Value out = T_Value(1);
        for (const auto& i : m_deque) out *= i;
        return out;
    }
    template <typename T_Func>
    WithFuncReturnType<T_Func> r_product(T_Func with_func) const {
        if (m_deque.empty()) return WithFuncReturnType<T_Func>(0);  // The big three do it this way
        WithFuncReturnType<T_Func> out = WithFuncReturnType<T_Func>(1);
        IData index = 0;
        for (const auto& i : m_deque) out *= with_func(index++, i);
        return out;
    }
    T_Value r_and() const {
        if (m_deque.empty()) return T_Value(0);  // The big three do it this way
        T_Value out = ~T_Value(0);
        for (const auto& i : m_deque) out &= i;
        return out;
    }
    template <typename T_Func>
    WithFuncReturnType<T_Func> r_and(T_Func with_func) const {
        if (m_deque.empty()) return WithFuncReturnType<T_Func>(0);  // The big three do it this way
        IData index = 0;
        WithFuncReturnType<T_Func> out = ~WithFuncReturnType<T_Func>(0);
        for (const auto& i : m_deque) out &= with_func(index++, i);
        return out;
    }
    T_Value r_or() const {
        T_Value out = T_Value(0);
        for (const auto& i : m_deque) out |= i;
        return out;
    }
    template <typename T_Func>
    WithFuncReturnType<T_Func> r_or(T_Func with_func) const {
        WithFuncReturnType<T_Func> out = WithFuncReturnType<T_Func>(0);
        IData index = 0;
        for (const auto& i : m_deque) out |= with_func(index++, i);
        return out;
    }
    T_Value r_xor() const {
#ifdef VERILATOR_BIG3_NULLARY_ARITHMETICS_QUIRKS
        if (m_deque.empty()) return T_Value(0);
#endif
        T_Value out = T_Value(0);
        for (const auto& i : m_deque) out ^= i;
        return out;
    }
    template <typename T_Func>
    WithFuncReturnType<T_Func> r_xor(T_Func with_func) const {
        WithFuncReturnType<T_Func> out = WithFuncReturnType<T_Func>(0);
        IData index = 0;
        for (const auto& i : m_deque) out ^= with_func(index++, i);
        return out;
    }

    // Dumping. Verilog: str = $sformatf("%p", assoc)
    std::string to_string() const {
        if (m_deque.empty()) return "'{}";  // No trailing space
        std::string out = "'{";
        std::string comma;
        for (const auto& i : m_deque) {
            out += comma + VL_TO_STRING(i);
            comma = ", ";
        }
        return out + "} ";
    }
};

template <typename T_Value, size_t N_MaxSize>
std::string VL_TO_STRING(const VlQueue<T_Value, N_MaxSize>& obj) {
    return obj.to_string();
}

template <typename T_Value, size_t N_MaxSize>
struct VlContainsCustomStruct<VlQueue<T_Value, N_MaxSize>> : VlContainsCustomStruct<T_Value> {};

//===================================================================
// Verilog associative array container
// There are no multithreaded locks on this; the base variable must
// be protected by other means
//
template <typename T_Key, typename T_Value>
class VlAssocArray final {
private:
    // TYPES
    using Map = std::map<T_Key, T_Value>;

public:
    using const_iterator = typename Map::const_iterator;
    template <typename T_Func>
    using WithFuncReturnType
        = decltype(std::declval<T_Func>()(std::declval<T_Key>(), std::declval<T_Value>()));

private:
    // MEMBERS
    Map m_map;  // State of the assoc array
    T_Value m_defaultValue;  // Default value

public:
    // CONSTRUCTORS
    // m_defaultValue isn't defaulted. Caller's constructor must do it.
    VlAssocArray() = default;
    ~VlAssocArray() = default;
    VlAssocArray(const VlAssocArray&) = default;
    VlAssocArray(VlAssocArray&&) = default;
    VlAssocArray& operator=(const VlAssocArray&) = default;
    VlAssocArray& operator=(VlAssocArray&&) = default;
    bool operator==(const VlAssocArray& rhs) const { return m_map == rhs.m_map; }
    bool operator!=(const VlAssocArray& rhs) const { return m_map != rhs.m_map; }
    bool operator<(const VlAssocArray& rhs) const { return m_map < rhs.m_map; }
    // METHODS
    T_Value& atDefault() { return m_defaultValue; }
    const T_Value& atDefault() const { return m_defaultValue; }

    // Size of array. Verilog: function int size(), or int num()
    int size() const { return m_map.size(); }
    bool empty() const { return m_map.empty(); }
    // Clear array. Verilog: function void delete([input index])
    void clear() { m_map.clear(); }
    void erase(const T_Key& index) { m_map.erase(index); }
    // Return 0/1 if element exists. Verilog: function int exists(input index)
    int exists(const T_Key& index) const { return m_map.find(index) != m_map.end(); }
    // Return first element.  Verilog: function int first(ref index);
    int first(T_Key& indexr) const {
        const auto it = m_map.cbegin();
        if (it == m_map.end()) return 0;
        indexr = it->first;
        return 1;
    }
    // Return last element.  Verilog: function int last(ref index)
    int last(T_Key& indexr) const {
        const auto it = m_map.crbegin();
        if (it == m_map.crend()) return 0;
        indexr = it->first;
        return 1;
    }
    // Return next element. Verilog: function int next(ref index)
    int next(T_Key& indexr) const {
        auto it = m_map.find(indexr);
        if (VL_UNLIKELY(it == m_map.end())) return 0;
        ++it;
        if (VL_UNLIKELY(it == m_map.end())) return 0;
        indexr = it->first;
        return 1;
    }
    // Return prev element. Verilog: function int prev(ref index)
    int prev(T_Key& indexr) const {
        auto it = m_map.find(indexr);
        if (VL_UNLIKELY(it == m_map.end())) return 0;
        if (VL_UNLIKELY(it == m_map.begin())) return 0;
        --it;
        indexr = it->first;
        return 1;
    }
    // Setting. Verilog: assoc[index] = v
    // Can't just overload operator[] or provide a "at" reference to set,
    // because we need to be able to insert only when the value is set
    T_Value& at(const T_Key& index) {
        const auto it = m_map.find(index);
        if (it == m_map.end()) {
            std::pair<typename Map::iterator, bool> pit = m_map.emplace(index, m_defaultValue);
            return pit.first->second;
        }
        return it->second;
    }
    // Accessing. Verilog: v = assoc[index]
    const T_Value& at(const T_Key& index) const {
        const auto it = m_map.find(index);
        if (it == m_map.end()) {
            return m_defaultValue;
        } else {
            return it->second;
        }
    }
    // Setting as a chained operation
    VlAssocArray& set(const T_Key& index, const T_Value& value) {
        at(index) = value;
        return *this;
    }
    VlAssocArray& setDefault(const T_Value& value) {
        atDefault() = value;
        return *this;
    }

    // For save/restore
    const_iterator begin() const { return m_map.begin(); }
    const_iterator end() const { return m_map.end(); }

    // Methods
    VlQueue<T_Value> unique() const {
        VlQueue<T_Value> out;
        std::set<T_Value> saw;
        for (const auto& i : m_map) {
            auto it = saw.find(i.second);
            if (it == saw.end()) {
                saw.insert(it, i.second);
                out.push_back(i.second);
            }
        }
        return out;
    }
    template <typename T_Func>
    VlQueue<T_Value> unique(T_Func with_func) const {
        VlQueue<T_Value> out;
        T_Key default_key;
        using WithType = decltype(with_func(m_map.begin()->first, m_map.begin()->second));
        std::set<WithType> saw;
        for (const auto& i : m_map) {
            const auto i_mapped = with_func(default_key, i.second);
            const auto it = saw.find(i_mapped);
            if (it == saw.end()) {
                saw.insert(it, i_mapped);
                out.push_back(i.second);
            }
        }
        return out;
    }
    VlQueue<T_Key> unique_index() const {
        VlQueue<T_Key> out;
        std::set<T_Key> saw;
        for (const auto& i : m_map) {
            auto it = saw.find(i.second);
            if (it == saw.end()) {
                saw.insert(it, i.second);
                out.push_back(i.first);
            }
        }
        return out;
    }
    template <typename T_Func>
    VlQueue<T_Key> unique_index(T_Func with_func) const {
        VlQueue<T_Key> out;
        using WithType = decltype(with_func(m_map.begin()->first, m_map.begin()->second));
        std::set<WithType> saw;
        for (const auto& i : m_map) {
            const auto i_mapped = with_func(i.first, i.second);
            auto it = saw.find(i_mapped);
            if (it == saw.end()) {
                saw.insert(it, i_mapped);
                out.push_back(i.first);
            }
        }
        return out;
    }
    template <typename T_Func>
    VlQueue<T_Value> find(T_Func with_func) const {
        VlQueue<T_Value> out;
        for (const auto& i : m_map)
            if (with_func(i.first, i.second)) out.push_back(i.second);
        return out;
    }
    template <typename T_Func>
    VlQueue<T_Key> find_index(T_Func with_func) const {
        VlQueue<T_Key> out;
        for (const auto& i : m_map)
            if (with_func(i.first, i.second)) out.push_back(i.first);
        return out;
    }
    template <typename T_Func>
    VlQueue<T_Value> find_first(T_Func with_func) const {
        const auto it
            = std::find_if(m_map.cbegin(), m_map.cend(), [=](const std::pair<T_Key, T_Value>& i) {
                  return with_func(i.first, i.second);
              });
        if (it == m_map.end()) return VlQueue<T_Value>{};
        return VlQueue<T_Value>::consV(it->second);
    }
    template <typename T_Func>
    VlQueue<T_Key> find_first_index(T_Func with_func) const {
        const auto it
            = std::find_if(m_map.cbegin(), m_map.cend(), [=](const std::pair<T_Key, T_Value>& i) {
                  return with_func(i.first, i.second);
              });
        if (it == m_map.end()) return VlQueue<T_Value>{};
        return VlQueue<T_Key>::consV(it->first);
    }
    template <typename T_Func>
    VlQueue<T_Value> find_last(T_Func with_func) const {
        const auto it = std::find_if(
            m_map.crbegin(), m_map.crend(),
            [=](const std::pair<T_Key, T_Value>& i) { return with_func(i.first, i.second); });
        if (it == m_map.rend()) return VlQueue<T_Value>{};
        return VlQueue<T_Value>::consV(it->second);
    }
    template <typename T_Func>
    VlQueue<T_Key> find_last_index(T_Func with_func) const {
        const auto it = std::find_if(
            m_map.crbegin(), m_map.crend(),
            [=](const std::pair<T_Key, T_Value>& i) { return with_func(i.first, i.second); });
        if (it == m_map.rend()) return VlQueue<T_Value>{};
        return VlQueue<T_Key>::consV(it->first);
    }

    // Reduction operators
    VlQueue<T_Value> min() const {
        if (m_map.empty()) return VlQueue<T_Value>();
        const auto it = std::min_element(
            m_map.cbegin(), m_map.cend(),
            [](const std::pair<T_Key, T_Value>& a, const std::pair<T_Key, T_Value>& b) {
                return a.second < b.second;
            });
        return VlQueue<T_Value>::consV(it->second);
    }
    template <typename T_Func>
    VlQueue<T_Value> min(T_Func with_func) const {
        if (m_map.empty()) return VlQueue<T_Value>();
        const auto it = std::min_element(
            m_map.cbegin(), m_map.cend(),
            [&with_func](const std::pair<T_Key, T_Value>& a, const std::pair<T_Key, T_Value>& b) {
                return with_func(a.first, a.second) < with_func(b.first, b.second);
            });
        return VlQueue<T_Value>::consV(it->second);
    }
    VlQueue<T_Value> max() const {
        if (m_map.empty()) return VlQueue<T_Value>();
        const auto it = std::max_element(
            m_map.cbegin(), m_map.cend(),
            [](const std::pair<T_Key, T_Value>& a, const std::pair<T_Key, T_Value>& b) {
                return a.second < b.second;
            });
        return VlQueue<T_Value>::consV(it->second);
    }
    template <typename T_Func>
    VlQueue<T_Value> max(T_Func with_func) const {
        if (m_map.empty()) return VlQueue<T_Value>();
        const auto it = std::max_element(
            m_map.cbegin(), m_map.cend(),
            [&with_func](const std::pair<T_Key, T_Value>& a, const std::pair<T_Key, T_Value>& b) {
                return with_func(a.first, a.second) < with_func(b.first, b.second);
            });
        return VlQueue<T_Value>::consV(it->second);
    }

    T_Value r_sum() const {
        T_Value out(0);  // Type must have assignment operator
        for (const auto& i : m_map) out += i.second;
        return out;
    }
    template <typename T_Func>
    WithFuncReturnType<T_Func> r_sum(T_Func with_func) const {
        WithFuncReturnType<T_Func> out = WithFuncReturnType<T_Func>(0);
        for (const auto& i : m_map) out += with_func(i.first, i.second);
        return out;
    }
    T_Value r_product() const {
        if (m_map.empty()) return T_Value(0);  // The big three do it this way
        T_Value out = T_Value(1);
        for (const auto& i : m_map) out *= i.second;
        return out;
    }
    template <typename T_Func>
    WithFuncReturnType<T_Func> r_product(T_Func with_func) const {
        if (m_map.empty()) return WithFuncReturnType<T_Func>(0);  // The big three do it this way
        WithFuncReturnType<T_Func> out = WithFuncReturnType<T_Func>(1);
        for (const auto& i : m_map) out *= with_func(i.first, i.second);
        return out;
    }
    T_Value r_and() const {
        if (m_map.empty()) return T_Value(0);  // The big three do it this way
        T_Value out = ~T_Value(0);
        for (const auto& i : m_map) out &= i.second;
        return out;
    }
    template <typename T_Func>
    WithFuncReturnType<T_Func> r_and(T_Func with_func) const {
        if (m_map.empty()) return WithFuncReturnType<T_Func>(0);  // The big three do it this way
        WithFuncReturnType<T_Func> out = ~WithFuncReturnType<T_Func>(0);
        for (const auto& i : m_map) out &= with_func(i.first, i.second);
        return out;
    }
    T_Value r_or() const {
        T_Value out = T_Value(0);
        for (const auto& i : m_map) out |= i.second;
        return out;
    }
    template <typename T_Func>
    T_Value r_or(T_Func with_func) const {
        T_Value out = T_Value(0);
        for (const auto& i : m_map) out |= with_func(i.first, i.second);
        return out;
    }
    T_Value r_xor() const {
        T_Value out = T_Value(0);
        for (const auto& i : m_map) out ^= i.second;
        return out;
    }
    template <typename T_Func>
    WithFuncReturnType<T_Func> r_xor(T_Func with_func) const {
        WithFuncReturnType<T_Func> out = WithFuncReturnType<T_Func>(0);
        for (const auto& i : m_map) out ^= with_func(i.first, i.second);
        return out;
    }

    // Dumping. Verilog: str = $sformatf("%p", assoc)
    std::string to_string() const {
        if (m_map.empty()) return "'{}";  // No trailing space
        std::string out = "'{";
        std::string comma;
        for (const auto& i : m_map) {
            out += comma + VL_TO_STRING(i.first) + ":" + VL_TO_STRING(i.second);
            comma = ", ";
        }
        // Default not printed - maybe random init data
        return out + "} ";
    }
};

template <typename T_Key, typename T_Value>
std::string VL_TO_STRING(const VlAssocArray<T_Key, T_Value>& obj) {
    return obj.to_string();
}

template <typename T_Key, typename T_Value>
struct VlContainsCustomStruct<VlAssocArray<T_Key, T_Value>> : VlContainsCustomStruct<T_Value> {};

template <typename T_Key, typename T_Value>
void VL_READMEM_N(bool hex, int bits, const std::string& filename,
                  VlAssocArray<T_Key, T_Value>& obj, QData start, QData end) VL_MT_SAFE {
    VlReadMem rmem{hex, bits, filename, start, end};
    if (VL_UNLIKELY(!rmem.isOpen())) return;
    while (true) {
        QData addr;
        std::string data;
        if (rmem.get(addr /*ref*/, data /*ref*/)) {
            rmem.setData(&(obj.at(addr)), data);
        } else {
            break;
        }
    }
}

template <typename T_Key, typename T_Value>
void VL_WRITEMEM_N(bool hex, int bits, const std::string& filename,
                   const VlAssocArray<T_Key, T_Value>& obj, QData start, QData end) VL_MT_SAFE {
    VlWriteMem wmem{hex, bits, filename, start, end};
    if (VL_UNLIKELY(!wmem.isOpen())) return;
    for (const auto& i : obj) {
        const QData addr = i.first;
        if (addr >= start && addr <= end) wmem.print(addr, true, &(i.second));
    }
}

//===================================================================
/// Verilog unpacked array container
/// For when a standard C++[] array is not sufficient, e.g. an
/// array under a queue, or methods operating on the array.
///
/// A 'struct' as we want this to be an aggregate type that allows
/// static aggregate initialization. Consider data members private.
///
/// This class may get exposed to a Verilated Model's top I/O, if the top
/// IO has an unpacked array.

template <typename T_Value, std::size_t N_Depth>
class VlUnpacked final {
    // TYPES
    using T_Key = IData;  // Index type, for uniformity with other containers
    using Unpacked = T_Value[N_Depth];

public:
    // MEMBERS
    // This should be the only data member, otherwise generated static initializers need updating
    Unpacked m_storage;  // Contents of the unpacked array

    // CONSTRUCTORS
    // Default constructors and destructor are used. Note however that C++20 requires that
    // aggregate types do not have a user declared constructor, not even an explicitly defaulted
    // one.

    // OPERATOR METHODS
    // Default copy assignment operators are used.

    // METHODS
public:
    // Raw access
    WData* data() { return &m_storage[0]; }
    const WData* data() const { return &m_storage[0]; }

    constexpr std::size_t size() const { return N_Depth; }

    void fill(const T_Value& value) {
        std::fill(std::begin(m_storage), std::end(m_storage), value);
    }

    // To fit C++14
    template <std::size_t N_CurrentDimension = 0, typename U = T_Value>
    int find_length(int dimension, std::false_type) const {
        return size();
    }

    template <std::size_t N_CurrentDimension = 0, typename U = T_Value>
    int find_length(int dimension, std::true_type) const {
        if (dimension == N_CurrentDimension) {
            return size();
        } else {
            return m_storage[0].template find_length<N_CurrentDimension + 1>(dimension);
        }
    }

    template <std::size_t N_CurrentDimension = 0>
    int find_length(int dimension) const {
        return find_length<N_CurrentDimension>(dimension, std::is_class<T_Value>{});
    }

    template <std::size_t N_CurrentDimension = 0, typename U = T_Value>
    auto& find_element(const std::vector<size_t>& indices, std::false_type) {
        return m_storage[indices[N_CurrentDimension]];
    }

    template <std::size_t N_CurrentDimension = 0, typename U = T_Value>
    auto& find_element(const std::vector<size_t>& indices, std::true_type) {
        return m_storage[indices[N_CurrentDimension]]
            .template find_element<N_CurrentDimension + 1>(indices);
    }

    template <std::size_t N_CurrentDimension = 0>
    auto& find_element(const std::vector<size_t>& indices) {
        return find_element<N_CurrentDimension>(indices, std::is_class<T_Value>{});
    }

    T_Value& operator[](size_t index) { return m_storage[index]; }
    constexpr const T_Value& operator[](size_t index) const { return m_storage[index]; }

    // *this != that, which might be used for change detection/trigger computation, but avoid
    // operator overloading in VlUnpacked for safety in other contexts.
    bool neq(const VlUnpacked<T_Value, N_Depth>& that) const { return neq(*this, that); }
    // Similar to 'neq' above, *this = that used for change detection
    void assign(const VlUnpacked<T_Value, N_Depth>& that) { *this = that; }
    bool operator==(const VlUnpacked<T_Value, N_Depth>& that) const { return !neq(that); }
    bool operator!=(const VlUnpacked<T_Value, N_Depth>& that) const { return neq(that); }
    // interface to C style arrays (used in ports), see issue #5125
    bool neq(const T_Value that[N_Depth]) const { return neq(*this, that); }
    void assign(const T_Value that[N_Depth]) { std::copy_n(that, N_Depth, m_storage); }
    void operator=(const T_Value that[N_Depth]) { assign(that); }
    bool operator<(const VlUnpacked<T_Value, N_Depth>& that) const {
        for (int index = 0; index < N_Depth; ++index) {
            if (m_storage[index] < that.m_storage[index]) return true;
        }
        return false;
    }

    // inside (set membership operator)
    bool inside(const T_Value& value) const {
        return std::find(std::begin(m_storage), std::end(m_storage), value) != std::end(m_storage);
    }

    void sort() { std::sort(std::begin(m_storage), std::end(m_storage)); }
    template <typename T_Func>
    void sort(T_Func with_func) {
        // with_func returns arbitrary type to use for the sort comparison
        std::sort(std::begin(m_storage), std::end(m_storage),
                  [=](const T_Value& a, const T_Value& b) {
                      // index number is meaningless with sort, as it changes
                      return with_func(0, a) < with_func(0, b);
                  });
    }
    // std::rbegin/std::rend not available until C++14
    void rsort() {
        std::sort(std::begin(m_storage), std::end(m_storage), std::greater<T_Value>());
    }
    template <typename T_Func>
    void rsort(T_Func with_func) {
        // with_func returns arbitrary type to use for the sort comparison
        // std::rbegin/std::rend not available until C++14, so using > below
        std::sort(std::begin(m_storage), std::end(m_storage),
                  [=](const T_Value& a, const T_Value& b) {
                      // index number is meaningless with sort, as it changes
                      return with_func(0, a) > with_func(0, b);
                  });
    }
    void reverse() { std::reverse(std::begin(m_storage), std::end(m_storage)); }
    void shuffle() { std::shuffle(std::begin(m_storage), std::end(m_storage), VlURNG{}); }
    VlQueue<T_Value> unique() const {
        VlQueue<T_Value> out;
        std::set<T_Value> saw;
        for (const auto& i : m_storage) {
            const auto it = saw.find(i);
            if (it == saw.end()) {
                saw.insert(it, i);
                out.push_back(i);
            }
        }
        return out;
    }
    template <typename T_Func>
    VlQueue<T_Value> unique(T_Func with_func) const {
        VlQueue<T_Value> out;
        std::set<T_Value> saw;
        for (const auto& i : m_storage) {
            const auto i_mapped = with_func(0, i);
            const auto it = saw.find(i_mapped);
            if (it == saw.end()) {
                saw.insert(it, i_mapped);
                out.push_back(i);
            }
        }
        return out;
    }
    VlQueue<T_Key> unique_index() const {
        VlQueue<T_Key> out;
        IData index = 0;
        std::set<T_Value> saw;
        for (const auto& i : m_storage) {
            const auto it = saw.find(i);
            if (it == saw.end()) {
                saw.insert(it, i);
                out.push_back(index);
            }
            ++index;
        }
        return out;
    }
    template <typename T_Func>
    VlQueue<T_Key> unique_index(T_Func with_func) const {
        VlQueue<T_Key> out;
        IData index = 0;
        std::set<T_Value> saw;
        for (const auto& i : m_storage) {
            const auto i_mapped = with_func(index, i);
            auto it = saw.find(i_mapped);
            if (it == saw.end()) {
                saw.insert(it, i_mapped);
                out.push_back(index);
            }
            ++index;
        }
        return out;
    }
    template <typename T_Func>
    VlQueue<T_Value> find(T_Func with_func) const {
        VlQueue<T_Value> out;
        IData index = 0;
        for (const auto& i : m_storage) {
            if (with_func(index, i)) out.push_back(i);
            ++index;
        }
        return out;
    }
    template <typename T_Func>
    VlQueue<T_Key> find_index(T_Func with_func) const {
        VlQueue<T_Key> out;
        IData index = 0;
        for (const auto& i : m_storage) {
            if (with_func(index, i)) out.push_back(index);
            ++index;
        }
        return out;
    }
    template <typename T_Func>
    VlQueue<T_Value> find_first(T_Func with_func) const {
        // Can't use std::find_if as need index number
        IData index = 0;
        for (const auto& i : m_storage) {
            if (with_func(index, i)) return VlQueue<T_Value>::consV(i);
            ++index;
        }
        return VlQueue<T_Value>{};
    }
    template <typename T_Func>
    VlQueue<T_Key> find_first_index(T_Func with_func) const {
        IData index = 0;
        for (const auto& i : m_storage) {
            if (with_func(index, i)) return VlQueue<IData>::consV(index);
            ++index;
        }
        return VlQueue<T_Key>{};
    }
    template <typename T_Func>
    VlQueue<T_Value> find_last(T_Func with_func) const {
        for (int i = N_Depth - 1; i >= 0; i--) {
            if (with_func(i, m_storage[i])) return VlQueue<T_Value>::consV(m_storage[i]);
        }
        return VlQueue<T_Value>{};
    }
    template <typename T_Func>
    VlQueue<T_Key> find_last_index(T_Func with_func) const {
        for (int i = N_Depth - 1; i >= 0; i--) {
            if (with_func(i, m_storage[i])) return VlQueue<IData>::consV(i);
        }
        return VlQueue<T_Key>{};
    }

    // Reduction operators
    VlQueue<T_Value> min() const {
        const auto it = std::min_element(std::begin(m_storage), std::end(m_storage));
        return VlQueue<T_Value>::consV(*it);
    }
    template <typename T_Func>
    VlQueue<T_Value> min(T_Func with_func) const {
        const auto it = std::min_element(std::begin(m_storage), std::end(m_storage),
                                         [&with_func](const IData& a, const IData& b) {
                                             return with_func(0, a) < with_func(0, b);
                                         });
        return VlQueue<T_Value>::consV(*it);
    }
    VlQueue<T_Value> max() const {
        const auto it = std::max_element(std::begin(m_storage), std::end(m_storage));
        return VlQueue<T_Value>::consV(*it);
    }
    template <typename T_Func>
    VlQueue<T_Value> max(T_Func with_func) const {
        const auto it = std::max_element(std::begin(m_storage), std::end(m_storage),
                                         [&with_func](const IData& a, const IData& b) {
                                             return with_func(0, a) < with_func(0, b);
                                         });
        return VlQueue<T_Value>::consV(*it);
    }

    // Dumping. Verilog: str = $sformatf("%p", assoc)
    std::string to_string() const {
        std::string out = "'{";
        std::string comma;
        for (int i = 0; i < N_Depth; ++i) {
            out += comma + VL_TO_STRING(m_storage[i]);
            comma = ", ";
        }
        return out + "} ";
    }

private:
    template <typename T_Val, std::size_t N_Dep>
    static bool neq(const VlUnpacked<T_Val, N_Dep>& a, const VlUnpacked<T_Val, N_Dep>& b) {
        for (size_t i = 0; i < N_Dep; ++i) {
            // Recursive 'neq', in case T_Val is also a VlUnpacked<_, _>
            if (neq(a.m_storage[i], b.m_storage[i])) return true;
        }
        return false;
    }

    template <typename T_Val, std::size_t N_Dep>
    static bool neq(const VlUnpacked<T_Val, N_Dep>& a, const T_Val b[N_Dep]) {
        for (size_t i = 0; i < N_Dep; ++i) {
            // Recursive 'neq', in case T_Val is also a VlUnpacked<_, _>
            if (neq(a.m_storage[i], b[i])) return true;
        }
        return false;
    }

    template <typename T_Other>  //
    static bool neq(const T_Other& a, const T_Other& b) {
        // Base case (T_Other is not VlUnpacked<_, _>), fall back on !=
        return a != b;
    }
};

template <typename T_Value, std::size_t N_Depth>
std::string VL_TO_STRING(const VlUnpacked<T_Value, N_Depth>& obj) {
    return obj.to_string();
}

template <typename T_Value, std::size_t N_Depth>
struct VlContainsCustomStruct<VlUnpacked<T_Value, N_Depth>> : VlContainsCustomStruct<T_Value> {};

//===================================================================
// Helper to apply the given indices to a target expression

template <size_t N_Curr, size_t N_Rank, typename T_Target>
struct VlApplyIndices final {
    VL_ATTR_ALWINLINE
    static auto& apply(T_Target& target, const size_t* indicesp) {
        return VlApplyIndices<N_Curr + 1, N_Rank, decltype(target[indicesp[N_Curr]])>::apply(
            target[indicesp[N_Curr]], indicesp);
    }
};

template <size_t N_Rank, typename T_Target>
struct VlApplyIndices<N_Rank, N_Rank, T_Target> final {
    VL_ATTR_ALWINLINE
    static T_Target& apply(T_Target& target, const size_t*) { return target; }
};

//===================================================================
// Commit queue for NBAs - currently only for unpacked arrays
//
// This data-structure is used to handle non-blocking assignments
// that might execute a variable number of times in a single
// evaluation. It has 2 operations:
// - 'enqueue' will add an update to the queue
// - 'commit' will apply all enqueued updates to the target variable,
//   in the order they were enqueued. This ensures the last NBA
//   takes effect as it is expected.
// There are 2 specializations of this class below:
// - A version when a partial element update is not required,
//   e.g, to handle:
//      logic [31:0] array[N];
//      for (int i = 0 ; i < N ; ++i) array[i] <= x;
//   Here 'enqueue' takes the RHS ('x'), and the array indices ('i')
//   as arguments.
// - A different version when a partial element update is required,
//   e.g. for:
//      logic [31:0] array[N];
//      for (int i = 0 ; i < N ; ++i) array[i][3:1] <= y;
//   Here 'enqueue' takes one additional argument, which is a bitmask
//   derived from the bit selects (_[3:1]), which masks the bits that
//   need to be updated, and additionally the RHS is widened to a full
//   element size, with the bits inserted into the masked region.
template <typename T_Target,  // Type of the variable this commit queue updates
          bool Partial,  // Whether partial element updates are necessary
          // The following we could figure out from 'T_Target using type traits, but passing
          // explicitly to avoid template expansion, as Verilator already knows them
          typename T_Element,  // Non-array leaf element type of T_Target array
          std::size_t N_Rank  // Rank of T_Target (i.e.: how many dimensions it has)
          >
class VlNBACommitQueue;

// Specialization for whole element updates only
template <typename T_Target, typename T_Element, std::size_t N_Rank>
class VlNBACommitQueue<T_Target, /* Partial: */ false, T_Element, N_Rank> final {
    // TYPES
    struct Entry final {
        T_Element value;
        size_t indices[N_Rank];
    };

    // STATE
    std::vector<Entry> m_pending;  // Pending updates, in program order

public:
    // CONSTRUCTOR
    VlNBACommitQueue() = default;
    VL_UNCOPYABLE(VlNBACommitQueue);

    // METHODS
    template <typename... T_Args>
    void enqueue(const T_Element& value, T_Args... indices) {
        m_pending.emplace_back(Entry{value, {indices...}});
    }

    // Note: T_Commit might be different from T_Target. Specifically, when the signal is a
    // top-level IO port, T_Commit will be a native C array, while T_Target, will be a VlUnpacked
    template <typename T_Commit>
    void commit(T_Commit& target) {
        if (m_pending.empty()) return;
        for (const Entry& entry : m_pending) {
            VlApplyIndices<0, N_Rank, T_Commit>::apply(target, entry.indices) = entry.value;
        }
        m_pending.clear();
    }
};

// With partial element updates
template <typename T_Target, typename T_Element, std::size_t N_Rank>
class VlNBACommitQueue<T_Target, /* Partial: */ true, T_Element, N_Rank> final {
    // TYPES
    struct Entry final {
        T_Element value;
        T_Element mask;
        size_t indices[N_Rank];
    };

    // STATE
    std::vector<Entry> m_pending;  // Pending updates, in program order

    // STATIC METHODS

    // Binary & | ~ for elements to use for masking in partial updates. Sorry for the templates.
    template <typename T>
    VL_ATTR_ALWINLINE static typename std::enable_if<!VlIsVlWide<T>::value, T>::type
    bAnd(const T& a, const T& b) {
        return a & b;
    }

    template <typename T>
    VL_ATTR_ALWINLINE static typename std::enable_if<VlIsVlWide<T>::value, T>::type
    bAnd(const T& a, const T& b) {
        T result;
        for (size_t i = 0; i < T::Words; ++i) {
            result.m_storage[i] = a.m_storage[i] & b.m_storage[i];
        }
        return result;
    }

    template <typename T>
    VL_ATTR_ALWINLINE static typename std::enable_if<!VlIsVlWide<T>::value, T>::type
    bOr(const T& a, const T& b) {
        return a | b;
    }

    template <typename T>
    VL_ATTR_ALWINLINE static typename std::enable_if<VlIsVlWide<T>::value, T>::type  //
    bOr(const T& a, const T& b) {
        T result;
        for (size_t i = 0; i < T::Words; ++i) {
            result.m_storage[i] = a.m_storage[i] | b.m_storage[i];
        }
        return result;
    }

    template <typename T>
    VL_ATTR_ALWINLINE static typename std::enable_if<!VlIsVlWide<T>::value, T>::type
    bNot(const T& a) {
        return ~a;
    }

    template <typename T>
    VL_ATTR_ALWINLINE static typename std::enable_if<VlIsVlWide<T>::value, T>::type
    bNot(const T& a) {
        T result;
        for (size_t i = 0; i < T::Words; ++i) result.m_storage[i] = ~a.m_storage[i];
        return result;
    }

public:
    // CONSTRUCTOR
    VlNBACommitQueue() = default;
    VL_UNCOPYABLE(VlNBACommitQueue);

    // METHODS
    template <typename... T_Args>
    void enqueue(const T_Element& value, const T_Element& mask, T_Args... indices) {
        m_pending.emplace_back(Entry{value, mask, {indices...}});
    }

    // Note: T_Commit might be different from T_Target. Specifically, when the signal is a
    // top-level IO port, T_Commit will be a native C array, while T_Target, will be a VlUnpacked
    template <typename T_Commit>
    void commit(T_Commit& target) {
        if (m_pending.empty()) return;
        for (const Entry& entry : m_pending) {  //
            auto& ref = VlApplyIndices<0, N_Rank, T_Commit>::apply(target, entry.indices);
            // Maybe inefficient, but it works for now ...
            const auto oldValue = ref;
            ref = bOr(bAnd(entry.value, entry.mask), bAnd(oldValue, bNot(entry.mask)));
        }
        m_pending.clear();
    }
};

//===================================================================
// Object that VlDeleter is capable of deleting

class VlDeletable VL_NOT_FINAL {
public:
    VlDeletable() = default;
    virtual ~VlDeletable() = default;
};

//===================================================================
// Class providing delayed deletion of garbage objects. Objects get deleted only when 'deleteAll()'
// is called, or the deleter itself is destroyed.

class VlDeleter final {
    // MEMBERS
    // Queue of new objects that should be deleted
    std::vector<VlDeletable*> m_newGarbage VL_GUARDED_BY(m_mutex);
    // Queue of objects currently being deleted (only for deleteAll())
    std::vector<VlDeletable*> m_deleteNow VL_GUARDED_BY(m_deleteMutex);
    mutable VerilatedMutex m_mutex;  // Mutex protecting the 'new garbage' queue
    mutable VerilatedMutex m_deleteMutex;  // Mutex protecting the delete queue

public:
    // CONSTRUCTOR
    VlDeleter() = default;
    ~VlDeleter() { deleteAll(); }

private:
    VL_UNCOPYABLE(VlDeleter);

public:
    // METHODS
    // Adds a new object to the 'new garbage' queue.
    void put(VlDeletable* const objp) VL_MT_SAFE {
        const VerilatedLockGuard lock{m_mutex};
        m_newGarbage.push_back(objp);
    }

    // Deletes all queued garbage objects.
    void deleteAll() VL_EXCLUDES(m_mutex) VL_EXCLUDES(m_deleteMutex) VL_MT_SAFE;
};

//===================================================================
// Base class for all verilated classes. Includes a reference counter, and a pointer to the deleter
// object that should destroy it after the counter reaches 0. This allows for easy construction of
// VlClassRefs from 'this'.

class VlClass VL_NOT_FINAL : public VlDeletable {
    // TYPES
    template <typename T_Class>
    friend class VlClassRef;  // Needed for access to the ref counter and deleter

    // MEMBERS
    std::atomic<size_t> m_counter{1};  // Reference count for this object
    VlDeleter* m_deleterp = nullptr;  // The deleter that will delete this object

    // METHODS
    // Atomically increments the reference counter
    void refCountInc() VL_MT_SAFE {
        VL_DEBUG_IFDEF(assert(m_counter););  // If zero, we might have already deleted
        ++m_counter;
    }
    // Atomically decrements the reference counter. Assuming VlClassRef semantics are sound, it
    // should never get called at m_counter == 0.
    void refCountDec() VL_MT_SAFE {
        if (!--m_counter) m_deleterp->put(this);
    }

public:
    // CONSTRUCTORS
    VlClass() {}
    VlClass(const VlClass& copied) {}
    ~VlClass() override = default;
};

//===================================================================
// Represents the null pointer. Used for:
// * setting VlClassRef to null instead of via nullptr_t, to prevent the implicit conversion of 0
//   to nullptr,
// * comparing interface pointers to null.

struct VlNull final {
    operator bool() const { return false; }
    bool operator==(const void* ptr) const { return !ptr; }
};
inline bool operator==(const void* ptr, VlNull) { return !ptr; }

//===================================================================
// Verilog class reference container
// There are no multithreaded locks on this; the base variable must
// be protected by other means

template <typename T_Class>
class VlClassRef final {
private:
    // TYPES
    template <typename T_OtherClass>
    friend class VlClassRef;  // Needed for template copy/move assignments

    // MEMBERS
    T_Class* m_objp = nullptr;  // Object pointed to

    // METHODS
    // Increase reference counter with null check
    void refCountInc() const VL_MT_SAFE {
        if (m_objp) m_objp->refCountInc();
    }
    // Decrease reference counter with null check
    void refCountDec() const VL_MT_SAFE {
        if (m_objp) m_objp->refCountDec();
    }

public:
    // CONSTRUCTORS
    VlClassRef() = default;
    // Init with nullptr
    // cppcheck-suppress noExplicitConstructor
    VlClassRef(VlNull){};
    template <typename... T_Args>
    VlClassRef(VlDeleter& deleter, T_Args&&... args)
        // () required here to avoid narrowing conversion warnings,
        // when a new() has an e.g. CData type and passed a 1U.
        : m_objp{new T_Class(std::forward<T_Args>(args)...)} {
        // refCountInc was moved to the constructor of T_Class
        // to fix self references in constructor.
        m_objp->m_deleterp = &deleter;
    }
    // Explicit to avoid implicit conversion from 0
    explicit VlClassRef(T_Class* objp)
        : m_objp{objp} {
        refCountInc();
    }
    // cppcheck-suppress noExplicitConstructor
    VlClassRef(const VlClassRef& copied)
        : m_objp{copied.m_objp} {
        refCountInc();
    }
    // cppcheck-suppress noExplicitConstructor
    VlClassRef(VlClassRef&& moved)
        : m_objp{std::exchange(moved.m_objp, nullptr)} {}
    // cppcheck-suppress noExplicitConstructor
    template <typename T_OtherClass>
    VlClassRef(const VlClassRef<T_OtherClass>& copied)
        : m_objp{copied.m_objp} {
        refCountInc();
    }
    // cppcheck-suppress noExplicitConstructor
    template <typename T_OtherClass>
    VlClassRef(VlClassRef<T_OtherClass>&& moved)
        : m_objp{std::exchange(moved.m_objp, nullptr)} {}
    ~VlClassRef() { refCountDec(); }

    // METHODS
    // Copy and move assignments
    VlClassRef& operator=(const VlClassRef& copied) {
        if (m_objp == copied.m_objp) return *this;
        refCountDec();
        m_objp = copied.m_objp;
        refCountInc();
        return *this;
    }
    VlClassRef& operator=(VlClassRef&& moved) {
        if (m_objp == moved.m_objp) return *this;
        refCountDec();
        m_objp = std::exchange(moved.m_objp, nullptr);
        return *this;
    }
    template <typename T_OtherClass>
    VlClassRef& operator=(const VlClassRef<T_OtherClass>& copied) {
        if (m_objp == copied.m_objp) return *this;
        refCountDec();
        m_objp = copied.m_objp;
        refCountInc();
        return *this;
    }
    template <typename T_OtherClass>
    VlClassRef& operator=(VlClassRef<T_OtherClass>&& moved) {
        if (m_objp == moved.m_objp) return *this;
        refCountDec();
        m_objp = std::exchange(moved.m_objp, nullptr);
        return *this;
    }
    // Assign with nullptr
    VlClassRef& operator=(VlNull) {
        refCountDec();
        m_objp = nullptr;
        return *this;
    }
    // Dynamic caster
    template <typename T_OtherClass>
    VlClassRef<T_OtherClass> dynamicCast() const {
        return VlClassRef<T_OtherClass>{dynamic_cast<T_OtherClass*>(m_objp)};
    }
    // Dereference operators
    T_Class& operator*() const { return *m_objp; }
    T_Class* operator->() const { return m_objp; }
    // For 'if (ptr)...'
    operator bool() const { return m_objp; }
    // In SV A == B iff both are handles to the same object (IEEE 1800-2023 8.4)
    template <typename T_OtherClass>
    bool operator==(const VlClassRef<T_OtherClass>& rhs) const {
        return m_objp == rhs.m_objp;
    };
    template <typename T_OtherClass>
    bool operator!=(const VlClassRef<T_OtherClass>& rhs) const {
        return m_objp != rhs.m_objp;
    };
    template <typename T_OtherClass>
    bool operator<(const VlClassRef<T_OtherClass>& rhs) const {
        return m_objp < rhs.m_objp;
    };
};

template <typename T_Lhs, typename T_Out>
static inline bool VL_CAST_DYNAMIC(VlClassRef<T_Lhs> in, VlClassRef<T_Out>& outr) {
    if (!in) {
        outr = VlNull{};
        return true;
    }
    VlClassRef<T_Out> casted = in.template dynamicCast<T_Out>();
    if (VL_LIKELY(casted)) {
        outr = casted;
        return true;
    } else {
        return false;
    }
}

template <typename T_Lhs>
static inline bool VL_CAST_DYNAMIC(VlNull in, VlClassRef<T_Lhs>& outr) {
    outr = VlNull{};
    return true;
}

//=============================================================================
// VlSampleQueue stores samples for input clockvars in clocking blocks. At a clocking event,
// samples from this queue should be written to the correct input clockvar.

template <typename T_Sampled>
class VlSampleQueue final {
    // TYPES
    // Type representing a single value sample at a point in time
    struct VlSample final {
        uint64_t m_timestamp;  // Timestamp at which the value was sampled
        T_Sampled m_value;  // The sampled value
    };

    // MEMBERS
    std::deque<VlSample> m_queue;  // Queue of samples with timestamps

public:
    // METHODS
    // Push a new sample with the given timestamp to the end of the queue
    void push(uint64_t time, const T_Sampled& value) { m_queue.push_back({time, value}); }
    // Get the latest sample with its timestamp less than or equal to the given skew
    void pop(uint64_t time, uint64_t skew, T_Sampled& value) {
        if (time < skew) return;
        // Find the last element not greater than (time - skew). Do a binary search, as the queue
        // should be ordered.
        auto it = std::lower_bound(m_queue.rbegin(), m_queue.rend(), VlSample{time - skew, {}},
                                   [](const VlSample& sample, const VlSample& skewed) {
                                       return sample.m_timestamp > skewed.m_timestamp;
                                   });
        if (it != m_queue.rend()) {
            value = it->m_value;
            m_queue.erase(m_queue.begin(), it.base());
        }
    }
};

//======================================================================

#define VL_NEW(Class, ...) \
    VlClassRef<Class> { vlSymsp->__Vm_deleter, __VA_ARGS__ }

#define VL_KEEP_THIS \
    VlClassRef<std::remove_pointer<decltype(this)>::type> __Vthisref { this }

template <typename T>  // T typically of type VlClassRef<x>
inline T VL_NULL_CHECK(T t, const char* filename, int linenum) {
    if (VL_UNLIKELY(!t)) Verilated::nullPointerError(filename, linenum);
    return t;
}

//======================================================================

#endif  // Guard