File: verilated_vpi.cpp

package info (click to toggle)
verilator 5.038-1
  • links: PTS, VCS
  • area: main
  • in suites: forky, sid
  • size: 162,552 kB
  • sloc: cpp: 139,204; python: 20,931; ansic: 10,222; yacc: 6,000; lex: 1,925; makefile: 1,260; sh: 494; perl: 282; fortran: 22
file content (3710 lines) | stat: -rw-r--r-- 153,476 bytes parent folder | download
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
525
526
527
528
529
530
531
532
533
534
535
536
537
538
539
540
541
542
543
544
545
546
547
548
549
550
551
552
553
554
555
556
557
558
559
560
561
562
563
564
565
566
567
568
569
570
571
572
573
574
575
576
577
578
579
580
581
582
583
584
585
586
587
588
589
590
591
592
593
594
595
596
597
598
599
600
601
602
603
604
605
606
607
608
609
610
611
612
613
614
615
616
617
618
619
620
621
622
623
624
625
626
627
628
629
630
631
632
633
634
635
636
637
638
639
640
641
642
643
644
645
646
647
648
649
650
651
652
653
654
655
656
657
658
659
660
661
662
663
664
665
666
667
668
669
670
671
672
673
674
675
676
677
678
679
680
681
682
683
684
685
686
687
688
689
690
691
692
693
694
695
696
697
698
699
700
701
702
703
704
705
706
707
708
709
710
711
712
713
714
715
716
717
718
719
720
721
722
723
724
725
726
727
728
729
730
731
732
733
734
735
736
737
738
739
740
741
742
743
744
745
746
747
748
749
750
751
752
753
754
755
756
757
758
759
760
761
762
763
764
765
766
767
768
769
770
771
772
773
774
775
776
777
778
779
780
781
782
783
784
785
786
787
788
789
790
791
792
793
794
795
796
797
798
799
800
801
802
803
804
805
806
807
808
809
810
811
812
813
814
815
816
817
818
819
820
821
822
823
824
825
826
827
828
829
830
831
832
833
834
835
836
837
838
839
840
841
842
843
844
845
846
847
848
849
850
851
852
853
854
855
856
857
858
859
860
861
862
863
864
865
866
867
868
869
870
871
872
873
874
875
876
877
878
879
880
881
882
883
884
885
886
887
888
889
890
891
892
893
894
895
896
897
898
899
900
901
902
903
904
905
906
907
908
909
910
911
912
913
914
915
916
917
918
919
920
921
922
923
924
925
926
927
928
929
930
931
932
933
934
935
936
937
938
939
940
941
942
943
944
945
946
947
948
949
950
951
952
953
954
955
956
957
958
959
960
961
962
963
964
965
966
967
968
969
970
971
972
973
974
975
976
977
978
979
980
981
982
983
984
985
986
987
988
989
990
991
992
993
994
995
996
997
998
999
1000
1001
1002
1003
1004
1005
1006
1007
1008
1009
1010
1011
1012
1013
1014
1015
1016
1017
1018
1019
1020
1021
1022
1023
1024
1025
1026
1027
1028
1029
1030
1031
1032
1033
1034
1035
1036
1037
1038
1039
1040
1041
1042
1043
1044
1045
1046
1047
1048
1049
1050
1051
1052
1053
1054
1055
1056
1057
1058
1059
1060
1061
1062
1063
1064
1065
1066
1067
1068
1069
1070
1071
1072
1073
1074
1075
1076
1077
1078
1079
1080
1081
1082
1083
1084
1085
1086
1087
1088
1089
1090
1091
1092
1093
1094
1095
1096
1097
1098
1099
1100
1101
1102
1103
1104
1105
1106
1107
1108
1109
1110
1111
1112
1113
1114
1115
1116
1117
1118
1119
1120
1121
1122
1123
1124
1125
1126
1127
1128
1129
1130
1131
1132
1133
1134
1135
1136
1137
1138
1139
1140
1141
1142
1143
1144
1145
1146
1147
1148
1149
1150
1151
1152
1153
1154
1155
1156
1157
1158
1159
1160
1161
1162
1163
1164
1165
1166
1167
1168
1169
1170
1171
1172
1173
1174
1175
1176
1177
1178
1179
1180
1181
1182
1183
1184
1185
1186
1187
1188
1189
1190
1191
1192
1193
1194
1195
1196
1197
1198
1199
1200
1201
1202
1203
1204
1205
1206
1207
1208
1209
1210
1211
1212
1213
1214
1215
1216
1217
1218
1219
1220
1221
1222
1223
1224
1225
1226
1227
1228
1229
1230
1231
1232
1233
1234
1235
1236
1237
1238
1239
1240
1241
1242
1243
1244
1245
1246
1247
1248
1249
1250
1251
1252
1253
1254
1255
1256
1257
1258
1259
1260
1261
1262
1263
1264
1265
1266
1267
1268
1269
1270
1271
1272
1273
1274
1275
1276
1277
1278
1279
1280
1281
1282
1283
1284
1285
1286
1287
1288
1289
1290
1291
1292
1293
1294
1295
1296
1297
1298
1299
1300
1301
1302
1303
1304
1305
1306
1307
1308
1309
1310
1311
1312
1313
1314
1315
1316
1317
1318
1319
1320
1321
1322
1323
1324
1325
1326
1327
1328
1329
1330
1331
1332
1333
1334
1335
1336
1337
1338
1339
1340
1341
1342
1343
1344
1345
1346
1347
1348
1349
1350
1351
1352
1353
1354
1355
1356
1357
1358
1359
1360
1361
1362
1363
1364
1365
1366
1367
1368
1369
1370
1371
1372
1373
1374
1375
1376
1377
1378
1379
1380
1381
1382
1383
1384
1385
1386
1387
1388
1389
1390
1391
1392
1393
1394
1395
1396
1397
1398
1399
1400
1401
1402
1403
1404
1405
1406
1407
1408
1409
1410
1411
1412
1413
1414
1415
1416
1417
1418
1419
1420
1421
1422
1423
1424
1425
1426
1427
1428
1429
1430
1431
1432
1433
1434
1435
1436
1437
1438
1439
1440
1441
1442
1443
1444
1445
1446
1447
1448
1449
1450
1451
1452
1453
1454
1455
1456
1457
1458
1459
1460
1461
1462
1463
1464
1465
1466
1467
1468
1469
1470
1471
1472
1473
1474
1475
1476
1477
1478
1479
1480
1481
1482
1483
1484
1485
1486
1487
1488
1489
1490
1491
1492
1493
1494
1495
1496
1497
1498
1499
1500
1501
1502
1503
1504
1505
1506
1507
1508
1509
1510
1511
1512
1513
1514
1515
1516
1517
1518
1519
1520
1521
1522
1523
1524
1525
1526
1527
1528
1529
1530
1531
1532
1533
1534
1535
1536
1537
1538
1539
1540
1541
1542
1543
1544
1545
1546
1547
1548
1549
1550
1551
1552
1553
1554
1555
1556
1557
1558
1559
1560
1561
1562
1563
1564
1565
1566
1567
1568
1569
1570
1571
1572
1573
1574
1575
1576
1577
1578
1579
1580
1581
1582
1583
1584
1585
1586
1587
1588
1589
1590
1591
1592
1593
1594
1595
1596
1597
1598
1599
1600
1601
1602
1603
1604
1605
1606
1607
1608
1609
1610
1611
1612
1613
1614
1615
1616
1617
1618
1619
1620
1621
1622
1623
1624
1625
1626
1627
1628
1629
1630
1631
1632
1633
1634
1635
1636
1637
1638
1639
1640
1641
1642
1643
1644
1645
1646
1647
1648
1649
1650
1651
1652
1653
1654
1655
1656
1657
1658
1659
1660
1661
1662
1663
1664
1665
1666
1667
1668
1669
1670
1671
1672
1673
1674
1675
1676
1677
1678
1679
1680
1681
1682
1683
1684
1685
1686
1687
1688
1689
1690
1691
1692
1693
1694
1695
1696
1697
1698
1699
1700
1701
1702
1703
1704
1705
1706
1707
1708
1709
1710
1711
1712
1713
1714
1715
1716
1717
1718
1719
1720
1721
1722
1723
1724
1725
1726
1727
1728
1729
1730
1731
1732
1733
1734
1735
1736
1737
1738
1739
1740
1741
1742
1743
1744
1745
1746
1747
1748
1749
1750
1751
1752
1753
1754
1755
1756
1757
1758
1759
1760
1761
1762
1763
1764
1765
1766
1767
1768
1769
1770
1771
1772
1773
1774
1775
1776
1777
1778
1779
1780
1781
1782
1783
1784
1785
1786
1787
1788
1789
1790
1791
1792
1793
1794
1795
1796
1797
1798
1799
1800
1801
1802
1803
1804
1805
1806
1807
1808
1809
1810
1811
1812
1813
1814
1815
1816
1817
1818
1819
1820
1821
1822
1823
1824
1825
1826
1827
1828
1829
1830
1831
1832
1833
1834
1835
1836
1837
1838
1839
1840
1841
1842
1843
1844
1845
1846
1847
1848
1849
1850
1851
1852
1853
1854
1855
1856
1857
1858
1859
1860
1861
1862
1863
1864
1865
1866
1867
1868
1869
1870
1871
1872
1873
1874
1875
1876
1877
1878
1879
1880
1881
1882
1883
1884
1885
1886
1887
1888
1889
1890
1891
1892
1893
1894
1895
1896
1897
1898
1899
1900
1901
1902
1903
1904
1905
1906
1907
1908
1909
1910
1911
1912
1913
1914
1915
1916
1917
1918
1919
1920
1921
1922
1923
1924
1925
1926
1927
1928
1929
1930
1931
1932
1933
1934
1935
1936
1937
1938
1939
1940
1941
1942
1943
1944
1945
1946
1947
1948
1949
1950
1951
1952
1953
1954
1955
1956
1957
1958
1959
1960
1961
1962
1963
1964
1965
1966
1967
1968
1969
1970
1971
1972
1973
1974
1975
1976
1977
1978
1979
1980
1981
1982
1983
1984
1985
1986
1987
1988
1989
1990
1991
1992
1993
1994
1995
1996
1997
1998
1999
2000
2001
2002
2003
2004
2005
2006
2007
2008
2009
2010
2011
2012
2013
2014
2015
2016
2017
2018
2019
2020
2021
2022
2023
2024
2025
2026
2027
2028
2029
2030
2031
2032
2033
2034
2035
2036
2037
2038
2039
2040
2041
2042
2043
2044
2045
2046
2047
2048
2049
2050
2051
2052
2053
2054
2055
2056
2057
2058
2059
2060
2061
2062
2063
2064
2065
2066
2067
2068
2069
2070
2071
2072
2073
2074
2075
2076
2077
2078
2079
2080
2081
2082
2083
2084
2085
2086
2087
2088
2089
2090
2091
2092
2093
2094
2095
2096
2097
2098
2099
2100
2101
2102
2103
2104
2105
2106
2107
2108
2109
2110
2111
2112
2113
2114
2115
2116
2117
2118
2119
2120
2121
2122
2123
2124
2125
2126
2127
2128
2129
2130
2131
2132
2133
2134
2135
2136
2137
2138
2139
2140
2141
2142
2143
2144
2145
2146
2147
2148
2149
2150
2151
2152
2153
2154
2155
2156
2157
2158
2159
2160
2161
2162
2163
2164
2165
2166
2167
2168
2169
2170
2171
2172
2173
2174
2175
2176
2177
2178
2179
2180
2181
2182
2183
2184
2185
2186
2187
2188
2189
2190
2191
2192
2193
2194
2195
2196
2197
2198
2199
2200
2201
2202
2203
2204
2205
2206
2207
2208
2209
2210
2211
2212
2213
2214
2215
2216
2217
2218
2219
2220
2221
2222
2223
2224
2225
2226
2227
2228
2229
2230
2231
2232
2233
2234
2235
2236
2237
2238
2239
2240
2241
2242
2243
2244
2245
2246
2247
2248
2249
2250
2251
2252
2253
2254
2255
2256
2257
2258
2259
2260
2261
2262
2263
2264
2265
2266
2267
2268
2269
2270
2271
2272
2273
2274
2275
2276
2277
2278
2279
2280
2281
2282
2283
2284
2285
2286
2287
2288
2289
2290
2291
2292
2293
2294
2295
2296
2297
2298
2299
2300
2301
2302
2303
2304
2305
2306
2307
2308
2309
2310
2311
2312
2313
2314
2315
2316
2317
2318
2319
2320
2321
2322
2323
2324
2325
2326
2327
2328
2329
2330
2331
2332
2333
2334
2335
2336
2337
2338
2339
2340
2341
2342
2343
2344
2345
2346
2347
2348
2349
2350
2351
2352
2353
2354
2355
2356
2357
2358
2359
2360
2361
2362
2363
2364
2365
2366
2367
2368
2369
2370
2371
2372
2373
2374
2375
2376
2377
2378
2379
2380
2381
2382
2383
2384
2385
2386
2387
2388
2389
2390
2391
2392
2393
2394
2395
2396
2397
2398
2399
2400
2401
2402
2403
2404
2405
2406
2407
2408
2409
2410
2411
2412
2413
2414
2415
2416
2417
2418
2419
2420
2421
2422
2423
2424
2425
2426
2427
2428
2429
2430
2431
2432
2433
2434
2435
2436
2437
2438
2439
2440
2441
2442
2443
2444
2445
2446
2447
2448
2449
2450
2451
2452
2453
2454
2455
2456
2457
2458
2459
2460
2461
2462
2463
2464
2465
2466
2467
2468
2469
2470
2471
2472
2473
2474
2475
2476
2477
2478
2479
2480
2481
2482
2483
2484
2485
2486
2487
2488
2489
2490
2491
2492
2493
2494
2495
2496
2497
2498
2499
2500
2501
2502
2503
2504
2505
2506
2507
2508
2509
2510
2511
2512
2513
2514
2515
2516
2517
2518
2519
2520
2521
2522
2523
2524
2525
2526
2527
2528
2529
2530
2531
2532
2533
2534
2535
2536
2537
2538
2539
2540
2541
2542
2543
2544
2545
2546
2547
2548
2549
2550
2551
2552
2553
2554
2555
2556
2557
2558
2559
2560
2561
2562
2563
2564
2565
2566
2567
2568
2569
2570
2571
2572
2573
2574
2575
2576
2577
2578
2579
2580
2581
2582
2583
2584
2585
2586
2587
2588
2589
2590
2591
2592
2593
2594
2595
2596
2597
2598
2599
2600
2601
2602
2603
2604
2605
2606
2607
2608
2609
2610
2611
2612
2613
2614
2615
2616
2617
2618
2619
2620
2621
2622
2623
2624
2625
2626
2627
2628
2629
2630
2631
2632
2633
2634
2635
2636
2637
2638
2639
2640
2641
2642
2643
2644
2645
2646
2647
2648
2649
2650
2651
2652
2653
2654
2655
2656
2657
2658
2659
2660
2661
2662
2663
2664
2665
2666
2667
2668
2669
2670
2671
2672
2673
2674
2675
2676
2677
2678
2679
2680
2681
2682
2683
2684
2685
2686
2687
2688
2689
2690
2691
2692
2693
2694
2695
2696
2697
2698
2699
2700
2701
2702
2703
2704
2705
2706
2707
2708
2709
2710
2711
2712
2713
2714
2715
2716
2717
2718
2719
2720
2721
2722
2723
2724
2725
2726
2727
2728
2729
2730
2731
2732
2733
2734
2735
2736
2737
2738
2739
2740
2741
2742
2743
2744
2745
2746
2747
2748
2749
2750
2751
2752
2753
2754
2755
2756
2757
2758
2759
2760
2761
2762
2763
2764
2765
2766
2767
2768
2769
2770
2771
2772
2773
2774
2775
2776
2777
2778
2779
2780
2781
2782
2783
2784
2785
2786
2787
2788
2789
2790
2791
2792
2793
2794
2795
2796
2797
2798
2799
2800
2801
2802
2803
2804
2805
2806
2807
2808
2809
2810
2811
2812
2813
2814
2815
2816
2817
2818
2819
2820
2821
2822
2823
2824
2825
2826
2827
2828
2829
2830
2831
2832
2833
2834
2835
2836
2837
2838
2839
2840
2841
2842
2843
2844
2845
2846
2847
2848
2849
2850
2851
2852
2853
2854
2855
2856
2857
2858
2859
2860
2861
2862
2863
2864
2865
2866
2867
2868
2869
2870
2871
2872
2873
2874
2875
2876
2877
2878
2879
2880
2881
2882
2883
2884
2885
2886
2887
2888
2889
2890
2891
2892
2893
2894
2895
2896
2897
2898
2899
2900
2901
2902
2903
2904
2905
2906
2907
2908
2909
2910
2911
2912
2913
2914
2915
2916
2917
2918
2919
2920
2921
2922
2923
2924
2925
2926
2927
2928
2929
2930
2931
2932
2933
2934
2935
2936
2937
2938
2939
2940
2941
2942
2943
2944
2945
2946
2947
2948
2949
2950
2951
2952
2953
2954
2955
2956
2957
2958
2959
2960
2961
2962
2963
2964
2965
2966
2967
2968
2969
2970
2971
2972
2973
2974
2975
2976
2977
2978
2979
2980
2981
2982
2983
2984
2985
2986
2987
2988
2989
2990
2991
2992
2993
2994
2995
2996
2997
2998
2999
3000
3001
3002
3003
3004
3005
3006
3007
3008
3009
3010
3011
3012
3013
3014
3015
3016
3017
3018
3019
3020
3021
3022
3023
3024
3025
3026
3027
3028
3029
3030
3031
3032
3033
3034
3035
3036
3037
3038
3039
3040
3041
3042
3043
3044
3045
3046
3047
3048
3049
3050
3051
3052
3053
3054
3055
3056
3057
3058
3059
3060
3061
3062
3063
3064
3065
3066
3067
3068
3069
3070
3071
3072
3073
3074
3075
3076
3077
3078
3079
3080
3081
3082
3083
3084
3085
3086
3087
3088
3089
3090
3091
3092
3093
3094
3095
3096
3097
3098
3099
3100
3101
3102
3103
3104
3105
3106
3107
3108
3109
3110
3111
3112
3113
3114
3115
3116
3117
3118
3119
3120
3121
3122
3123
3124
3125
3126
3127
3128
3129
3130
3131
3132
3133
3134
3135
3136
3137
3138
3139
3140
3141
3142
3143
3144
3145
3146
3147
3148
3149
3150
3151
3152
3153
3154
3155
3156
3157
3158
3159
3160
3161
3162
3163
3164
3165
3166
3167
3168
3169
3170
3171
3172
3173
3174
3175
3176
3177
3178
3179
3180
3181
3182
3183
3184
3185
3186
3187
3188
3189
3190
3191
3192
3193
3194
3195
3196
3197
3198
3199
3200
3201
3202
3203
3204
3205
3206
3207
3208
3209
3210
3211
3212
3213
3214
3215
3216
3217
3218
3219
3220
3221
3222
3223
3224
3225
3226
3227
3228
3229
3230
3231
3232
3233
3234
3235
3236
3237
3238
3239
3240
3241
3242
3243
3244
3245
3246
3247
3248
3249
3250
3251
3252
3253
3254
3255
3256
3257
3258
3259
3260
3261
3262
3263
3264
3265
3266
3267
3268
3269
3270
3271
3272
3273
3274
3275
3276
3277
3278
3279
3280
3281
3282
3283
3284
3285
3286
3287
3288
3289
3290
3291
3292
3293
3294
3295
3296
3297
3298
3299
3300
3301
3302
3303
3304
3305
3306
3307
3308
3309
3310
3311
3312
3313
3314
3315
3316
3317
3318
3319
3320
3321
3322
3323
3324
3325
3326
3327
3328
3329
3330
3331
3332
3333
3334
3335
3336
3337
3338
3339
3340
3341
3342
3343
3344
3345
3346
3347
3348
3349
3350
3351
3352
3353
3354
3355
3356
3357
3358
3359
3360
3361
3362
3363
3364
3365
3366
3367
3368
3369
3370
3371
3372
3373
3374
3375
3376
3377
3378
3379
3380
3381
3382
3383
3384
3385
3386
3387
3388
3389
3390
3391
3392
3393
3394
3395
3396
3397
3398
3399
3400
3401
3402
3403
3404
3405
3406
3407
3408
3409
3410
3411
3412
3413
3414
3415
3416
3417
3418
3419
3420
3421
3422
3423
3424
3425
3426
3427
3428
3429
3430
3431
3432
3433
3434
3435
3436
3437
3438
3439
3440
3441
3442
3443
3444
3445
3446
3447
3448
3449
3450
3451
3452
3453
3454
3455
3456
3457
3458
3459
3460
3461
3462
3463
3464
3465
3466
3467
3468
3469
3470
3471
3472
3473
3474
3475
3476
3477
3478
3479
3480
3481
3482
3483
3484
3485
3486
3487
3488
3489
3490
3491
3492
3493
3494
3495
3496
3497
3498
3499
3500
3501
3502
3503
3504
3505
3506
3507
3508
3509
3510
3511
3512
3513
3514
3515
3516
3517
3518
3519
3520
3521
3522
3523
3524
3525
3526
3527
3528
3529
3530
3531
3532
3533
3534
3535
3536
3537
3538
3539
3540
3541
3542
3543
3544
3545
3546
3547
3548
3549
3550
3551
3552
3553
3554
3555
3556
3557
3558
3559
3560
3561
3562
3563
3564
3565
3566
3567
3568
3569
3570
3571
3572
3573
3574
3575
3576
3577
3578
3579
3580
3581
3582
3583
3584
3585
3586
3587
3588
3589
3590
3591
3592
3593
3594
3595
3596
3597
3598
3599
3600
3601
3602
3603
3604
3605
3606
3607
3608
3609
3610
3611
3612
3613
3614
3615
3616
3617
3618
3619
3620
3621
3622
3623
3624
3625
3626
3627
3628
3629
3630
3631
3632
3633
3634
3635
3636
3637
3638
3639
3640
3641
3642
3643
3644
3645
3646
3647
3648
3649
3650
3651
3652
3653
3654
3655
3656
3657
3658
3659
3660
3661
3662
3663
3664
3665
3666
3667
3668
3669
3670
3671
3672
3673
3674
3675
3676
3677
3678
3679
3680
3681
3682
3683
3684
3685
3686
3687
3688
3689
3690
3691
3692
3693
3694
3695
3696
3697
3698
3699
3700
3701
3702
3703
3704
3705
3706
3707
3708
3709
3710
// -*- mode: C++; c-file-style: "cc-mode" -*-
//*************************************************************************
//
// Code available from: https://verilator.org
//
// Copyright 2009-2025 by Wilson Snyder. This program is free software; you can
// redistribute it and/or modify it under the terms of either the GNU
// Lesser General Public License Version 3 or the Perl Artistic License
// Version 2.0.
// SPDX-License-Identifier: LGPL-3.0-only OR Artistic-2.0
//
//=========================================================================
///
/// \file
/// \brief Verilated VPI implementation code
///
/// This file must be compiled and linked against all Verilated objects
/// that use the VPI.
///
/// Use "verilator --vpi" to add this to the Makefile for the linker.
///
/// For documentation on the exported functions (named vpi_*) that are
/// implemented here, refer to the IEEE DPI chapter.
///
//=========================================================================

#define VERILATOR_VERILATED_VPI_CPP_

#include "verilated_vpi.h"

#include "verilated.h"
#include "verilated_imp.h"

#include "vltstd/vpi_user.h"

#include <cstdarg>
#include <cstdio>
#include <list>
#include <map>
#include <set>
#include <string>
#include <utility>
#include <vector>

//======================================================================
// Internal constants

#define VL_DEBUG_IF_PLI VL_DEBUG_IF
constexpr unsigned VL_VPI_LINE_SIZE_ = 8192;

//======================================================================
// Internal macros

#define VL_VPI_INTERNAL_ VerilatedVpiImp::error_info()->setMessage(vpiInternal)->setMessage
#define VL_VPI_SYSTEM_ VerilatedVpiImp::error_info()->setMessage(vpiSystem)->setMessage
#define VL_VPI_ERROR_ VerilatedVpiImp::error_info()->setMessage(vpiError)->setMessage
#define VL_VPI_WARNING_ VerilatedVpiImp::error_info()->setMessage(vpiWarning)->setMessage
#define VL_VPI_NOTICE_ VerilatedVpiImp::error_info()->setMessage(vpiNotice)->setMessage
#define VL_VPI_ERROR_RESET_ VerilatedVpiImp::error_info()->resetError

// Not supported yet
#define VL_VPI_UNIMP_() \
    (VL_VPI_ERROR_(__FILE__, __LINE__, Verilated::catName("Unsupported VPI function: ", __func__)))

//======================================================================
// Implementation

// Base VPI handled object
class VerilatedVpio VL_NOT_FINAL {
    // CONSTANTS
    // Magic value stored in front of object to detect double free etc
    // Must be odd, as aligned pointer can never be odd
    static constexpr uint32_t activeMagic() VL_PURE { return 0xfeed100f; }

    // MEM MANGLEMENT
    // Internal note: Globals may multi-construct, see verilated.cpp top.
    static thread_local uint8_t* t_freeHeadp;

public:
    // CONSTRUCTORS
    VerilatedVpio() = default;
    virtual ~VerilatedVpio() = default;
    static void* operator new(size_t size) VL_MT_SAFE {
        // We new and delete tons of vpi structures, so keep them around
        // To simplify our free list, we use a size large enough for all derived types
        // We reserve word zero for the next pointer, as that's safer in case a
        // dangling reference to the original remains around.
        static constexpr size_t CHUNK_SIZE = 256;
        if (VL_UNCOVERABLE(size > CHUNK_SIZE))
            VL_FATAL_MT(__FILE__, __LINE__, "", "increase CHUNK_SIZE");
        if (VL_LIKELY(t_freeHeadp)) {
            uint8_t* const newp = t_freeHeadp;
            t_freeHeadp = *(reinterpret_cast<uint8_t**>(newp));
            *(reinterpret_cast<uint32_t*>(newp)) = activeMagic();
            return newp + 8;
        }
        // +8: 8 bytes for next
        uint8_t* newp = reinterpret_cast<uint8_t*>(::operator new(CHUNK_SIZE + 8));
        *(reinterpret_cast<uint32_t*>(newp)) = activeMagic();
        return newp + 8;
    }
    static void operator delete(void* obj, size_t /*size*/) VL_MT_SAFE {
        uint8_t* const oldp = (static_cast<uint8_t*>(obj)) - 8;
        if (VL_UNLIKELY(*(reinterpret_cast<uint32_t*>(oldp)) != activeMagic())) {
            VL_FATAL_MT(__FILE__, __LINE__, "",
                        "vpi_release_handle() called on same object twice, or on non-Verilator "
                        "VPI object");
        }
#ifdef VL_VPI_IMMEDIATE_FREE  // Define to aid in finding leaky handles
        ::operator delete(oldp);
#else
        *(reinterpret_cast<void**>(oldp)) = t_freeHeadp;
        t_freeHeadp = oldp;
#endif
    }
    // MEMBERS
    static VerilatedVpio* castp(vpiHandle h) {
        return dynamic_cast<VerilatedVpio*>(reinterpret_cast<VerilatedVpio*>(h));
    }
    vpiHandle castVpiHandle() { return reinterpret_cast<vpiHandle>(this); }
    // ACCESSORS
    virtual const char* name() const { return "<null>"; }
    virtual const char* fullname() const { return "<null>"; }
    virtual const char* defname() const { return "<null>"; }
    virtual uint32_t type() const { return 0; }
    virtual uint32_t constType() const { return vpiUndefined; }
    virtual uint32_t size() const { return 0; }
    virtual const VerilatedRange* rangep() const { return nullptr; }
    virtual vpiHandle dovpi_scan() { return nullptr; }
    virtual PLI_INT32 dovpi_remove_cb() { return 0; }
};

class VerilatedVpioReasonCb final : public VerilatedVpio {
    // A handle to a timed or non-timed callback created with vpi_register_cb
    // User can call vpi_remove_cb or vpi_release_handle on it
    const uint64_t m_id;  // Unique id/sequence number to find schedule's event
    const QData m_time;  // Scheduled time, or 0 = not timed
    const PLI_INT32 m_reason;  // VPI callback reason code

public:
    // cppcheck-suppress uninitVar  // m_value
    VerilatedVpioReasonCb(uint64_t id, QData time, PLI_INT32 reason)
        : m_id{id}
        , m_time{time}
        , m_reason{reason} {}
    ~VerilatedVpioReasonCb() override = default;
    static VerilatedVpioReasonCb* castp(vpiHandle h) {
        return dynamic_cast<VerilatedVpioReasonCb*>(reinterpret_cast<VerilatedVpioReasonCb*>(h));
    }
    uint32_t type() const override { return vpiCallback; }
    PLI_INT32 dovpi_remove_cb() override;
};

class VerilatedVpioConst final : public VerilatedVpio {
    const int32_t m_num;

public:
    explicit VerilatedVpioConst(int32_t num)
        : m_num{num} {}
    ~VerilatedVpioConst() override = default;
    static VerilatedVpioConst* castp(vpiHandle h) {
        return dynamic_cast<VerilatedVpioConst*>(reinterpret_cast<VerilatedVpio*>(h));
    }
    uint32_t type() const override { return vpiConstant; }
    uint32_t constType() const override { return vpiDecConst; }
    int32_t num() const { return m_num; }
};

class VerilatedVpioVarBase VL_NOT_FINAL : public VerilatedVpio {
protected:
    const VerilatedVar* m_varp = nullptr;
    const VerilatedScope* m_scopep = nullptr;
    std::string m_fullname;
    int32_t m_indexedDim = -1;
    const VerilatedRange* get_range() const { return m_varp->range(m_indexedDim + 1); }

public:
    VerilatedVpioVarBase(const VerilatedVar* varp, const VerilatedScope* scopep)
        : m_varp{varp}
        , m_scopep{scopep}
        , m_fullname{std::string{m_scopep->name()} + '.' + m_varp->name()} {}
    explicit VerilatedVpioVarBase(const VerilatedVpioVarBase* varp) {
        if (varp) {
            m_varp = varp->m_varp;
            m_scopep = varp->m_scopep;
            m_fullname = varp->m_fullname;
            m_indexedDim = varp->m_indexedDim;
        }
    }
    static VerilatedVpioVarBase* castp(vpiHandle h) {
        return dynamic_cast<VerilatedVpioVarBase*>(reinterpret_cast<VerilatedVpio*>(h));
    }
    const VerilatedVar* varp() const { return m_varp; }
    const VerilatedScope* scopep() const { return m_scopep; }
    // Returns the number of the currently indexed dimension (starting at -1 for none).
    int32_t indexedDim() const { return m_indexedDim; }
    // Returns whether the currently indexed dimension is unpacked.
    bool isIndexedDimUnpacked() const { return indexedDim() + 1 < varp()->udims(); }
    // Returns a maximum accessible dimension number, counting only unpacked dimensions
    // (if onlyUnpacked == true), or both unpacked + packed.
    int32_t maxDim(bool onlyUnpacked) const {
        return onlyUnpacked ? varp()->udims() - 1 : varp()->dims() - 1;
    }
    // Returns a number of elements in the array, stopping at the unpacked-packed boundary.
    uint32_t size() const override {
        const int maxDimNum = maxDim(isIndexedDimUnpacked());
        int size = 1;
        for (int dim = indexedDim() + 1; dim <= maxDimNum; ++dim)
            size *= varp()->range(dim)->elements();
        return size;
    }
    // If the array is unpacked, returns the bitsize of a single underlying packed element.
    // If the array is packed, returns the bitsize of the whole array.
    uint32_t bitSize() const {
        if (isIndexedDimUnpacked())
            return varp()->entBits();
        else
            return size();
    }
    const VerilatedRange* rangep() const override { return get_range(); }
    const char* name() const override { return m_varp->name(); }
    const char* fullname() const override { return m_fullname.c_str(); }
    virtual void* varDatap() const { return m_varp->datap(); }
    CData* varCDatap() const {
        VL_DEBUG_IFDEF(assert(varp()->vltype() == VLVT_UINT8););
        return reinterpret_cast<CData*>(varDatap());
    }
    SData* varSDatap() const {
        VL_DEBUG_IFDEF(assert(varp()->vltype() == VLVT_UINT16););
        return reinterpret_cast<SData*>(varDatap());
    }
    IData* varIDatap() const {
        VL_DEBUG_IFDEF(assert(varp()->vltype() == VLVT_UINT32););
        return reinterpret_cast<IData*>(varDatap());
    }
    QData* varQDatap() const {
        VL_DEBUG_IFDEF(assert(varp()->vltype() == VLVT_UINT64););
        return reinterpret_cast<QData*>(varDatap());
    }
    EData* varEDatap() const {
        VL_DEBUG_IFDEF(assert(varp()->vltype() == VLVT_WDATA););
        return reinterpret_cast<EData*>(varDatap());
    }
    double* varRealDatap() const {
        VL_DEBUG_IFDEF(assert(varp()->vltype() == VLVT_REAL););
        return reinterpret_cast<double*>(varDatap());
    }
    std::string* varStringDatap() const {
        VL_DEBUG_IFDEF(assert(varp()->vltype() == VLVT_STRING););
        return reinterpret_cast<std::string*>(varDatap());
    }
    virtual uint32_t bitOffset() const { return 0; }
};

class VerilatedVpioParam final : public VerilatedVpioVarBase {
public:
    VerilatedVpioParam(const VerilatedVar* varp, const VerilatedScope* scopep)
        : VerilatedVpioVarBase{varp, scopep} {}
    ~VerilatedVpioParam() override = default;

    static VerilatedVpioParam* castp(vpiHandle h) {
        return dynamic_cast<VerilatedVpioParam*>(reinterpret_cast<VerilatedVpio*>(h));
    }
    uint32_t type() const override { return vpiParameter; }
    uint32_t constType() const override {
        switch (m_varp->vltype()) {
        case VLVT_UINT8:
        case VLVT_UINT16:
        case VLVT_UINT32:
        case VLVT_UINT64:
        case VLVT_WDATA: return vpiDecConst;
        case VLVT_STRING: return vpiStringConst;
        case VLVT_REAL: return vpiRealConst;
        default: return vpiUndefined;
        }
    }
};

class VerilatedVpioRange final : public VerilatedVpio {
    const VerilatedRange* const m_rangep;

public:
    explicit VerilatedVpioRange(const VerilatedRange* rangep)
        : m_rangep{rangep} {}
    ~VerilatedVpioRange() override = default;
    static VerilatedVpioRange* castp(vpiHandle h) {
        return dynamic_cast<VerilatedVpioRange*>(reinterpret_cast<VerilatedVpio*>(h));
    }
    uint32_t type() const override { return vpiRange; }
    uint32_t size() const override { return m_rangep->elements(); }
    const VerilatedRange* rangep() const override { return m_rangep; }
};

class VerilatedVpioRangeIter final : public VerilatedVpio {
    const std::vector<VerilatedRange> m_ranges;
    std::vector<VerilatedRange>::const_iterator m_iter;

public:
    explicit VerilatedVpioRangeIter(const std::vector<VerilatedRange>& ranges)
        : m_ranges{ranges} {
        m_iter = m_ranges.begin();
    }
    ~VerilatedVpioRangeIter() override = default;
    static VerilatedVpioRangeIter* castp(vpiHandle h) {
        return dynamic_cast<VerilatedVpioRangeIter*>(reinterpret_cast<VerilatedVpio*>(h));
    }
    uint32_t type() const override { return vpiIterator; }
    vpiHandle dovpi_scan() override {
        if (VL_UNLIKELY(m_iter == m_ranges.end())) {
            delete this;  // IEEE 37.2.2 vpi_scan at end does a vpi_release_handle
            return nullptr;
        }
        VerilatedRange* const rangep = new VerilatedRange(*m_iter);
        ++m_iter;
        return ((new VerilatedVpioRange{rangep})->castVpiHandle());
    }
};

class VerilatedVpioScope VL_NOT_FINAL : public VerilatedVpio {
protected:
    const VerilatedScope* const m_scopep;
    bool m_toplevel = false;
    const char* m_name;
    const char* m_fullname;
    const char* m_defname;

public:
    explicit VerilatedVpioScope(const VerilatedScope* scopep)
        : m_scopep{scopep} {
        m_fullname = m_scopep->name();
        if (std::strncmp(m_fullname, "TOP.", 4) == 0) m_fullname += 4;
        m_name = m_scopep->identifier();
        m_defname = m_scopep->defname();
    }
    ~VerilatedVpioScope() override = default;
    static VerilatedVpioScope* castp(vpiHandle h) {
        return dynamic_cast<VerilatedVpioScope*>(reinterpret_cast<VerilatedVpio*>(h));
    }
    uint32_t type() const override { return vpiGenScope; }
    const VerilatedScope* scopep() const { return m_scopep; }
    const char* name() const override { return m_name; }
    const char* fullname() const override { return m_fullname; }
    const char* defname() const override { return m_defname; }
    bool toplevel() const { return m_toplevel; }
};

class VerilatedVpioVar VL_NOT_FINAL : public VerilatedVpioVarBase {
    uint8_t* m_prevDatap = nullptr;  // Previous value of data, for cbValueChange
    union {
        uint8_t u8[4];
        uint32_t u32;
    } m_mask;  // memoized variable mask
    uint32_t m_entSize = 0;  // memoized variable size
    uint32_t m_bitOffset = 0;

protected:
    void* m_varDatap = nullptr;  // varp()->datap() adjusted for array entries
    std::vector<int32_t> m_index;

public:
    VerilatedVpioVar(const VerilatedVar* varp, const VerilatedScope* scopep)
        : VerilatedVpioVarBase{varp, scopep} {
        m_mask.u32 = VL_MASK_I(varp->entBits());
        m_entSize = varp->entSize();
        m_varDatap = varp->datap();
    }
    explicit VerilatedVpioVar(const VerilatedVpioVar* varp)
        : VerilatedVpioVarBase{varp} {
        if (varp) {
            m_mask.u32 = varp->m_mask.u32;
            m_entSize = varp->m_entSize;
            m_varDatap = varp->m_varDatap;
            m_index = varp->m_index;
            // Not copying m_prevDatap, must be nullptr
        } else {
            m_mask.u32 = 0;
        }
    }
    ~VerilatedVpioVar() override {
        if (m_prevDatap) VL_DO_CLEAR(delete[] m_prevDatap, m_prevDatap = nullptr);
    }
    static VerilatedVpioVar* castp(vpiHandle h) {
        return dynamic_cast<VerilatedVpioVar*>(reinterpret_cast<VerilatedVpio*>(h));
    }
    uint32_t bitOffset() const override { return m_bitOffset; }
    uint32_t mask() const { return m_mask.u32; }
    uint8_t mask_byte(int idx) const { return m_mask.u8[idx & 3]; }
    uint32_t entSize() const { return m_entSize; }
    const std::vector<int32_t>& index() const { return m_index; }
    VerilatedVpioVar* withIndex(int32_t index) const {
        if (VL_UNLIKELY(indexedDim() + 1 >= varp()->dims())) return nullptr;

        auto ret = new VerilatedVpioVar{this};
        ret->m_index.push_back(index);
        ret->m_indexedDim++;

        int chunkSize = 1;
        for (int dim = maxDim(isIndexedDimUnpacked()); dim > indexedDim() + 1; dim--)
            chunkSize *= varp()->range(dim)->elements();

        if (isIndexedDimUnpacked())
            ret->m_varDatap = (static_cast<uint8_t*>(ret->m_varDatap))
                              + entSize() * chunkSize * (index - get_range()->low());
        else
            ret->m_bitOffset += chunkSize * (index - get_range()->low());

        return ret;
    }
    uint32_t type() const override {
        uint32_t type = vpiReg;
        switch (varp()->vltype()) {
        case VLVT_REAL: type = vpiRealVar; break;
        case VLVT_STRING: type = vpiStringVar; break;
        default: break;
        }
        if (isIndexedDimUnpacked())
            return vpiRegArray;
        else
            return type;
    }
    const char* fullname() const override {
        static thread_local std::string t_out;
        t_out = std::string{scopep()->name()} + "." + name();
        for (auto idx : index()) t_out += "[" + std::to_string(idx) + "]";
        return t_out.c_str();
    }
    void* prevDatap() const { return m_prevDatap; }
    void* varDatap() const override { return m_varDatap; }
    void createPrevDatap() {
        if (VL_UNLIKELY(!m_prevDatap)) {
            m_prevDatap = new uint8_t[entSize()];
            std::memcpy(prevDatap(), varp()->datap(), entSize());
        }
    }
};

class VerilatedVpioVarIter final : public VerilatedVpio {
    const VerilatedScope* const m_scopep;
    VerilatedVarNameMap::const_iterator m_it;
    bool m_started = false;
    const VerilatedScope* m_topscopep = nullptr;
    bool m_onlyParams;

public:
    explicit VerilatedVpioVarIter(const VerilatedVpioScope* vop, bool onlyParams = false)
        : m_scopep{vop->scopep()}
        , m_onlyParams{onlyParams} {
        if (VL_UNLIKELY(vop->toplevel()))
            // This is a toplevel, so get TOP scope to search for ports during vpi_scan.
            m_topscopep = Verilated::threadContextp()->scopeFind("TOP");
    }
    ~VerilatedVpioVarIter() override = default;
    static VerilatedVpioVarIter* castp(vpiHandle h) {
        return dynamic_cast<VerilatedVpioVarIter*>(reinterpret_cast<VerilatedVpio*>(h));
    }
    uint32_t type() const override { return vpiIterator; }
    vpiHandle dovpi_scan() override {
        if (VL_UNLIKELY(!m_scopep->varsp())) {
            delete this;  // IEEE 37.2.2 vpi_scan at end does a vpi_release_handle
            return nullptr;  // End of list - only one deep
        }
        while (true) {
            const VerilatedVarNameMap* const varsp = m_scopep->varsp();
            if (VL_UNLIKELY(!m_started)) {
                m_it = varsp->begin();
                m_started = true;
            } else if (VL_UNLIKELY(m_it == varsp->end())) {
                delete this;  // IEEE 37.2.2 vpi_scan at end does a vpi_release_handle
                return nullptr;
            } else {
                ++m_it;
            }
            if (VL_UNLIKELY(m_it == varsp->end())) {
                delete this;  // IEEE 37.2.2 vpi_scan at end does a vpi_release_handle
                return nullptr;
            }
            if (m_onlyParams && !m_it->second.isParam()) continue;
            if (VL_UNLIKELY(m_topscopep)) {
                if (const VerilatedVar* topvarp = m_topscopep->varFind(m_it->second.name())) {
                    if (topvarp->isParam()) {
                        return ((new VerilatedVpioParam{topvarp, m_topscopep})->castVpiHandle());
                    } else {
                        return ((new VerilatedVpioVar{topvarp, m_topscopep})->castVpiHandle());
                    }
                }
            }
            if (m_it->second.isParam()) {
                return ((new VerilatedVpioParam{&(m_it->second), m_scopep})->castVpiHandle());
            } else {
                return ((new VerilatedVpioVar{&(m_it->second), m_scopep})->castVpiHandle());
            }
        }
    }
};

class VerilatedVpioRegIter final : public VerilatedVpio {
    VerilatedVpioVar* m_var;
    std::vector<VerilatedRange> m_ranges;
    std::vector<int> m_nextIndex;
    const int32_t m_maxDim;

public:
    explicit VerilatedVpioRegIter(const VerilatedVpioVar* vop)
        : m_var{new VerilatedVpioVar(vop)}
        , m_maxDim{vop->varp()->udims() - 1} {
        for (auto it = vop->indexedDim() + 1; it <= m_maxDim; ++it)
            m_ranges.push_back(*vop->varp()->range(it));
        for (auto it : m_ranges) m_nextIndex.push_back(it.right());
    }
    ~VerilatedVpioRegIter() override = default;
    static VerilatedVpioRegIter* castp(vpiHandle h) {
        return dynamic_cast<VerilatedVpioRegIter*>(reinterpret_cast<VerilatedVpio*>(h));
    }
    uint32_t type() const override { return vpiIterator; }
    vpiHandle dovpi_scan() override {
        if (VL_UNLIKELY(m_var->indexedDim() >= m_maxDim)) {
            // Trying to iterate over a non-array object
            delete this;
            return nullptr;
        }
        if (m_nextIndex.front() > m_ranges.front().high()
            || m_nextIndex.front() < m_ranges.front().low()) {
            // Finished iterating
            delete this;
            return nullptr;
        }

        VerilatedVpioVar* ret = m_var;
        for (auto it : m_nextIndex) ret = ret->withIndex(it);

        // Increase the index, pretending the dimensions are flattened
        for (int32_t it = m_ranges.size() - 1; it >= 0; it--) {
            m_nextIndex.at(it) += m_ranges.at(it).increment();
            if (m_nextIndex.at(it) <= m_ranges.at(it).high()
                && m_nextIndex.at(it) >= m_ranges.at(it).low())
                break;
            else if (it > 0)
                m_nextIndex.at(it) = m_ranges.at(it).right();
        }

        return ret->castVpiHandle();
    }
};

class VerilatedVpioModule final : public VerilatedVpioScope {

public:
    explicit VerilatedVpioModule(const VerilatedScope* modulep)
        : VerilatedVpioScope{modulep} {
        // Look for '.' not inside escaped identifier
        const std::string scopename = m_fullname;
        std::string::size_type pos = std::string::npos;
        size_t i = 0;
        while (i < scopename.length()) {
            if (scopename[i] == '\\') {
                while (i < scopename.length() && scopename[i] != ' ') ++i;
                ++i;  // Proc ' ', it should always be there. Then grab '.' on next cycle
            } else {
                while (i < scopename.length() && scopename[i] != '.') ++i;
                if (i < scopename.length()) pos = i++;
            }
        }
        if (VL_UNLIKELY(pos == std::string::npos)) m_toplevel = true;
    }
    static VerilatedVpioModule* castp(vpiHandle h) {
        return dynamic_cast<VerilatedVpioModule*>(reinterpret_cast<VerilatedVpio*>(h));
    }
    uint32_t type() const override { return vpiModule; }
};

class VerilatedVpioModuleIter final : public VerilatedVpio {
    const std::vector<const VerilatedScope*>* m_vec;
    std::vector<const VerilatedScope*>::const_iterator m_it;

public:
    explicit VerilatedVpioModuleIter(const std::vector<const VerilatedScope*>& vec)
        : m_vec{&vec} {
        m_it = m_vec->begin();
    }
    ~VerilatedVpioModuleIter() override = default;
    static VerilatedVpioModuleIter* castp(vpiHandle h) {
        return dynamic_cast<VerilatedVpioModuleIter*>(reinterpret_cast<VerilatedVpio*>(h));
    }
    uint32_t type() const override { return vpiIterator; }
    vpiHandle dovpi_scan() override {
        while (true) {
            if (m_it == m_vec->end()) {
                delete this;  // IEEE 37.2.2 vpi_scan at end does a vpi_release_handle
                return nullptr;
            }
            const VerilatedScope* const modp = *m_it++;
            const VerilatedScope::Type itype = modp->type();
            if (itype == VerilatedScope::SCOPE_MODULE) {
                return (new VerilatedVpioModule{modp})->castVpiHandle();
            }
        }
    }
};

class VerilatedVpioScopeIter final : public VerilatedVpio {
    const std::vector<const VerilatedScope*>* m_vec;
    std::vector<const VerilatedScope*>::const_iterator m_it;

public:
    explicit VerilatedVpioScopeIter(const std::vector<const VerilatedScope*>& vec)
        : m_vec{&vec} {
        m_it = m_vec->begin();
    }
    ~VerilatedVpioScopeIter() override = default;
    static VerilatedVpioScopeIter* castp(vpiHandle h) {
        return dynamic_cast<VerilatedVpioScopeIter*>(reinterpret_cast<VerilatedVpio*>(h));
    }
    uint32_t type() const override { return vpiIterator; }
    vpiHandle dovpi_scan() override {
        while (true) {
            if (m_it == m_vec->end()) {
                delete this;  // IEEE 37.2.2 vpi_scan at end does a vpi_release_handle
                return nullptr;
            }
            const VerilatedScope* const modp = *m_it++;
            const VerilatedScope::Type itype = modp->type();
            if (itype == VerilatedScope::SCOPE_OTHER) {
                return (new VerilatedVpioScope{modp})->castVpiHandle();
            } else if (itype == VerilatedScope::SCOPE_MODULE) {
                return (new VerilatedVpioModule{modp})->castVpiHandle();
            }
        }
    }
};

static const char* d_unit = "$unit";
class VerilatedVpioPackage final : public VerilatedVpioScope {
    std::string m_fullname_string;

public:
    explicit VerilatedVpioPackage(const VerilatedScope* modulep)
        : VerilatedVpioScope{modulep} {
        m_fullname_string = std::string{m_fullname} + "::";
        if (m_fullname_string == "\\$unit ::") m_fullname_string = "$unit::";

        if (strcmp(m_name, "\\$unit ") == 0) m_name = d_unit;
    }
    static VerilatedVpioPackage* castp(vpiHandle h) {
        return dynamic_cast<VerilatedVpioPackage*>(reinterpret_cast<VerilatedVpio*>(h));
    }
    const char* fullname() const override { return m_fullname_string.c_str(); }
    uint32_t type() const override { return vpiPackage; }
};

class VerilatedVpioInstanceIter final : public VerilatedVpio {
    const std::vector<const VerilatedScope*>* m_vec;
    std::vector<const VerilatedScope*>::const_iterator m_it;

public:
    explicit VerilatedVpioInstanceIter(const std::vector<const VerilatedScope*>& vec)
        : m_vec{&vec} {
        m_it = m_vec->begin();
    }
    ~VerilatedVpioInstanceIter() override = default;
    static VerilatedVpioInstanceIter* castp(vpiHandle h) {
        return dynamic_cast<VerilatedVpioInstanceIter*>(reinterpret_cast<VerilatedVpio*>(h));
    }
    uint32_t type() const override { return vpiIterator; }
    vpiHandle dovpi_scan() override {
        while (true) {
            if (m_it == m_vec->end()) {
                delete this;  // IEEE 37.2.2 vpi_scan at end does a vpi_release_handle
                return nullptr;
            }
            const VerilatedScope::Type itype = (*m_it)->type();
            const VerilatedScope* const modp = *m_it++;
            if (itype == VerilatedScope::SCOPE_MODULE) {
                return (new VerilatedVpioModule{modp})->castVpiHandle();
            }
            if (itype == VerilatedScope::SCOPE_PACKAGE) {
                return (new VerilatedVpioPackage{modp})->castVpiHandle();
            }
        }
    }
};

//======================================================================

using VerilatedPliCb = PLI_INT32 (*)(struct t_cb_data*);

class VerilatedVpiCbHolder final {
    // Holds information needed to call a callback
    uint64_t m_id;  // Unique id/sequence number to find schedule's event, 0 = invalid
    s_cb_data m_cbData;
    s_vpi_value m_value;
    VerilatedVpioVar m_varo;  // If a cbValueChange callback, the object we will return

public:
    // cppcheck-suppress uninitVar  // m_value
    VerilatedVpiCbHolder(uint64_t id, const s_cb_data* cbDatap, const VerilatedVpioVar* varop)
        : m_id{id}
        , m_cbData{*cbDatap}
        , m_varo{varop} {
        m_value.format = cbDatap->value ? cbDatap->value->format : vpiSuppressVal;
        m_cbData.value = &m_value;
        if (varop) {
            m_cbData.obj = m_varo.castVpiHandle();
            m_varo.createPrevDatap();
        } else {
            m_cbData.obj = nullptr;
        }
    }
    ~VerilatedVpiCbHolder() = default;
    VerilatedPliCb cb_rtnp() const { return m_cbData.cb_rtn; }
    s_cb_data* cb_datap() { return &m_cbData; }
    uint64_t id() const { return m_id; }
    bool invalid() const { return !m_id; }
    void invalidate() { m_id = 0; }
};

class VerilatedVpiPutHolder final {
    VerilatedVpioVar m_var;
    s_vpi_value m_value;
    union Storage {
        char init = 0;  // to ensure trivial constructor
        std::string str;
        std::vector<s_vpi_vecval> vec;
        ~Storage() noexcept {/* handled by VerilatedVpiPutHolder */};
    } m_storage{};

public:
    VerilatedVpiPutHolder(const VerilatedVpioVar* vop, p_vpi_value valuep)
        : m_var{vop} {
        m_value.format = valuep->format;
        switch (valuep->format) {
        case vpiBinStrVal:  // FALLTHRU
        case vpiOctStrVal:  // FALLTHRU
        case vpiDecStrVal:  // FALLTHRU
        case vpiHexStrVal:  // FALLTHRU
        case vpiStringVal: {
            new (&m_storage.str) std::string{valuep->value.str};
            m_value.value.str = const_cast<char*>(m_storage.str.c_str());
            break;
        }
        case vpiScalarVal: {
            m_value.value.scalar = valuep->value.scalar;
            break;
        }
        case vpiIntVal: {
            m_value.value.integer = valuep->value.integer;
            break;
        }
        case vpiRealVal: {
            m_value.value.real = valuep->value.real;
            break;
        }
        case vpiVectorVal: {
            size_t words = 0;
            switch (vop->varp()->vltype()) {
            case VLVT_UINT8:
            case VLVT_UINT16:
            case VLVT_UINT32: {
                words = 1;
                break;
            }
            case VLVT_UINT64: {
                words = 2;
                break;
            }
            case VLVT_WDATA: {
                words = VL_WORDS_I(vop->varp()->entBits());
                break;
            }
            default: break;
            }
            new (&m_storage.vec)
                std::vector<s_vpi_vecval>{valuep->value.vector, &valuep->value.vector[words]};
            m_value.value.vector = m_storage.vec.data();
            break;
        }
        }
    }

    VerilatedVpiPutHolder(VerilatedVpiPutHolder const& o)
        : m_var{o.m_var}
        , m_value{o.m_value} {
        switch (m_value.format) {
        case vpiBinStrVal:  // FALLTHRU
        case vpiOctStrVal:  // FALLTHRU
        case vpiDecStrVal:  // FALLTHRU
        case vpiHexStrVal:  // FALLTHRU
        case vpiStringVal: {
            new (&m_storage.str) std::string{o.m_storage.str};
            break;
        }
        case vpiVectorVal: {
            new (&m_storage.vec) std::vector<s_vpi_vecval>{o.m_storage.vec};
            break;
        }
        }
    }

    VerilatedVpiPutHolder(VerilatedVpiPutHolder&& o) noexcept
        : m_var{std::move(o.m_var)}
        , m_value{std::move(o.m_value)} {
        switch (m_value.format) {
        case vpiBinStrVal:  // FALLTHRU
        case vpiOctStrVal:  // FALLTHRU
        case vpiDecStrVal:  // FALLTHRU
        case vpiHexStrVal:  // FALLTHRU
        case vpiStringVal: {
            new (&m_storage.str) std::string{std::move(o.m_storage.str)};
            break;
        }
        case vpiVectorVal: {
            new (&m_storage.vec) std::vector<s_vpi_vecval>{std::move(o.m_storage.vec)};
            break;
        }
        }
    }

    ~VerilatedVpiPutHolder() noexcept {
        switch (m_value.format) {
        case vpiBinStrVal:  // FALLTHRU
        case vpiOctStrVal:  // FALLTHRU
        case vpiDecStrVal:  // FALLTHRU
        case vpiHexStrVal:  // FALLTHRU
        case vpiStringVal: m_storage.str.~basic_string(); break;
        case vpiVectorVal: m_storage.vec.~vector(); break;
        }
    }

    VerilatedVpioVar* varp() { return &m_var; }
    p_vpi_value valuep() { return &m_value; }

    static bool canInertialDelay(p_vpi_value valuep) {
        switch (valuep->format) {
        case vpiBinStrVal:  // FALLTHRU
        case vpiOctStrVal:  // FALLTHRU
        case vpiDecStrVal:  // FALLTHRU
        case vpiHexStrVal:  // FALLTHRU
        case vpiStringVal: {
            if (VL_UNLIKELY(!valuep->value.str)) return false;
            break;
        }
        case vpiScalarVal:  // FALLTHRU
        case vpiIntVal:  // FALLTHRU
        case vpiRealVal: break;
        case vpiVectorVal: {
            if (VL_UNLIKELY(!valuep->value.vector)) return false;
            break;
        }
        default: {
            return false;
        }
        }
        return true;
    }
};

struct VerilatedVpiTimedCbsCmp final {
    // Ordering sets keyed by time, then callback unique id
    bool operator()(const std::pair<QData, uint64_t>& a,
                    const std::pair<QData, uint64_t>& b) const {
        if (a.first < b.first) return true;
        if (a.first > b.first) return false;
        return a.second < b.second;
    }
};

class VerilatedVpiError;

class VerilatedVpiImp final {
    enum { CB_ENUM_MAX_VALUE = cbAtEndOfSimTime + 1 };  // Maximum callback reason
    using VpioCbList = std::list<VerilatedVpiCbHolder>;
    using VpioFutureCbs = std::map<std::pair<QData, uint64_t>, VerilatedVpiCbHolder>;

    // All only medium-speed, so use singleton function
    // Callbacks that are past or at current timestamp
    std::array<VpioCbList, CB_ENUM_MAX_VALUE> m_cbCurrentLists;
    VpioCbList m_cbCallList;  // List of callbacks currently being called by callCbs
    VpioFutureCbs m_futureCbs;  // Time based callbacks for future timestamps
    VpioFutureCbs m_nextCbs;  // cbNextSimTime callbacks
    std::list<VerilatedVpiPutHolder> m_inertialPuts;  // Pending vpi puts due to vpiInertialDelay
    VerilatedVpiError* m_errorInfop = nullptr;  // Container for vpi error info
    VerilatedAssertOneThread m_assertOne;  // Assert only called from single thread
    uint64_t m_nextCallbackId = 1;  // Id to identify callback
    bool m_evalNeeded = false;  // Model has had signals updated via vpi_put_value()

    static VerilatedVpiImp& s() {  // Singleton
        static VerilatedVpiImp s_s;
        return s_s;
    }

public:
    static void assertOneCheck() { s().m_assertOne.check(); }
    static uint64_t nextCallbackId() { return ++s().m_nextCallbackId; }

    static void cbCurrentAdd(uint64_t id, const s_cb_data* cb_data_p) {
        // The passed cb_data_p was property of the user, so need to recreate
        if (VL_UNCOVERABLE(cb_data_p->reason >= CB_ENUM_MAX_VALUE)) {
            VL_FATAL_MT(__FILE__, __LINE__, "", "vpi bb reason too large");
        }
        VL_DEBUG_IF_PLI(VL_DBG_MSGF("- vpi: vpi_register_cb reason=%d id=%" PRId64 " obj=%p\n",
                                    cb_data_p->reason, id, cb_data_p->obj););
        VerilatedVpioVar* varop = nullptr;
        if (cb_data_p->reason == cbValueChange) varop = VerilatedVpioVar::castp(cb_data_p->obj);
        s().m_cbCurrentLists[cb_data_p->reason].emplace_back(id, cb_data_p, varop);
    }
    static void cbFutureAdd(uint64_t id, const s_cb_data* cb_data_p, QData time) {
        // The passed cb_data_p was property of the user, so need to recreate
        VL_DEBUG_IF_PLI(VL_DBG_MSGF("- vpi: vpi_register_cb reason=%d id=%" PRId64 " time=%" PRIu64
                                    " obj=%p\n",
                                    cb_data_p->reason, id, time, cb_data_p->obj););
        s().m_futureCbs.emplace(std::piecewise_construct, std::forward_as_tuple(time, id),
                                std::forward_as_tuple(id, cb_data_p, nullptr));
    }
    static void cbNextAdd(uint64_t id, const s_cb_data* cb_data_p, QData time) {
        // The passed cb_data_p was property of the user, so need to recreate
        VL_DEBUG_IF_PLI(VL_DBG_MSGF("- vpi: vpi_register_cb reason=%d(NEXT) id=%" PRId64
                                    " time=%" PRIu64 " obj=%p\n",
                                    cb_data_p->reason, id, time, cb_data_p->obj););
        s().m_nextCbs.emplace(std::piecewise_construct, std::forward_as_tuple(time, id),
                              std::forward_as_tuple(id, cb_data_p, nullptr));
    }
    static void cbReasonRemove(uint64_t id, uint32_t reason, QData time) {
        // Id might no longer exist, if already removed due to call after event, or teardown
        // We do not remove it now as we may be iterating the list,
        // instead set to nullptr and will cleanup later
        // Remove from cbCurrent queue
        for (auto& ir : s().m_cbCurrentLists[reason]) {
            if (ir.id() == id) {
                ir.invalidate();
                return;  // Once found, it won't also be in m_cbCallList, m_futureCbs, or m_nextCbs
            }
        }
        for (auto& ir : s().m_cbCallList) {
            if (ir.id() == id) {
                ir.invalidate();
                return;  // Once found, it won't also be in m_futureCbs or m_nextCbs
            }
        }
        {  // Remove from cbFuture queue
            const auto it = s().m_futureCbs.find(std::make_pair(time, id));
            if (it != s().m_futureCbs.end()) {
                it->second.invalidate();
                return;
            }
        }
        {  // Remove from cbNext
            const auto it = s().m_nextCbs.find(std::make_pair(time, id));
            if (it != s().m_nextCbs.end()) {
                it->second.invalidate();
                return;
            }
        }
    }
    static void moveFutureCbs() VL_MT_UNSAFE_ONE {
        // For any events past current time, move from cbFuture queue to cbCurrent queue
        if (s().m_futureCbs.empty() && s().m_nextCbs.empty()) return;
        // VL_DEBUG_IF_PLI(VL_DBG_MSGF("- vpi: moveFutureCbs\n"); dumpCbs(); );
        const QData time = VL_TIME_Q();
        for (auto it = s().m_futureCbs.begin();  //
             VL_UNLIKELY(it != s().m_futureCbs.end() && it->first.first <= time);) {
            VerilatedVpiCbHolder& hor = it->second;
            const auto last_it = it;
            ++it;
            if (VL_UNLIKELY(!hor.invalid())) {
                VL_DEBUG_IF_PLI(VL_DBG_MSGF("- vpi: moveFutureCbs id=%" PRId64 "\n", hor.id()););
                s().m_cbCurrentLists[hor.cb_datap()->reason].emplace_back(hor);
            }
            s().m_futureCbs.erase(last_it);
        }
        for (auto it = s().m_nextCbs.begin();  //
             VL_UNLIKELY(it != s().m_nextCbs.end() && it->first.first < time);) {
            VerilatedVpiCbHolder& hor = it->second;
            const auto last_it = it;
            ++it;
            if (VL_UNLIKELY(!hor.invalid())) {
                VL_DEBUG_IF_PLI(VL_DBG_MSGF("- vpi: moveFutureCbs id=%" PRId64 "\n", hor.id()););
                s().m_cbCurrentLists[hor.cb_datap()->reason].emplace_back(hor);
            }
            s().m_nextCbs.erase(last_it);
        }
    }
    static QData cbNextDeadline() {
        const auto it = s().m_futureCbs.cbegin();
        if (VL_LIKELY(it != s().m_futureCbs.cend())) return it->first.first;
        return ~0ULL;  // maxquad
    }
    static bool hasCbs(const uint32_t reason) VL_MT_UNSAFE_ONE {
        return !s().m_cbCurrentLists[reason].empty();
    }
    static bool callCbs(const uint32_t reason) VL_MT_UNSAFE_ONE {
        VL_DEBUG_IF_PLI(VL_DBG_MSGF("- vpi: callCbs reason=%u\n", reason););
        assertOneCheck();
        moveFutureCbs();
        if (s().m_cbCurrentLists[reason].empty()) return false;
        // Iterate on old list, making new list empty, to prevent looping over newly added elements
        std::swap(s().m_cbCurrentLists[reason], s().m_cbCallList);
        bool called = false;
        for (VerilatedVpiCbHolder& ihor : s().m_cbCallList) {
            // cbReasonRemove sets to nullptr, so we know on removal the old end() will still exist
            if (VL_LIKELY(!ihor.invalid())) {  // Not deleted earlier
                VL_DEBUG_IF_PLI(VL_DBG_MSGF("- vpi: reason_callback reason=%d id=%" PRId64 "\n",
                                            reason, ihor.id()););
                ihor.invalidate();  // Timed callbacks are one-shot
                (ihor.cb_rtnp())(ihor.cb_datap());
                called = true;
            }
        }
        s().m_cbCallList.clear();
        return called;
    }
    static bool callValueCbs() VL_MT_UNSAFE_ONE {
        assertOneCheck();
        VpioCbList& cbObjList = s().m_cbCurrentLists[cbValueChange];
        bool called = false;
        std::set<VerilatedVpioVar*> update;  // set of objects to update after callbacks
        if (cbObjList.empty()) return called;
        const auto last = std::prev(cbObjList.end());  // prevent looping over newly added elements
        for (auto it = cbObjList.begin(); true;) {
            // cbReasonRemove sets to nullptr, so we know on removal the old end() will still exist
            const bool was_last = it == last;
            if (VL_UNLIKELY(it->invalid())) {  // Deleted earlier, cleanup
                it = cbObjList.erase(it);
                if (was_last) break;
                continue;
            }
            VerilatedVpiCbHolder& ho = *it++;
            VerilatedVpioVar* const varop
                = reinterpret_cast<VerilatedVpioVar*>(ho.cb_datap()->obj);
            void* const newDatap = varop->varDatap();
            void* const prevDatap = varop->prevDatap();  // Was malloced when we added the callback
            VL_DEBUG_IF_PLI(VL_DBG_MSGF("- vpi: value_test %s v[0]=%d/%d %p %p\n",
                                        varop->fullname(), *(static_cast<CData*>(newDatap)),
                                        *(static_cast<CData*>(prevDatap)), newDatap, prevDatap););
            if (std::memcmp(prevDatap, newDatap, varop->entSize()) != 0) {
                VL_DEBUG_IF_PLI(VL_DBG_MSGF("- vpi: value_callback %" PRId64 " %s v[0]=%d\n",
                                            ho.id(), varop->fullname(),
                                            *(static_cast<CData*>(newDatap))););
                update.insert(varop);
                vpi_get_value(ho.cb_datap()->obj, ho.cb_datap()->value);
                (ho.cb_rtnp())(ho.cb_datap());
                called = true;
            }
            if (was_last) break;
        }
        for (const auto& ip : update) {
            std::memcpy(ip->prevDatap(), ip->varDatap(), ip->entSize());
        }
        return called;
    }
    static void dumpCbs() VL_MT_UNSAFE_ONE;
    static VerilatedVpiError* error_info() VL_MT_UNSAFE_ONE;  // getter for vpi error info
    static bool evalNeeded() { return s().m_evalNeeded; }
    static void evalNeeded(bool evalNeeded) { s().m_evalNeeded = evalNeeded; }
    static void inertialDelay(const VerilatedVpioVar* vop, p_vpi_value valuep) {
        s().m_inertialPuts.emplace_back(vop, valuep);
    }
    static void doInertialPuts() {
        for (auto& it : s().m_inertialPuts) {
            vpi_put_value(it.varp()->castVpiHandle(), it.valuep(), nullptr, vpiNoDelay);
        }
        s().m_inertialPuts.clear();
    }
};

//======================================================================
// Statics
// Internal note: Globals may multi-construct, see verilated.cpp top.

thread_local uint8_t* VerilatedVpio::t_freeHeadp = nullptr;

//======================================================================
// VerilatedVpiError
// Internal container for vpi error info

class VerilatedVpiError final {
    t_vpi_error_info m_errorInfo;
    bool m_flag = false;
    char m_buff[VL_VPI_LINE_SIZE_];
    void setError(PLI_BYTE8* message, PLI_BYTE8* code, PLI_BYTE8* file, PLI_INT32 line) {
        m_errorInfo.message = message;
        m_errorInfo.file = file;
        m_errorInfo.line = line;
        m_errorInfo.code = code;
        do_callbacks();
    }
    void do_callbacks() {
        if (getError()->level >= vpiError && Verilated::threadContextp()->fatalOnVpiError()) {
            // Stop on vpi error/unsupported
            vpi_unsupported();
        }
        // We need to run above code first because in the case that the
        // callback executes further vpi functions we will loose the error
        // as it will be overwritten.
        VerilatedVpiImp::callCbs(cbPLIError);
    }

public:
    VerilatedVpiError() {
        m_buff[0] = '\0';
        m_errorInfo.product = const_cast<PLI_BYTE8*>(Verilated::productName());
    }
    ~VerilatedVpiError() = default;
    static void selfTest() VL_MT_UNSAFE_ONE;
    VerilatedVpiError* setMessage(PLI_INT32 level) {
        m_flag = true;
        m_errorInfo.level = level;
        return this;
    }
    void setMessage(const std::string& file, PLI_INT32 line, const char* message, ...) {
        // message cannot be a const string& as va_start cannot use a reference
        static thread_local std::string t_filehold;
        va_list args;
        va_start(args, message);
        VL_VSNPRINTF(m_buff, sizeof(m_buff), message, args);
        va_end(args);
        m_errorInfo.state = vpiPLI;
        t_filehold = file;
        setError(static_cast<PLI_BYTE8*>(m_buff), nullptr,
                 const_cast<PLI_BYTE8*>(t_filehold.c_str()), line);
    }
    p_vpi_error_info getError() {
        if (m_flag) return &m_errorInfo;
        return nullptr;
    }
    void resetError() { m_flag = false; }
    static void vpi_unsupported() {
        // Not supported yet
        const p_vpi_error_info error_info_p = VerilatedVpiImp::error_info()->getError();
        if (error_info_p) {
            VL_FATAL_MT(error_info_p->file, error_info_p->line, "", error_info_p->message);
            return;
        }
        VL_FATAL_MT(__FILE__, __LINE__, "", "vpi_unsupported called without error info set");
    }
    static const char* strFromVpiVal(PLI_INT32 vpiVal) VL_PURE;
    static const char* strFromVpiObjType(PLI_INT32 vpiVal) VL_PURE;
    static const char* strFromVpiMethod(PLI_INT32 vpiVal) VL_PURE;
    static const char* strFromVpiCallbackReason(PLI_INT32 vpiVal) VL_PURE;
    static const char* strFromVpiProp(PLI_INT32 vpiVal) VL_PURE;
    static const char* strFromVpiConstType(PLI_INT32 vpiVal) VL_PURE;
};

//======================================================================
// VerilatedVpi implementation

bool VerilatedVpi::callCbs(uint32_t reason) VL_MT_UNSAFE_ONE {
    return VerilatedVpiImp::callCbs(reason);
}

bool VerilatedVpi::hasCbs(uint32_t reason) VL_MT_UNSAFE_ONE {
    return VerilatedVpiImp::hasCbs(reason);
}

// Historical, before we had multiple kinds of timed callbacks
void VerilatedVpi::callTimedCbs() VL_MT_UNSAFE_ONE { VerilatedVpiImp::callCbs(cbAfterDelay); }

bool VerilatedVpi::callValueCbs() VL_MT_UNSAFE_ONE { return VerilatedVpiImp::callValueCbs(); }

QData VerilatedVpi::cbNextDeadline() VL_MT_UNSAFE_ONE { return VerilatedVpiImp::cbNextDeadline(); }

void VerilatedVpi::dumpCbs() VL_MT_UNSAFE_ONE { VerilatedVpiImp::dumpCbs(); }

PLI_INT32 VerilatedVpioReasonCb::dovpi_remove_cb() {
    VerilatedVpiImp::cbReasonRemove(m_id, m_reason, m_time);
    delete this;  // IEEE 37.2.2 a vpi_remove_cb does a vpi_release_handle
    return 1;
}

void VerilatedVpi::clearEvalNeeded() VL_MT_UNSAFE_ONE { VerilatedVpiImp::evalNeeded(false); }
bool VerilatedVpi::evalNeeded() VL_MT_UNSAFE_ONE { return VerilatedVpiImp::evalNeeded(); }

void VerilatedVpi::doInertialPuts() VL_MT_UNSAFE_ONE { VerilatedVpiImp::doInertialPuts(); }

//======================================================================
// VerilatedVpiImp implementation

void VerilatedVpiImp::dumpCbs() VL_MT_UNSAFE_ONE {
    assertOneCheck();
    VL_DBG_MSGF("- vpi: dumpCbs\n");
    for (uint32_t reason = 0; reason < CB_ENUM_MAX_VALUE; ++reason) {
        VpioCbList& cbObjList = s().m_cbCurrentLists[reason];
        for (auto& ho : cbObjList) {
            if (VL_UNLIKELY(!ho.invalid())) {
                VL_DBG_MSGF("- vpi:   reason=%d=%s  id=%" PRId64 "\n", reason,
                            VerilatedVpiError::strFromVpiCallbackReason(reason), ho.id());
            }
        }
    }
    for (auto& ifuture : s().m_nextCbs) {
        const QData time = ifuture.first.first;
        VerilatedVpiCbHolder& ho = ifuture.second;
        if (VL_UNLIKELY(!ho.invalid())) {
            VL_DBG_MSGF("- vpi:   time=%" PRId64 "(NEXT) reason=%d=%s  id=%" PRId64 "\n", time,
                        ho.cb_datap()->reason,
                        VerilatedVpiError::strFromVpiCallbackReason(ho.cb_datap()->reason),
                        ho.id());
        }
    }
    for (auto& ifuture : s().m_futureCbs) {
        const QData time = ifuture.first.first;
        VerilatedVpiCbHolder& ho = ifuture.second;
        if (VL_UNLIKELY(!ho.invalid())) {
            VL_DBG_MSGF("- vpi:   time=%" PRId64 " reason=%d=%s  id=%" PRId64 "\n", time,
                        ho.cb_datap()->reason,
                        VerilatedVpiError::strFromVpiCallbackReason(ho.cb_datap()->reason),
                        ho.id());
        }
    }
}

VerilatedVpiError* VerilatedVpiImp::error_info() VL_MT_UNSAFE_ONE {
    VerilatedVpiImp::assertOneCheck();
    if (VL_UNLIKELY(!s().m_errorInfop)) s().m_errorInfop = new VerilatedVpiError;
    return s().m_errorInfop;
}

//======================================================================
// VerilatedVpiError Methods

const char* VerilatedVpiError::strFromVpiVal(PLI_INT32 vpiVal) VL_PURE {
    // clang-format off
    static const char* const names[] = {
        "*undefined*",
        "vpiBinStrVal",
        "vpiOctStrVal",
        "vpiDecStrVal",
        "vpiHexStrVal",
        "vpiScalarVal",
        "vpiIntVal",
        "vpiRealVal",
        "vpiStringVal",
        "vpiVectorVal",
        "vpiStrengthVal",
        "vpiTimeVal",
        "vpiObjTypeVal",
        "vpiSuppressVal",
        "vpiShortIntVal",
        "vpiLongIntVal",
        "vpiShortRealVal",
        "vpiRawTwoStateVal",
        "vpiRawFourStateVal",
    };
    // clang-format on
    if (VL_UNCOVERABLE(vpiVal < 0)) return names[0];
    return names[(vpiVal <= vpiRawFourStateVal) ? vpiVal : 0];
}
const char* VerilatedVpiError::strFromVpiObjType(PLI_INT32 vpiVal) VL_PURE {
    // clang-format off
    static const char* const names[] = {
        "*undefined*",
        "vpiAlways",
        "vpiAssignStmt",
        "vpiAssignment",
        "vpiBegin",
        "vpiCase",
        "vpiCaseItem",
        "vpiConstant",
        "vpiContAssign",
        "vpiDeassign",
        "vpiDefParam",
        "vpiDelayControl",
        "vpiDisable",
        "vpiEventControl",
        "vpiEventStmt",
        "vpiFor",
        "vpiForce",
        "vpiForever",
        "vpiFork",
        "vpiFuncCall",
        "vpiFunction",
        "vpiGate",
        "vpiIf",
        "vpiIfElse",
        "vpiInitial",
        "vpiIntegerVar",
        "vpiInterModPath",
        "vpiIterator",
        "vpiIODecl",
        "vpiMemory",
        "vpiMemoryWord",
        "vpiModPath",
        "vpiModule",
        "vpiNamedBegin",
        "vpiNamedEvent",
        "vpiNamedFork",
        "vpiNet",
        "vpiNetBit",
        "vpiNullStmt",
        "vpiOperation",
        "vpiParamAssign",
        "vpiParameter",
        "vpiPartSelect",
        "vpiPathTerm",
        "vpiPort",
        "vpiPortBit",
        "vpiPrimTerm",
        "vpiRealVar",
        "vpiReg",
        "vpiRegBit",
        "vpiRelease",
        "vpiRepeat",
        "vpiRepeatControl",
        "vpiSchedEvent",
        "vpiSpecParam",
        "vpiSwitch",
        "vpiSysFuncCall",
        "vpiSysTaskCall",
        "vpiTableEntry",
        "vpiTask",
        "vpiTaskCall",
        "vpiTchk",
        "vpiTchkTerm",
        "vpiTimeVar",
        "vpiTimeQueue",
        "vpiUdp",
        "vpiUdpDefn",
        "vpiUserSystf",
        "vpiVarSelect",
        "vpiWait",
        "vpiWhile",
        "vpiCondition",
        "vpiDelay",
        "vpiElseStmt",
        "vpiForIncStmt",
        "vpiForInitStmt",
        "vpiHighConn",
        "vpiLhs",
        "vpiIndex",
        "vpiLeftRange",
        "vpiLowConn",
        "vpiParent",
        "vpiRhs",
        "vpiRightRange",
        "vpiScope",
        "vpiSysTfCall",
        "vpiTchkDataTerm",
        "vpiTchkNotifier",
        "vpiTchkRefTerm",
        "vpiArgument",
        "vpiBit",
        "vpiDriver",
        "vpiInternalScope",
        "vpiLoad",
        "vpiModDataPathIn",
        "vpiModPathIn",
        "vpiModPathOut",
        "vpiOperand",
        "vpiPortInst",
        "vpiProcess",
        "vpiVariables",
        "vpiUse",
        "vpiExpr",
        "vpiPrimitive",
        "vpiStmt",
        "vpiAttribute",
        "vpiBitSelect",
        "vpiCallback",
        "vpiDelayTerm",
        "vpiDelayDevice",
        "vpiFrame",
        "vpiGateArray",
        "vpiModuleArray",
        "vpiPrimitiveArray",
        "vpiNetArray",
        "vpiRange",
        "vpiRegArray",
        "vpiSwitchArray",
        "vpiUdpArray",
        "vpiActiveTimeFormat",
        "vpiInTerm",
        "vpiInstanceArray",
        "vpiLocalDriver",
        "vpiLocalLoad",
        "vpiOutTerm",
        "vpiPorts",
        "vpiSimNet",
        "vpiTaskFunc",
        "vpiContAssignBit",
        "vpiNamedEventArray",
        "vpiIndexedPartSelect",
        "vpiBaseExpr",
        "vpiWidthExpr",
        "vpiGenScopeArray",
        "vpiGenScope",
        "vpiGenVar",
        "vpiAutomatics"
    };
    static const char* const sv_names1[] = {
        "vpiPackage",
        "vpiInterface",
        "vpiProgram",
        "vpiInterfaceArray",
        "vpiProgramArray",
        "vpiTypespec",
        "vpiModport",
        "vpiInterfaceTfDecl",
        "vpiRefObj",
        "vpiTypeParameter",
        "vpiLongIntVar",
        "vpiShortIntVar",
        "vpiIntVar",
        "vpiShortRealVar",
        "vpiByteVar",
        "vpiClassVar",
        "vpiStringVar",
        "vpiEnumVar",
        "vpiStructVar",
        "vpiUnionVar",
        "vpiBitVar",
        "vpiClassObj",
        "vpiChandleVar",
        "vpiPackedArrayVar",
        "*undefined*",  // 624 is not defined for object types
        "vpiLongIntTypespec",
        "vpiShortRealTypespec",
        "vpiByteTypespec",
        "vpiShortIntTypespec",
        "vpiIntTypespec",
        "vpiClassTypespec",
        "vpiStringTypespec",
        "vpiChandleTypespec",
        "vpiEnumTypespec",
        "vpiEnumConst",
        "vpiIntegerTypespec",
        "vpiTimeTypespec",
        "vpiRealTypespec",
        "vpiStructTypespec",
        "vpiUnionTypespec",
        "vpiBitTypespec",
        "vpiLogicTypespec",
        "vpiArrayTypespec",
        "vpiVoidTypespec",
        "vpiTypespecMember",
        "vpiDistItem",
        "vpiAliasStmt",
        "vpiThread",
        "vpiMethodFuncCall",
        "vpiMethodTaskCall",
        "vpiClockingBlock",
        "vpiClockingIODecl",
        "vpiClassDefn",
        "vpiConstraint",
        "vpiConstraintOrdering",
        "vpiPropertyDecl",
        "vpiPropertySpec",
        "vpiPropertyExpr",
        "vpiMulticlockSequenceExpr",
        "vpiClockedSeq",
        "vpiPropertyInst",
        "vpiSequenceDecl",
        "vpiCaseProperty",
        "*undefined*", // 663 is not defined for object types
        "vpiSequenceInst",
        "vpiImmediateAssert",
        "vpiReturn",
        "vpiAnyPattern",
        "vpiTaggedPattern",
        "vpiStructPattern",
        "vpiDoWhile",
        "vpiOrderedWait",
        "vpiWaitFork",
        "vpiDisableFork",
        "vpiExpectStmt",
        "vpiForeachStmt",
        "vpiFinal",
        "vpiExtends",
        "vpiDistribution",
        "vpiSeqFormalDecl",
        "vpiEnumNet",
        "vpiIntegerNet",
        "vpiTimeNet",
        "vpiStructNet",
        "vpiBreak",
        "vpiContinue",
        "vpiAssert",
        "vpiAssume",
        "vpiCover",
        "vpiDisableCondition",
        "vpiClockingEvent",
        "vpiReturnStmt",
        "vpiPackedArrayTypespec",
        "vpiPackedArrayNet",
        "vpiImmediateAssume",
        "vpiImmediateCover",
        "vpiSequenceTypespec",
        "vpiPropertyTypespec",
        "vpiEventTypespec",
        "vpiPropFormalDecl",
    };
    // clang-format on
    if (VL_UNCOVERABLE(vpiVal < 0))
        return names[0];
    else if (vpiVal <= vpiAutomatics)
        return names[vpiVal];
    else if (vpiVal >= vpiPackage && vpiVal <= vpiPropFormalDecl)
        return sv_names1[(vpiVal - vpiPackage)];
    else
        return names[0];
}
const char* VerilatedVpiError::strFromVpiMethod(PLI_INT32 vpiVal) VL_PURE {
    // clang-format off
    static const char* const names[] = {
        "vpiCondition",
        "vpiDelay",
        "vpiElseStmt",
        "vpiForIncStmt",
        "vpiForInitStmt",
        "vpiHighConn",
        "vpiLhs",
        "vpiIndex",
        "vpiLeftRange",
        "vpiLowConn",
        "vpiParent",
        "vpiRhs",
        "vpiRightRange",
        "vpiScope",
        "vpiSysTfCall",
        "vpiTchkDataTerm",
        "vpiTchkNotifier",
        "vpiTchkRefTerm",
        "vpiArgument",
        "vpiBit",
        "vpiDriver",
        "vpiInternalScope",
        "vpiLoad",
        "vpiModDataPathIn",
        "vpiModPathIn",
        "vpiModPathOut",
        "vpiOperand",
        "vpiPortInst",
        "vpiProcess",
        "vpiVariables",
        "vpiUse",
        "vpiExpr",
        "vpiPrimitive",
        "vpiStmt"
    };
    // clang-format on
    if (vpiVal > vpiStmt || vpiVal < vpiCondition) return "*undefined*";
    return names[vpiVal - vpiCondition];
}

const char* VerilatedVpiError::strFromVpiCallbackReason(PLI_INT32 vpiVal) VL_PURE {
    // clang-format off
    static const char* const names[] = {
        "*undefined*",
        "cbValueChange",
        "cbStmt",
        "cbForce",
        "cbRelease",
        "cbAtStartOfSimTime",
        "cbReadWriteSynch",
        "cbReadOnlySynch",
        "cbNextSimTime",
        "cbAfterDelay",
        "cbEndOfCompile",
        "cbStartOfSimulation",
        "cbEndOfSimulation",
        "cbError",
        "cbTchkViolation",
        "cbStartOfSave",
        "cbEndOfSave",
        "cbStartOfRestart",
        "cbEndOfRestart",
        "cbStartOfReset",
        "cbEndOfReset",
        "cbEnterInteractive",
        "cbExitInteractive",
        "cbInteractiveScopeChange",
        "cbUnresolvedSystf",
        "cbAssign",
        "cbDeassign",
        "cbDisable",
        "cbPLIError",
        "cbSignal",
        "cbNBASynch",
        "cbAtEndOfSimTime"
    };
    // clang-format on
    if (VL_UNCOVERABLE(vpiVal < 0)) return names[0];
    return names[(vpiVal <= cbAtEndOfSimTime) ? vpiVal : 0];
}

const char* VerilatedVpiError::strFromVpiProp(PLI_INT32 vpiVal) VL_PURE {
    // clang-format off
    static const char* const names[] = {
        "*undefined or other*",
        "vpiType",
        "vpiName",
        "vpiFullName",
        "vpiSize",
        "vpiFile",
        "vpiLineNo",
        "vpiTopModule",
        "vpiCellInstance",
        "vpiDefName",
        "vpiProtected",
        "vpiTimeUnit",
        "vpiTimePrecision",
        "vpiDefNetType",
        "vpiUnconnDrive",
        "vpiDefFile",
        "vpiDefLineNo",
        "vpiScalar",
        "vpiVector",
        "vpiExplicitName",
        "vpiDirection",
        "vpiConnByName",
        "vpiNetType",
        "vpiExplicitScalared",
        "vpiExplicitVectored",
        "vpiExpanded",
        "vpiImplicitDecl",
        "vpiChargeStrength",
        "vpiArray",
        "vpiPortIndex",
        "vpiTermIndex",
        "vpiStrength0",
        "vpiStrength1",
        "vpiPrimType",
        "vpiPolarity",
        "vpiDataPolarity",
        "vpiEdge",
        "vpiPathType",
        "vpiTchkType",
        "vpiOpType",
        "vpiConstType",
        "vpiBlocking",
        "vpiCaseType",
        "vpiFuncType",
        "vpiNetDeclAssign",
        "vpiUserDefn",
        "vpiScheduled",
        "*undefined*",
        "*undefined*",
        "vpiActive",
        "vpiAutomatic",
        "vpiCell",
        "vpiConfig",
        "vpiConstantSelect",
        "vpiDecompile",
        "vpiDefAttribute",
        "vpiDelayType",
        "vpiIteratorType",
        "vpiLibrary",
        "*undefined*",
        "vpiOffset",
        "vpiResolvedNetType",
        "vpiSaveRestartID",
        "vpiSaveRestartLocation",
        "vpiValid",
        "vpiSigned",
        "vpiStop",
        "vpiFinish",
        "vpiReset",
        "vpiSetInteractiveScope",
        "vpiLocalParam",
        "vpiModPathHasIfNone",
        "vpiIndexedPartSelectType",
        "vpiIsMemory",
        "vpiIsProtected"
    };
    // clang-format on
    if (vpiVal == vpiUndefined) return "vpiUndefined";
    return names[(vpiVal <= vpiIsProtected) ? vpiVal : 0];
}
const char* VerilatedVpiError::strFromVpiConstType(PLI_INT32 constType) VL_PURE {
    // clang-format off
    static const char* const names[] = {
        "*undefined*",
        "vpiDecConst",
        "vpiRealConst",
        "vpiBinaryConst",
        "vpiOctConst",
        "vpiHexConst",
        "vpiStringConst",
        "vpiIntConst",
        "vpiTimeConst",
    };
    // clang-format on
    if (VL_UNCOVERABLE(constType < 0)) return names[0];
    return names[(constType <= vpiTimeConst) ? constType : 0];
}

#define SELF_CHECK_RESULT_CSTR(got, exp) \
    if (0 != std::strcmp((got), (exp))) { \
        const std::string msg = "%Error: GOT = '"s + (got) + "'" + "  EXP = '" + (exp) + "'"; \
        VL_FATAL_MT(__FILE__, __LINE__, "", msg.c_str()); \
    }

#define SELF_CHECK_ENUM_STR(fn, enumn) \
    do { \
        const char* const strVal = VerilatedVpiError::fn(enumn); \
        SELF_CHECK_RESULT_CSTR(strVal, #enumn); \
    } while (0)

void VerilatedVpi::selfTest() VL_MT_UNSAFE_ONE { VerilatedVpiError::selfTest(); }
void VerilatedVpiError::selfTest() VL_MT_UNSAFE_ONE {
    VerilatedVpiImp::assertOneCheck();

    SELF_CHECK_ENUM_STR(strFromVpiVal, vpiBinStrVal);
    SELF_CHECK_ENUM_STR(strFromVpiVal, vpiRawFourStateVal);

    SELF_CHECK_ENUM_STR(strFromVpiObjType, vpiAlways);
    SELF_CHECK_ENUM_STR(strFromVpiObjType, vpiAssignStmt);
    SELF_CHECK_ENUM_STR(strFromVpiObjType, vpiAssignment);
    SELF_CHECK_ENUM_STR(strFromVpiObjType, vpiBegin);
    SELF_CHECK_ENUM_STR(strFromVpiObjType, vpiCase);
    SELF_CHECK_ENUM_STR(strFromVpiObjType, vpiCaseItem);
    SELF_CHECK_ENUM_STR(strFromVpiObjType, vpiConstant);
    SELF_CHECK_ENUM_STR(strFromVpiObjType, vpiContAssign);
    SELF_CHECK_ENUM_STR(strFromVpiObjType, vpiDeassign);
    SELF_CHECK_ENUM_STR(strFromVpiObjType, vpiDefParam);
    SELF_CHECK_ENUM_STR(strFromVpiObjType, vpiDelayControl);
    SELF_CHECK_ENUM_STR(strFromVpiObjType, vpiDisable);
    SELF_CHECK_ENUM_STR(strFromVpiObjType, vpiEventControl);
    SELF_CHECK_ENUM_STR(strFromVpiObjType, vpiEventStmt);
    SELF_CHECK_ENUM_STR(strFromVpiObjType, vpiFor);
    SELF_CHECK_ENUM_STR(strFromVpiObjType, vpiForce);
    SELF_CHECK_ENUM_STR(strFromVpiObjType, vpiForever);
    SELF_CHECK_ENUM_STR(strFromVpiObjType, vpiFork);
    SELF_CHECK_ENUM_STR(strFromVpiObjType, vpiFuncCall);
    SELF_CHECK_ENUM_STR(strFromVpiObjType, vpiFunction);
    SELF_CHECK_ENUM_STR(strFromVpiObjType, vpiGate);
    SELF_CHECK_ENUM_STR(strFromVpiObjType, vpiIf);
    SELF_CHECK_ENUM_STR(strFromVpiObjType, vpiIfElse);
    SELF_CHECK_ENUM_STR(strFromVpiObjType, vpiInitial);
    SELF_CHECK_ENUM_STR(strFromVpiObjType, vpiIntegerVar);
    SELF_CHECK_ENUM_STR(strFromVpiObjType, vpiInterModPath);
    SELF_CHECK_ENUM_STR(strFromVpiObjType, vpiIterator);
    SELF_CHECK_ENUM_STR(strFromVpiObjType, vpiIODecl);
    SELF_CHECK_ENUM_STR(strFromVpiObjType, vpiMemory);
    SELF_CHECK_ENUM_STR(strFromVpiObjType, vpiMemoryWord);
    SELF_CHECK_ENUM_STR(strFromVpiObjType, vpiModPath);
    SELF_CHECK_ENUM_STR(strFromVpiObjType, vpiModule);
    SELF_CHECK_ENUM_STR(strFromVpiObjType, vpiNamedBegin);
    SELF_CHECK_ENUM_STR(strFromVpiObjType, vpiNamedEvent);
    SELF_CHECK_ENUM_STR(strFromVpiObjType, vpiNamedFork);
    SELF_CHECK_ENUM_STR(strFromVpiObjType, vpiNet);
    SELF_CHECK_ENUM_STR(strFromVpiObjType, vpiNetBit);
    SELF_CHECK_ENUM_STR(strFromVpiObjType, vpiNullStmt);
    SELF_CHECK_ENUM_STR(strFromVpiObjType, vpiOperation);
    SELF_CHECK_ENUM_STR(strFromVpiObjType, vpiParamAssign);
    SELF_CHECK_ENUM_STR(strFromVpiObjType, vpiParameter);
    SELF_CHECK_ENUM_STR(strFromVpiObjType, vpiPartSelect);
    SELF_CHECK_ENUM_STR(strFromVpiObjType, vpiPathTerm);
    SELF_CHECK_ENUM_STR(strFromVpiObjType, vpiPort);
    SELF_CHECK_ENUM_STR(strFromVpiObjType, vpiPortBit);
    SELF_CHECK_ENUM_STR(strFromVpiObjType, vpiPrimTerm);
    SELF_CHECK_ENUM_STR(strFromVpiObjType, vpiRealVar);
    SELF_CHECK_ENUM_STR(strFromVpiObjType, vpiReg);
    SELF_CHECK_ENUM_STR(strFromVpiObjType, vpiRegBit);
    SELF_CHECK_ENUM_STR(strFromVpiObjType, vpiRelease);
    SELF_CHECK_ENUM_STR(strFromVpiObjType, vpiRepeat);
    SELF_CHECK_ENUM_STR(strFromVpiObjType, vpiRepeatControl);
    SELF_CHECK_ENUM_STR(strFromVpiObjType, vpiSchedEvent);
    SELF_CHECK_ENUM_STR(strFromVpiObjType, vpiSpecParam);
    SELF_CHECK_ENUM_STR(strFromVpiObjType, vpiSwitch);
    SELF_CHECK_ENUM_STR(strFromVpiObjType, vpiSysFuncCall);
    SELF_CHECK_ENUM_STR(strFromVpiObjType, vpiSysTaskCall);
    SELF_CHECK_ENUM_STR(strFromVpiObjType, vpiTableEntry);
    SELF_CHECK_ENUM_STR(strFromVpiObjType, vpiTask);
    SELF_CHECK_ENUM_STR(strFromVpiObjType, vpiTaskCall);
    SELF_CHECK_ENUM_STR(strFromVpiObjType, vpiTchk);
    SELF_CHECK_ENUM_STR(strFromVpiObjType, vpiTchkTerm);
    SELF_CHECK_ENUM_STR(strFromVpiObjType, vpiTimeVar);
    SELF_CHECK_ENUM_STR(strFromVpiObjType, vpiTimeQueue);
    SELF_CHECK_ENUM_STR(strFromVpiObjType, vpiUdp);
    SELF_CHECK_ENUM_STR(strFromVpiObjType, vpiUdpDefn);
    SELF_CHECK_ENUM_STR(strFromVpiObjType, vpiUserSystf);
    SELF_CHECK_ENUM_STR(strFromVpiObjType, vpiVarSelect);
    SELF_CHECK_ENUM_STR(strFromVpiObjType, vpiWait);
    SELF_CHECK_ENUM_STR(strFromVpiObjType, vpiWhile);
    SELF_CHECK_ENUM_STR(strFromVpiObjType, vpiCondition);
    SELF_CHECK_ENUM_STR(strFromVpiObjType, vpiDelay);
    SELF_CHECK_ENUM_STR(strFromVpiObjType, vpiElseStmt);
    SELF_CHECK_ENUM_STR(strFromVpiObjType, vpiForIncStmt);
    SELF_CHECK_ENUM_STR(strFromVpiObjType, vpiForInitStmt);
    SELF_CHECK_ENUM_STR(strFromVpiObjType, vpiHighConn);
    SELF_CHECK_ENUM_STR(strFromVpiObjType, vpiLhs);
    SELF_CHECK_ENUM_STR(strFromVpiObjType, vpiIndex);
    SELF_CHECK_ENUM_STR(strFromVpiObjType, vpiLeftRange);
    SELF_CHECK_ENUM_STR(strFromVpiObjType, vpiLowConn);
    SELF_CHECK_ENUM_STR(strFromVpiObjType, vpiParent);
    SELF_CHECK_ENUM_STR(strFromVpiObjType, vpiRhs);
    SELF_CHECK_ENUM_STR(strFromVpiObjType, vpiRightRange);
    SELF_CHECK_ENUM_STR(strFromVpiObjType, vpiScope);
    SELF_CHECK_ENUM_STR(strFromVpiObjType, vpiSysTfCall);
    SELF_CHECK_ENUM_STR(strFromVpiObjType, vpiTchkDataTerm);
    SELF_CHECK_ENUM_STR(strFromVpiObjType, vpiTchkNotifier);
    SELF_CHECK_ENUM_STR(strFromVpiObjType, vpiTchkRefTerm);
    SELF_CHECK_ENUM_STR(strFromVpiObjType, vpiArgument);
    SELF_CHECK_ENUM_STR(strFromVpiObjType, vpiBit);
    SELF_CHECK_ENUM_STR(strFromVpiObjType, vpiDriver);
    SELF_CHECK_ENUM_STR(strFromVpiObjType, vpiInternalScope);
    SELF_CHECK_ENUM_STR(strFromVpiObjType, vpiLoad);
    SELF_CHECK_ENUM_STR(strFromVpiObjType, vpiModDataPathIn);
    SELF_CHECK_ENUM_STR(strFromVpiObjType, vpiModPathIn);
    SELF_CHECK_ENUM_STR(strFromVpiObjType, vpiModPathOut);
    SELF_CHECK_ENUM_STR(strFromVpiObjType, vpiOperand);
    SELF_CHECK_ENUM_STR(strFromVpiObjType, vpiPortInst);
    SELF_CHECK_ENUM_STR(strFromVpiObjType, vpiProcess);
    SELF_CHECK_ENUM_STR(strFromVpiObjType, vpiVariables);
    SELF_CHECK_ENUM_STR(strFromVpiObjType, vpiUse);
    SELF_CHECK_ENUM_STR(strFromVpiObjType, vpiExpr);
    SELF_CHECK_ENUM_STR(strFromVpiObjType, vpiPrimitive);
    SELF_CHECK_ENUM_STR(strFromVpiObjType, vpiStmt);
    SELF_CHECK_ENUM_STR(strFromVpiObjType, vpiAttribute);
    SELF_CHECK_ENUM_STR(strFromVpiObjType, vpiBitSelect);
    SELF_CHECK_ENUM_STR(strFromVpiObjType, vpiCallback);
    SELF_CHECK_ENUM_STR(strFromVpiObjType, vpiDelayTerm);
    SELF_CHECK_ENUM_STR(strFromVpiObjType, vpiDelayDevice);
    SELF_CHECK_ENUM_STR(strFromVpiObjType, vpiFrame);
    SELF_CHECK_ENUM_STR(strFromVpiObjType, vpiGateArray);
    SELF_CHECK_ENUM_STR(strFromVpiObjType, vpiModuleArray);
    SELF_CHECK_ENUM_STR(strFromVpiObjType, vpiPrimitiveArray);
    SELF_CHECK_ENUM_STR(strFromVpiObjType, vpiNetArray);
    SELF_CHECK_ENUM_STR(strFromVpiObjType, vpiRange);
    SELF_CHECK_ENUM_STR(strFromVpiObjType, vpiRegArray);
    SELF_CHECK_ENUM_STR(strFromVpiObjType, vpiSwitchArray);
    SELF_CHECK_ENUM_STR(strFromVpiObjType, vpiUdpArray);
    SELF_CHECK_ENUM_STR(strFromVpiObjType, vpiActiveTimeFormat);
    SELF_CHECK_ENUM_STR(strFromVpiObjType, vpiInTerm);
    SELF_CHECK_ENUM_STR(strFromVpiObjType, vpiInstanceArray);
    SELF_CHECK_ENUM_STR(strFromVpiObjType, vpiLocalDriver);
    SELF_CHECK_ENUM_STR(strFromVpiObjType, vpiLocalLoad);
    SELF_CHECK_ENUM_STR(strFromVpiObjType, vpiOutTerm);
    SELF_CHECK_ENUM_STR(strFromVpiObjType, vpiPorts);
    SELF_CHECK_ENUM_STR(strFromVpiObjType, vpiSimNet);
    SELF_CHECK_ENUM_STR(strFromVpiObjType, vpiTaskFunc);
    SELF_CHECK_ENUM_STR(strFromVpiObjType, vpiContAssignBit);
    SELF_CHECK_ENUM_STR(strFromVpiObjType, vpiNamedEventArray);
    SELF_CHECK_ENUM_STR(strFromVpiObjType, vpiIndexedPartSelect);
    SELF_CHECK_ENUM_STR(strFromVpiObjType, vpiBaseExpr);
    SELF_CHECK_ENUM_STR(strFromVpiObjType, vpiWidthExpr);
    SELF_CHECK_ENUM_STR(strFromVpiObjType, vpiGenScopeArray);
    SELF_CHECK_ENUM_STR(strFromVpiObjType, vpiGenScope);
    SELF_CHECK_ENUM_STR(strFromVpiObjType, vpiGenVar);
    SELF_CHECK_ENUM_STR(strFromVpiObjType, vpiAutomatics);
    SELF_CHECK_ENUM_STR(strFromVpiObjType, vpiPackage);
    SELF_CHECK_ENUM_STR(strFromVpiObjType, vpiInterface);
    SELF_CHECK_ENUM_STR(strFromVpiObjType, vpiProgram);
    SELF_CHECK_ENUM_STR(strFromVpiObjType, vpiInterfaceArray);
    SELF_CHECK_ENUM_STR(strFromVpiObjType, vpiProgramArray);
    SELF_CHECK_ENUM_STR(strFromVpiObjType, vpiTypespec);
    SELF_CHECK_ENUM_STR(strFromVpiObjType, vpiModport);
    SELF_CHECK_ENUM_STR(strFromVpiObjType, vpiInterfaceTfDecl);
    SELF_CHECK_ENUM_STR(strFromVpiObjType, vpiRefObj);
    SELF_CHECK_ENUM_STR(strFromVpiObjType, vpiTypeParameter);
    SELF_CHECK_ENUM_STR(strFromVpiObjType, vpiLongIntVar);
    SELF_CHECK_ENUM_STR(strFromVpiObjType, vpiShortIntVar);
    SELF_CHECK_ENUM_STR(strFromVpiObjType, vpiIntVar);
    SELF_CHECK_ENUM_STR(strFromVpiObjType, vpiShortRealVar);
    SELF_CHECK_ENUM_STR(strFromVpiObjType, vpiByteVar);
    SELF_CHECK_ENUM_STR(strFromVpiObjType, vpiClassVar);
    SELF_CHECK_ENUM_STR(strFromVpiObjType, vpiStringVar);
    SELF_CHECK_ENUM_STR(strFromVpiObjType, vpiEnumVar);
    SELF_CHECK_ENUM_STR(strFromVpiObjType, vpiStructVar);
    SELF_CHECK_ENUM_STR(strFromVpiObjType, vpiUnionVar);
    SELF_CHECK_ENUM_STR(strFromVpiObjType, vpiBitVar);
    SELF_CHECK_ENUM_STR(strFromVpiObjType, vpiClassObj);
    SELF_CHECK_ENUM_STR(strFromVpiObjType, vpiChandleVar);
    SELF_CHECK_ENUM_STR(strFromVpiObjType, vpiPackedArrayVar);
    SELF_CHECK_ENUM_STR(strFromVpiObjType, vpiLongIntTypespec);
    SELF_CHECK_ENUM_STR(strFromVpiObjType, vpiShortRealTypespec);
    SELF_CHECK_ENUM_STR(strFromVpiObjType, vpiByteTypespec);
    SELF_CHECK_ENUM_STR(strFromVpiObjType, vpiShortIntTypespec);
    SELF_CHECK_ENUM_STR(strFromVpiObjType, vpiIntTypespec);
    SELF_CHECK_ENUM_STR(strFromVpiObjType, vpiClassTypespec);
    SELF_CHECK_ENUM_STR(strFromVpiObjType, vpiStringTypespec);
    SELF_CHECK_ENUM_STR(strFromVpiObjType, vpiChandleTypespec);
    SELF_CHECK_ENUM_STR(strFromVpiObjType, vpiEnumTypespec);
    SELF_CHECK_ENUM_STR(strFromVpiObjType, vpiEnumConst);
    SELF_CHECK_ENUM_STR(strFromVpiObjType, vpiIntegerTypespec);
    SELF_CHECK_ENUM_STR(strFromVpiObjType, vpiTimeTypespec);
    SELF_CHECK_ENUM_STR(strFromVpiObjType, vpiRealTypespec);
    SELF_CHECK_ENUM_STR(strFromVpiObjType, vpiStructTypespec);
    SELF_CHECK_ENUM_STR(strFromVpiObjType, vpiUnionTypespec);
    SELF_CHECK_ENUM_STR(strFromVpiObjType, vpiBitTypespec);
    SELF_CHECK_ENUM_STR(strFromVpiObjType, vpiLogicTypespec);
    SELF_CHECK_ENUM_STR(strFromVpiObjType, vpiArrayTypespec);
    SELF_CHECK_ENUM_STR(strFromVpiObjType, vpiVoidTypespec);
    SELF_CHECK_ENUM_STR(strFromVpiObjType, vpiTypespecMember);
    SELF_CHECK_ENUM_STR(strFromVpiObjType, vpiDistItem);
    SELF_CHECK_ENUM_STR(strFromVpiObjType, vpiAliasStmt);
    SELF_CHECK_ENUM_STR(strFromVpiObjType, vpiThread);
    SELF_CHECK_ENUM_STR(strFromVpiObjType, vpiMethodFuncCall);
    SELF_CHECK_ENUM_STR(strFromVpiObjType, vpiMethodTaskCall);
    SELF_CHECK_ENUM_STR(strFromVpiObjType, vpiClockingBlock);
    SELF_CHECK_ENUM_STR(strFromVpiObjType, vpiClockingIODecl);
    SELF_CHECK_ENUM_STR(strFromVpiObjType, vpiClassDefn);
    SELF_CHECK_ENUM_STR(strFromVpiObjType, vpiConstraint);
    SELF_CHECK_ENUM_STR(strFromVpiObjType, vpiConstraintOrdering);
    SELF_CHECK_ENUM_STR(strFromVpiObjType, vpiPropertyDecl);
    SELF_CHECK_ENUM_STR(strFromVpiObjType, vpiPropertySpec);
    SELF_CHECK_ENUM_STR(strFromVpiObjType, vpiPropertyExpr);
    SELF_CHECK_ENUM_STR(strFromVpiObjType, vpiMulticlockSequenceExpr);
    SELF_CHECK_ENUM_STR(strFromVpiObjType, vpiClockedSeq);
    SELF_CHECK_ENUM_STR(strFromVpiObjType, vpiPropertyInst);
    SELF_CHECK_ENUM_STR(strFromVpiObjType, vpiSequenceDecl);
    SELF_CHECK_ENUM_STR(strFromVpiObjType, vpiCaseProperty);
    SELF_CHECK_ENUM_STR(strFromVpiObjType, vpiSequenceInst);
    SELF_CHECK_ENUM_STR(strFromVpiObjType, vpiImmediateAssert);
    SELF_CHECK_ENUM_STR(strFromVpiObjType, vpiReturn);
    SELF_CHECK_ENUM_STR(strFromVpiObjType, vpiAnyPattern);
    SELF_CHECK_ENUM_STR(strFromVpiObjType, vpiTaggedPattern);
    SELF_CHECK_ENUM_STR(strFromVpiObjType, vpiStructPattern);
    SELF_CHECK_ENUM_STR(strFromVpiObjType, vpiDoWhile);
    SELF_CHECK_ENUM_STR(strFromVpiObjType, vpiOrderedWait);
    SELF_CHECK_ENUM_STR(strFromVpiObjType, vpiWaitFork);
    SELF_CHECK_ENUM_STR(strFromVpiObjType, vpiDisableFork);
    SELF_CHECK_ENUM_STR(strFromVpiObjType, vpiExpectStmt);
    SELF_CHECK_ENUM_STR(strFromVpiObjType, vpiForeachStmt);
    SELF_CHECK_ENUM_STR(strFromVpiObjType, vpiFinal);
    SELF_CHECK_ENUM_STR(strFromVpiObjType, vpiExtends);
    SELF_CHECK_ENUM_STR(strFromVpiObjType, vpiDistribution);
    SELF_CHECK_ENUM_STR(strFromVpiObjType, vpiSeqFormalDecl);
    SELF_CHECK_ENUM_STR(strFromVpiObjType, vpiEnumNet);
    SELF_CHECK_ENUM_STR(strFromVpiObjType, vpiIntegerNet);
    SELF_CHECK_ENUM_STR(strFromVpiObjType, vpiTimeNet);
    SELF_CHECK_ENUM_STR(strFromVpiObjType, vpiStructNet);
    SELF_CHECK_ENUM_STR(strFromVpiObjType, vpiBreak);
    SELF_CHECK_ENUM_STR(strFromVpiObjType, vpiContinue);
    SELF_CHECK_ENUM_STR(strFromVpiObjType, vpiAssert);
    SELF_CHECK_ENUM_STR(strFromVpiObjType, vpiAssume);
    SELF_CHECK_ENUM_STR(strFromVpiObjType, vpiCover);
    SELF_CHECK_ENUM_STR(strFromVpiObjType, vpiDisableCondition);
    SELF_CHECK_ENUM_STR(strFromVpiObjType, vpiClockingEvent);
    SELF_CHECK_ENUM_STR(strFromVpiObjType, vpiReturnStmt);
    SELF_CHECK_ENUM_STR(strFromVpiObjType, vpiPackedArrayTypespec);
    SELF_CHECK_ENUM_STR(strFromVpiObjType, vpiPackedArrayNet);
    SELF_CHECK_ENUM_STR(strFromVpiObjType, vpiImmediateAssume);
    SELF_CHECK_ENUM_STR(strFromVpiObjType, vpiImmediateCover);
    SELF_CHECK_ENUM_STR(strFromVpiObjType, vpiSequenceTypespec);
    SELF_CHECK_ENUM_STR(strFromVpiObjType, vpiPropertyTypespec);
    SELF_CHECK_ENUM_STR(strFromVpiObjType, vpiEventTypespec);
    SELF_CHECK_ENUM_STR(strFromVpiObjType, vpiPropFormalDecl);

    SELF_CHECK_ENUM_STR(strFromVpiMethod, vpiCondition);
    SELF_CHECK_ENUM_STR(strFromVpiMethod, vpiStmt);

    SELF_CHECK_ENUM_STR(strFromVpiCallbackReason, cbValueChange);
    SELF_CHECK_ENUM_STR(strFromVpiCallbackReason, cbAtEndOfSimTime);

    SELF_CHECK_ENUM_STR(strFromVpiProp, vpiType);
    SELF_CHECK_ENUM_STR(strFromVpiProp, vpiProtected);
    SELF_CHECK_ENUM_STR(strFromVpiProp, vpiDirection);
    SELF_CHECK_ENUM_STR(strFromVpiProp, vpiTermIndex);
    SELF_CHECK_ENUM_STR(strFromVpiProp, vpiConstType);
    SELF_CHECK_ENUM_STR(strFromVpiProp, vpiAutomatic);
    SELF_CHECK_ENUM_STR(strFromVpiProp, vpiOffset);
    SELF_CHECK_ENUM_STR(strFromVpiProp, vpiStop);
    SELF_CHECK_ENUM_STR(strFromVpiProp, vpiIsProtected);

    SELF_CHECK_ENUM_STR(strFromVpiConstType, vpiDecConst);
    SELF_CHECK_ENUM_STR(strFromVpiConstType, vpiRealConst);
    SELF_CHECK_ENUM_STR(strFromVpiConstType, vpiBinaryConst);
    SELF_CHECK_ENUM_STR(strFromVpiConstType, vpiOctConst);
    SELF_CHECK_ENUM_STR(strFromVpiConstType, vpiHexConst);
    SELF_CHECK_ENUM_STR(strFromVpiConstType, vpiStringConst);
    SELF_CHECK_ENUM_STR(strFromVpiConstType, vpiIntConst);
    SELF_CHECK_ENUM_STR(strFromVpiConstType, vpiTimeConst);
}

#undef SELF_CHECK_ENUM_STR
#undef SELF_CHECK_RESULT_CSTR

//======================================================================
// callback related

vpiHandle vpi_register_cb(p_cb_data cb_data_p) {
    // Returns handle so user can remove the callback, user must vpi_release_handle it
    // Don't confuse with the callback-activated t_cb_data object handle
    // which is the object causing the callback rather than the callback itself
    VerilatedVpiImp::assertOneCheck();
    VL_VPI_ERROR_RESET_();
    // cppcheck-suppress nullPointer
    if (VL_UNLIKELY(!cb_data_p)) {
        VL_VPI_WARNING_(__FILE__, __LINE__, "%s : callback data pointer is null", __func__);
        return nullptr;
    }
    const PLI_INT32 reason = cb_data_p->reason;
    switch (reason) {
    case cbAfterDelay:  // FALLTHRU // One-shot; time relative
    case cbAtEndOfSimTime:  // FALLTHRU // One-shot; time absolute; supported via vlt_main.cpp
    case cbAtStartOfSimTime:  // FALLTHRU // One-shot; time absolute; supported via vlt_main.cpp
    case cbReadOnlySynch:  // FALLTHRU // One-shot; time relative; supported via vlt_main.cpp
    case cbReadWriteSynch: {  // One-shot; time relative; supported via vlt_main.cpp
        const bool abs = reason == cbAtStartOfSimTime || reason == cbAtEndOfSimTime;
        const QData time = VL_TIME_Q();
        QData abstime = 0;
        if (cb_data_p->time) {
            if (abs) {
                abstime = VL_SET_QII(cb_data_p->time->high, cb_data_p->time->low);
            } else {
                abstime = time + VL_SET_QII(cb_data_p->time->high, cb_data_p->time->low);
            }
        }
        const uint64_t id = VerilatedVpiImp::nextCallbackId();
        VerilatedVpioReasonCb* const vop = new VerilatedVpioReasonCb{id, abstime, reason};
        if (abstime <= time) {
            VerilatedVpiImp::cbCurrentAdd(id, cb_data_p);
        } else {
            VerilatedVpiImp::cbFutureAdd(id, cb_data_p, abstime);
        }
        return vop->castVpiHandle();
    }
    case cbNextSimTime: {  // One-shot; time always next; supported via vlt_main.cpp
        const QData time = VL_TIME_Q();
        const uint64_t id = VerilatedVpiImp::nextCallbackId();
        VerilatedVpioReasonCb* const vop = new VerilatedVpioReasonCb{id, 0, reason};
        VerilatedVpiImp::cbNextAdd(id, cb_data_p, time);
        return vop->castVpiHandle();
    }
    case cbEndOfSimulation:  // FALLTHRU // One-shot; time ignored; supported via vlt_main.cpp
    case cbEnterInteractive:  // FALLTHRU // NOP, but need to return handle, so make object
    case cbExitInteractive:  // FALLTHRU // NOP, but need to return handle, so make object
    case cbInteractiveScopeChange:  // FALLTHRU // NOP, but need to return handle, so make object
    case cbPLIError:  // FALLTHRU // NOP, but need to return handle, so make object
    case cbStartOfSimulation:  // FALLTHRU // One-shot; time ignored; supported via vlt_main.cpp
    case cbValueChange: {  // Multi-shot; supported via vlt_main.cpp
        const uint64_t id = VerilatedVpiImp::nextCallbackId();
        VerilatedVpioReasonCb* const vop = new VerilatedVpioReasonCb{id, 0, reason};
        VerilatedVpiImp::cbCurrentAdd(id, cb_data_p);
        return vop->castVpiHandle();
    }
    default:
        VL_VPI_WARNING_(__FILE__, __LINE__, "%s: Unsupported callback type %s", __func__,
                        VerilatedVpiError::strFromVpiCallbackReason(reason));
        return nullptr;
    }
}

PLI_INT32 vpi_remove_cb(vpiHandle cb_obj) {
    VL_DEBUG_IF_PLI(VL_DBG_MSGF("- vpi: vpi_remove_cb %p\n", cb_obj););
    VerilatedVpiImp::assertOneCheck();
    VL_VPI_ERROR_RESET_();
    VerilatedVpio* const vop = VerilatedVpio::castp(cb_obj);
    if (VL_UNLIKELY(!vop)) return 0;
    return vop->dovpi_remove_cb();
}

void vpi_get_cb_info(vpiHandle /*object*/, p_cb_data /*cb_data_p*/) { VL_VPI_UNIMP_(); }
vpiHandle vpi_register_systf(p_vpi_systf_data /*systf_data_p*/) {
    VL_VPI_UNIMP_();
    return nullptr;
}
void vpi_get_systf_info(vpiHandle /*object*/, p_vpi_systf_data /*systf_data_p*/) {
    VL_VPI_UNIMP_();
}

// for obtaining handles

vpiHandle vpi_handle_by_name(PLI_BYTE8* namep, vpiHandle scope) {
    VerilatedVpiImp::assertOneCheck();
    VL_VPI_ERROR_RESET_();
    if (VL_UNLIKELY(!namep)) return nullptr;
    VL_DEBUG_IF_PLI(VL_DBG_MSGF("- vpi: vpi_handle_by_name %s %p\n", namep, scope););
    const VerilatedVar* varp = nullptr;
    const VerilatedScope* scopep;
    const VerilatedVpioScope* const voScopep = VerilatedVpioScope::castp(scope);
    std::string scopeAndName = namep;
    if (voScopep) {
        const bool scopeIsPackage = VerilatedVpioPackage::castp(scope) != nullptr;
        scopeAndName = std::string{voScopep->fullname()} + (scopeIsPackage ? "" : ".") + namep;
        namep = const_cast<PLI_BYTE8*>(scopeAndName.c_str());
    }
    {
        // This doesn't yet follow the hierarchy in the proper way
        bool isPackage = false;
        scopep = Verilated::threadContextp()->scopeFind(namep);
        if (scopep) {  // Whole thing found as a scope
            if (scopep->type() == VerilatedScope::SCOPE_MODULE) {
                return (new VerilatedVpioModule{scopep})->castVpiHandle();
            } else if (scopep->type() == VerilatedScope::SCOPE_PACKAGE) {
                return (new VerilatedVpioPackage{scopep})->castVpiHandle();
            } else {
                return (new VerilatedVpioScope{scopep})->castVpiHandle();
            }
        }
        std::string basename = scopeAndName;
        std::string scopename;
        std::string::size_type prevpos = std::string::npos;
        std::string::size_type pos = std::string::npos;
        // Split hierarchical names at last '.' not inside escaped identifier
        size_t i = 0;
        while (i < scopeAndName.length()) {
            if (scopeAndName[i] == '\\') {
                while (i < scopeAndName.length() && scopeAndName[i] != ' ') ++i;
                ++i;  // Proc ' ', it should always be there. Then grab '.' on next cycle
            } else {
                while (i < scopeAndName.length()
                       && (scopeAndName[i] != '.'
                           && (i + 1 >= scopeAndName.length() || scopeAndName[i] != ':'
                               || scopeAndName[i + 1] != ':')))
                    ++i;
                if (i < scopeAndName.length()) {
                    prevpos = pos;
                    pos = i++;
                    if (scopeAndName[i - 1] == ':') isPackage = true;
                }
            }
        }
        // Do the split
        if (VL_LIKELY(pos != std::string::npos)) {
            basename.erase(0, pos + (isPackage ? 2 : 1));
            scopename = scopeAndName.substr(0, pos);
            if (scopename == "$unit") scopename = "\\$unit ";
        }
        if (prevpos == std::string::npos) {
            // scopename is a toplevel (no '.' separator), so search in our TOP ports first.
            scopep = Verilated::threadContextp()->scopeFind("TOP");
            if (scopep) varp = scopep->varFind(basename.c_str());
        }
        if (!varp) {
            scopep = Verilated::threadContextp()->scopeFind(scopename.c_str());
            if (!scopep) return nullptr;
            varp = scopep->varFind(basename.c_str());
        }
    }
    if (!varp) return nullptr;

    if (varp->isParam()) {
        return (new VerilatedVpioParam{varp, scopep})->castVpiHandle();
    } else {
        return (new VerilatedVpioVar{varp, scopep})->castVpiHandle();
    }
}

vpiHandle vpi_handle_by_index(vpiHandle object, PLI_INT32 indx) {
    // Used to get array entries
    VL_DEBUG_IF_PLI(VL_DBG_MSGF("- vpi: vpi_handle_by_index %p %d\n", object, indx););
    VerilatedVpiImp::assertOneCheck();
    VL_VPI_ERROR_RESET_();
    const VerilatedVpioVar* const varop = VerilatedVpioVar::castp(object);
    if (VL_LIKELY(varop)) {
        // Case: no dimensions left to index
        if (VL_UNLIKELY(varop->indexedDim() + 1 > varop->varp()->dims() - 1)) return nullptr;

        // Case: index out of range
        if (VL_UNLIKELY(indx < varop->rangep()->low() || indx > varop->rangep()->high()))
            return nullptr;

        return varop->withIndex(indx)->castVpiHandle();
    }
    VL_VPI_INTERNAL_(__FILE__, __LINE__, "%s : can't resolve handle", __func__);
    return nullptr;
}

// for traversing relationships

vpiHandle vpi_handle(PLI_INT32 type, vpiHandle object) {
    VL_DEBUG_IF_PLI(VL_DBG_MSGF("- vpi: vpi_handle %d %p\n", type, object););
    VerilatedVpiImp::assertOneCheck();
    VL_VPI_ERROR_RESET_();
    switch (type) {
    case vpiLeftRange: {
        if (const VerilatedVpioVarBase* const vop = VerilatedVpioVarBase::castp(object)) {
            if (VL_UNLIKELY(!vop->rangep())) return nullptr;
            return (new VerilatedVpioConst{vop->rangep()->left()})->castVpiHandle();
        } else if (const VerilatedVpioRange* const vop = VerilatedVpioRange::castp(object)) {
            if (VL_UNLIKELY(!vop->rangep())) return nullptr;
            return (new VerilatedVpioConst{vop->rangep()->left()})->castVpiHandle();
        }
        VL_VPI_WARNING_(__FILE__, __LINE__,
                        "%s: Unsupported vpiHandle (%p) for type %s, nothing will be returned",
                        __func__, object, VerilatedVpiError::strFromVpiMethod(type));
        return nullptr;
    }
    case vpiRightRange: {
        if (const VerilatedVpioVarBase* const vop = VerilatedVpioVarBase::castp(object)) {
            if (VL_UNLIKELY(!vop->rangep())) return nullptr;
            return (new VerilatedVpioConst{vop->rangep()->right()})->castVpiHandle();
        } else if (const VerilatedVpioRange* const vop = VerilatedVpioRange::castp(object)) {
            if (VL_UNLIKELY(!vop->rangep())) return nullptr;
            return (new VerilatedVpioConst{vop->rangep()->right()})->castVpiHandle();
        }
        VL_VPI_WARNING_(__FILE__, __LINE__,
                        "%s: Unsupported vpiHandle (%p) for type %s, nothing will be returned",
                        __func__, object, VerilatedVpiError::strFromVpiMethod(type));
        return nullptr;
    }
    case vpiIndex: {
        const VerilatedVpioVar* const vop = VerilatedVpioVar::castp(object);
        if (VL_UNLIKELY(!vop)) return nullptr;
        const int32_t val = vop->index().back();
        return (new VerilatedVpioConst{val})->castVpiHandle();
    }
    case vpiScope: {
        const VerilatedVpioVarBase* const vop = VerilatedVpioVarBase::castp(object);
        if (VL_UNLIKELY(!vop)) return nullptr;
        return (new VerilatedVpioScope{vop->scopep()})->castVpiHandle();
    }
    case vpiParent: {
        const VerilatedVpioVar* const vop = VerilatedVpioVar::castp(object);
        if (VL_UNLIKELY(!vop)) return nullptr;
        return (new VerilatedVpioVar{vop->varp(), vop->scopep()})->castVpiHandle();
    }
    default:
        VL_VPI_WARNING_(__FILE__, __LINE__, "%s: Unsupported type %s, nothing will be returned",
                        __func__, VerilatedVpiError::strFromVpiMethod(type));
        return nullptr;
    }
}

vpiHandle vpi_handle_multi(PLI_INT32 /*type*/, vpiHandle /*refHandle1*/, vpiHandle /*refHandle2*/,
                           ...) {
    VL_VPI_UNIMP_();
    return nullptr;
}

vpiHandle vpi_iterate(PLI_INT32 type, vpiHandle object) {
    VL_DEBUG_IF_PLI(VL_DBG_MSGF("- vpi: vpi_iterate %d %p\n", type, object););
    VerilatedVpiImp::assertOneCheck();
    VL_VPI_ERROR_RESET_();
    switch (type) {
    case vpiRange: {
        const VerilatedVpioVar* const vop = VerilatedVpioVar::castp(object);
        if (VL_UNLIKELY(!vop)) return nullptr;

        std::vector<VerilatedRange> ranges;
        const int maxDim = vop->maxDim(vop->isIndexedDimUnpacked());
        for (int dim = vop->indexedDim() + 1; dim <= maxDim; ++dim)
            ranges.emplace_back(*vop->varp()->range(dim));

        // allow one more range layer (regbit)
        if (ranges.empty()) ranges.emplace_back(VerilatedRange(0, 0));
        return ((new VerilatedVpioRangeIter{ranges})->castVpiHandle());
    }
    case vpiReg: {
        const VerilatedVpioScope* const vscopep = VerilatedVpioScope::castp(object);
        if (vscopep) return ((new VerilatedVpioVarIter{vscopep, false})->castVpiHandle());
        const VerilatedVpioVar* const vop = VerilatedVpioVar::castp(object);
        if (vop) return ((new VerilatedVpioRegIter{vop})->castVpiHandle());
        return nullptr;
    }
    case vpiParameter: {
        const VerilatedVpioScope* const vop = VerilatedVpioScope::castp(object);
        if (VL_UNLIKELY(!vop)) return nullptr;
        return ((new VerilatedVpioVarIter{vop, true})->castVpiHandle());
    }
    case vpiModule: {
        const VerilatedVpioScope* const vop = VerilatedVpioScope::castp(object);
        const VerilatedHierarchyMap* const map = VerilatedImp::hierarchyMap();
        const VerilatedScope* const modp = vop ? vop->scopep() : nullptr;
        const auto it = vlstd::as_const(map)->find(const_cast<VerilatedScope*>(modp));
        if (it == map->end()) return nullptr;
        return ((new VerilatedVpioModuleIter{it->second})->castVpiHandle());
    }
    case vpiInternalScope: {
        const VerilatedVpioScope* const vop = VerilatedVpioScope::castp(object);
        const VerilatedHierarchyMap* const map = VerilatedImp::hierarchyMap();
        const VerilatedScope* const modp = vop ? vop->scopep() : nullptr;
        const auto it = vlstd::as_const(map)->find(const_cast<VerilatedScope*>(modp));
        if (it == map->end()) return nullptr;
        return ((new VerilatedVpioScopeIter{it->second})->castVpiHandle());
    }
    case vpiInstance: {
        if (object) return nullptr;
        const VerilatedHierarchyMap* const map = VerilatedImp::hierarchyMap();
        const auto it = vlstd::as_const(map)->find(nullptr);
        if (it == map->end()) return nullptr;
        return ((new VerilatedVpioInstanceIter{it->second})->castVpiHandle());
    }
    default:
        VL_VPI_WARNING_(__FILE__, __LINE__, "%s: Unsupported type %s, nothing will be returned",
                        __func__, VerilatedVpiError::strFromVpiObjType(type));
        return nullptr;
    }
}
vpiHandle vpi_scan(vpiHandle object) {
    VL_DEBUG_IF_PLI(VL_DBG_MSGF("- vpi: vpi_scan %p\n", object););
    VerilatedVpiImp::assertOneCheck();
    VL_VPI_ERROR_RESET_();
    VerilatedVpio* const vop = VerilatedVpio::castp(object);
    if (VL_UNLIKELY(!vop)) return nullptr;
    return vop->dovpi_scan();
}

// for processing properties

PLI_INT32 vpi_get(PLI_INT32 property, vpiHandle object) {
    // Leave this in the header file - in many cases the compiler can constant propagate "object"
    VL_DEBUG_IF_PLI(VL_DBG_MSGF("- vpi: vpi_get %d %p\n", property, object););
    VerilatedVpiImp::assertOneCheck();
    VL_VPI_ERROR_RESET_();
    switch (property) {
    case vpiTimePrecision: {
        return Verilated::threadContextp()->timeprecision();
    }
    case vpiTimeUnit: {
        const VerilatedVpioScope* const vop = VerilatedVpioScope::castp(object);
        if (!vop)
            return Verilated::threadContextp()->timeunit();  // Null asks for global, not unlikely
        return vop->scopep()->timeunit();
    }
    case vpiType: {
        const VerilatedVpio* const vop = VerilatedVpio::castp(object);
        if (VL_UNLIKELY(!vop)) return vpiUndefined;
        return vop->type();
    }
    case vpiConstType: {
        const VerilatedVpio* const vop = VerilatedVpio::castp(object);
        if (VL_UNLIKELY(!vop)) return vpiUndefined;
        return vop->constType();
    }
    case vpiDirection: {
        // By forethought, the directions already are vpi enumerated
        const VerilatedVpioVarBase* const vop = VerilatedVpioVarBase::castp(object);
        if (VL_UNLIKELY(!vop)) return vpiUndefined;
        return vop->varp()->vldir();
    }
    case vpiScalar:  // FALLTHRU
    case vpiVector: {
        const VerilatedVpioVarBase* const vop = VerilatedVpioVarBase::castp(object);
        if (VL_UNLIKELY(!vop)) return vpiUndefined;
        return (property == vpiVector) ^ (vop->varp()->packedRanges().empty() || !vop->rangep());
    }
    case vpiSize: {
        const VerilatedVpioVarBase* const vop = VerilatedVpioVarBase::castp(object);
        if (VL_UNLIKELY(!vop)) return vpiUndefined;
        return vop->size();
    }
    default:
        VL_VPI_ERROR_(__FILE__, __LINE__, "%s: Unsupported property %s, nothing will be returned",
                      __func__, VerilatedVpiError::strFromVpiProp(property));
        return vpiUndefined;
    }
}

PLI_INT64 vpi_get64(PLI_INT32 /*property*/, vpiHandle /*object*/) {
    VL_VPI_UNIMP_();
    return vpiUndefined;
}

PLI_BYTE8* vpi_get_str(PLI_INT32 property, vpiHandle object) {
    VL_DEBUG_IF_PLI(VL_DBG_MSGF("- vpi: vpi_get_str %d %p\n", property, object););
    VerilatedVpiImp::assertOneCheck();
    const VerilatedVpio* const vop = VerilatedVpio::castp(object);
    VL_VPI_ERROR_RESET_();
    if (VL_UNLIKELY(!vop)) return nullptr;
    switch (property) {
    case vpiName: {
        return const_cast<PLI_BYTE8*>(vop->name());
    }
    case vpiFullName: {
        return const_cast<PLI_BYTE8*>(vop->fullname());
    }
    case vpiDefName: {
        return const_cast<PLI_BYTE8*>(vop->defname());
    }
    case vpiType: {
        return const_cast<PLI_BYTE8*>(VerilatedVpiError::strFromVpiObjType(vop->type()));
    }
    case vpiConstType: {
        const PLI_INT32 constType = vpi_get(vpiConstType, object);
        VL_VPI_ERROR_RESET_();
        return const_cast<PLI_BYTE8*>(VerilatedVpiError::strFromVpiConstType(constType));
    }
    default:
        VL_VPI_WARNING_(__FILE__, __LINE__, "%s: Unsupported type %s, nothing will be returned",
                        __func__, VerilatedVpiError::strFromVpiProp(property));
        return nullptr;
    }
}

// delay processing

void vpi_get_delays(vpiHandle /*object*/, p_vpi_delay /*delay_p*/) { VL_VPI_UNIMP_(); }
void vpi_put_delays(vpiHandle /*object*/, p_vpi_delay /*delay_p*/) { VL_VPI_UNIMP_(); }

// value processing
bool vl_check_format(const VerilatedVar* varp, const p_vpi_value valuep, const char* fullname,
                     bool isGetValue) {
    bool status = true;
    if ((valuep->format == vpiVectorVal) || (valuep->format == vpiBinStrVal)
        || (valuep->format == vpiOctStrVal) || (valuep->format == vpiHexStrVal)) {
        switch (varp->vltype()) {
        case VLVT_UINT8:
        case VLVT_UINT16:
        case VLVT_UINT32:
        case VLVT_UINT64:
        case VLVT_WDATA: return status;
        default: status = false;
        }
    } else if (valuep->format == vpiDecStrVal) {
        switch (varp->vltype()) {
        case VLVT_UINT8:
        case VLVT_UINT16:
        case VLVT_UINT32:
        case VLVT_UINT64: return status;
        default: status = false;
        }
    } else if (valuep->format == vpiStringVal) {
        switch (varp->vltype()) {
        case VLVT_UINT8:
        case VLVT_UINT16:
        case VLVT_UINT32:
        case VLVT_UINT64:
        case VLVT_WDATA: return status;
        case VLVT_STRING:
            // string parameter values can't be changed
            if (isGetValue || !varp->isParam()) {
                return status;
            } else {
                status = false;
                break;
            }
        default: status = false;
        }
    } else if (valuep->format == vpiIntVal) {
        switch (varp->vltype()) {
        case VLVT_UINT8:
        case VLVT_UINT16:
        case VLVT_UINT32:
        case VLVT_UINT64:
        case VLVT_WDATA: return status;
        default: status = false;
        }
    } else if (valuep->format == vpiRealVal) {
        switch (varp->vltype()) {
        case VLVT_REAL: return status;
        default: status = false;
        }
    } else if (valuep->format == vpiSuppressVal) {
        return status;
    } else {
        status = false;
    }
    VL_VPI_ERROR_(__FILE__, __LINE__, "%s: Unsupported format (%s) for %s", __func__,
                  VerilatedVpiError::strFromVpiVal(valuep->format), fullname);
    return status;
}

static void vl_strprintf(std::string& buffer, char const* fmt, ...) {
    va_list args, args_copy;
    va_start(args, fmt);
    buffer.clear();
    // Make copy of args since we may need to call VL_VSNPRINTF more than once
    va_copy(args_copy, args);
    // Try VL_VSNPRINTF in existing buffer
    const int result
        = VL_VSNPRINTF(const_cast<char*>(buffer.data()), buffer.capacity(), fmt, args_copy);
    va_end(args_copy);
    const int required = result + 1;  // Returned size doesn't include NUL terminator
    // If there wasn't enough space, reallocate and try again
    if (buffer.capacity() < required) {
        buffer.reserve(required * 2);
        VL_VSNPRINTF(const_cast<char*>(buffer.data()), buffer.capacity(), fmt, args);
    }
    va_end(args);
}

// Information about how to access packed array data.
// If underlying type is multi-word (VLVT_WDATA), the packed element might straddle word
// boundaries, in which case m_maskHi != 0.
template <typename T>
struct VarAccessInfo final {
    T* m_datap;  // Typed pointer to packed array base address
    size_t m_bitOffset;  // Data start location (bit offset)
    size_t m_wordOffset;  // Data start location (word offset, VLVT_WDATA only)
    T m_maskLo;  // Access mask for m_datap[m_wordOffset]
    T m_maskHi;  // Access mask for m_datap[m_wordOffset + 1] (VLVT_WDATA only)
};

template <typename T>
VarAccessInfo<T> vl_vpi_var_access_info(const VerilatedVpioVarBase* vop, size_t bitCount,
                                        size_t addOffset) {
    // VarAccessInfo generation
    // vop - variable to access (already indexed)
    // bitCount - how many bits to write/read
    // addOffset - additional offset to apply (within the packed array element)

    const size_t wordBits = sizeof(T) * 8;
    uint32_t varBits = vop->bitSize();

    if (vop->varp()->vltype() == VLVT_REAL) varBits *= sizeof(double) * 8;

    // make sure we're not trying to write outside var bounds
    assert(varBits > addOffset);
    bitCount = std::min(bitCount, varBits - addOffset);

    VarAccessInfo<T> info;
    info.m_datap = reinterpret_cast<T*>(vop->varDatap());
    if (vop->varp()->vltype() == VLVT_WDATA) {
        assert(sizeof(T) == sizeof(EData));
        assert(bitCount <= wordBits);
        info.m_wordOffset = (vop->bitOffset() + addOffset) / wordBits;
        info.m_bitOffset = (vop->bitOffset() + addOffset) % wordBits;
        if (bitCount + info.m_bitOffset <= wordBits) {
            // within single word
            if (bitCount == wordBits)
                info.m_maskLo = ~static_cast<T>(0);
            else
                info.m_maskLo = (static_cast<T>(1) << bitCount) - 1;
            info.m_maskLo = info.m_maskLo << info.m_bitOffset;
            info.m_maskHi = 0;
        } else {
            // straddles word boundary
            info.m_maskLo = (static_cast<T>(1) << (wordBits - info.m_bitOffset)) - 1;
            info.m_maskLo = info.m_maskLo << info.m_bitOffset;
            info.m_maskHi = (static_cast<T>(1) << (bitCount + info.m_bitOffset - wordBits)) - 1;
        }
    } else {
        info.m_wordOffset = 0;
        info.m_bitOffset = vop->bitOffset() + addOffset;
        assert(bitCount + info.m_bitOffset <= wordBits);
        if (bitCount < wordBits) {
            info.m_maskLo = (static_cast<T>(1) << bitCount) - 1;
            info.m_maskLo = info.m_maskLo << info.m_bitOffset;
        } else {
            info.m_maskLo = ~static_cast<T>(0);
        }
        info.m_maskHi = 0;
    }
    return info;
}

template <typename T>
T vl_vpi_get_word_gen(const VerilatedVpioVarBase* vop, size_t bitCount, size_t addOffset) {
    const size_t wordBits = sizeof(T) * 8;
    const VarAccessInfo<T> info = vl_vpi_var_access_info<T>(vop, bitCount, addOffset);
    if (info.m_maskHi)
        return ((info.m_datap[info.m_wordOffset] & info.m_maskLo) >> info.m_bitOffset)
               | ((info.m_datap[info.m_wordOffset + 1] & info.m_maskHi)
                  << (wordBits - info.m_bitOffset));
    else
        return (info.m_datap[info.m_wordOffset] & info.m_maskLo) >> info.m_bitOffset;
}

template <typename T>
void vl_vpi_put_word_gen(const VerilatedVpioVar* vop, T word, size_t bitCount, size_t addOffset) {
    const size_t wordBits = sizeof(T) * 8;
    const VarAccessInfo<T> info = vl_vpi_var_access_info<T>(vop, bitCount, addOffset);

    if (info.m_maskHi) {
        info.m_datap[info.m_wordOffset + 1]
            = (info.m_datap[info.m_wordOffset + 1] & ~info.m_maskHi)
              | ((word >> (wordBits - info.m_bitOffset)) & info.m_maskHi);
    }
    // cppcheck-has-bug-suppress unreadVariable
    info.m_datap[info.m_wordOffset] = (info.m_datap[info.m_wordOffset] & ~info.m_maskLo)
                                      | ((word << info.m_bitOffset) & info.m_maskLo);
}

// bitCount: maximum number of bits to read, will stop earlier if it reaches the var bounds
// addOffset: additional read bitoffset
QData vl_vpi_get_word(const VerilatedVpioVarBase* vop, size_t bitCount, size_t addOffset) {
    switch (vop->varp()->vltype()) {
    case VLVT_UINT8: return vl_vpi_get_word_gen<CData>(vop, bitCount, addOffset);
    case VLVT_UINT16: return vl_vpi_get_word_gen<SData>(vop, bitCount, addOffset);
    case VLVT_UINT32: return vl_vpi_get_word_gen<IData>(vop, bitCount, addOffset);
    case VLVT_UINT64: return vl_vpi_get_word_gen<QData>(vop, bitCount, addOffset);
    case VLVT_WDATA: return vl_vpi_get_word_gen<EData>(vop, bitCount, addOffset);
    default:
        VL_VPI_ERROR_(__FILE__, __LINE__, "%s: Unsupported vltype (%d)", __func__,
                      vop->varp()->vltype());
        return 0;
    }
}

// word: data to be written
// bitCount: maximum number of bits to write, will stop earlier if it reaches the var bounds
// addOffset: additional write bitoffset
void vl_vpi_put_word(const VerilatedVpioVar* vop, QData word, size_t bitCount, size_t addOffset) {
    switch (vop->varp()->vltype()) {
    case VLVT_UINT8: vl_vpi_put_word_gen<CData>(vop, word, bitCount, addOffset); break;
    case VLVT_UINT16: vl_vpi_put_word_gen<SData>(vop, word, bitCount, addOffset); break;
    case VLVT_UINT32: vl_vpi_put_word_gen<IData>(vop, word, bitCount, addOffset); break;
    case VLVT_UINT64: vl_vpi_put_word_gen<QData>(vop, word, bitCount, addOffset); break;
    case VLVT_WDATA: vl_vpi_put_word_gen<EData>(vop, word, bitCount, addOffset); break;
    default:
        VL_VPI_ERROR_(__FILE__, __LINE__, "%s: Unsupported vltype (%d)", __func__,
                      vop->varp()->vltype());
    }
}

void vl_vpi_get_value(const VerilatedVpioVarBase* vop, p_vpi_value valuep) {
    const VerilatedVar* const varp = vop->varp();
    void* const varDatap = vop->varDatap();
    const char* fullname = vop->fullname();

    if (!vl_check_format(varp, valuep, fullname, true)) return;
    // string data type is dynamic and may vary in size during simulation
    static thread_local std::string t_outDynamicStr;

    const int varBits = vop->bitSize();

    // We used to presume vpiValue.format = vpiIntVal or if single bit vpiScalarVal
    // This may cause backward compatibility issues with older code.
    if (valuep->format == vpiVectorVal) {
        // Vector pointer must come from our memory pool
        // It only needs to persist until the next vpi_get_value
        static thread_local t_vpi_vecval t_out[VL_VALUE_STRING_MAX_WORDS * 2];
        valuep->value.vector = t_out;
        if (varp->vltype() == VLVT_WDATA) {
            const int words = VL_WORDS_I(varBits);
            if (VL_UNCOVERABLE(words >= VL_VALUE_STRING_MAX_WORDS)) {
                VL_VPI_ERROR_(
                    __FILE__, __LINE__,
                    "vpi_get_value with more than VL_VALUE_STRING_MAX_WORDS; increase and "
                    "recompile");
                return;
            }
            for (int i = 0; i < words; ++i) {
                t_out[i].aval = vl_vpi_get_word(vop, 32, i * 32);
                t_out[i].bval = 0;
            }
            return;
        } else if (varp->vltype() == VLVT_UINT64 && varBits > 32) {
            const QData data = vl_vpi_get_word(vop, 64, 0);
            t_out[1].aval = static_cast<IData>(data >> 32ULL);
            t_out[1].bval = 0;
            t_out[0].aval = static_cast<IData>(data);
            t_out[0].bval = 0;
            return;
        } else {
            t_out[0].aval = vl_vpi_get_word(vop, 32, 0);
            t_out[0].bval = 0;
            return;
        }
    } else if (valuep->format == vpiBinStrVal) {
        t_outDynamicStr.resize(varBits);
        const CData* datap = reinterpret_cast<CData*>(varDatap);
        for (size_t i = 0; i < varBits; ++i) {
            const size_t pos = i + vop->bitOffset();
            const char val = (datap[pos >> 3] >> (pos & 7)) & 1;
            t_outDynamicStr[varBits - i - 1] = val ? '1' : '0';
        }
        valuep->value.str = const_cast<PLI_BYTE8*>(t_outDynamicStr.c_str());
        return;
    } else if (valuep->format == vpiOctStrVal) {
        const int chars = (varBits + 2) / 3;
        t_outDynamicStr.resize(chars);
        for (size_t i = 0; i < chars; ++i) {
            const char val = vl_vpi_get_word(vop, 3, i * 3);
            t_outDynamicStr[chars - i - 1] = '0' + val;
        }
        valuep->value.str = const_cast<PLI_BYTE8*>(t_outDynamicStr.c_str());
        return;
    } else if (valuep->format == vpiDecStrVal) {
        if (varp->vltype() == VLVT_UINT8) {
            vl_strprintf(t_outDynamicStr, "%hhu",
                         static_cast<unsigned char>(vl_vpi_get_word(vop, 8, 0)));
        } else if (varp->vltype() == VLVT_UINT16) {
            vl_strprintf(t_outDynamicStr, "%hu",
                         static_cast<unsigned short>(vl_vpi_get_word(vop, 16, 0)));
        } else if (varp->vltype() == VLVT_UINT32) {
            vl_strprintf(t_outDynamicStr, "%u",
                         static_cast<unsigned int>(vl_vpi_get_word(vop, 32, 0)));
        } else if (varp->vltype() == VLVT_UINT64) {
            vl_strprintf(t_outDynamicStr, "%llu",  // lintok-format-ll
                         static_cast<unsigned long long>(vl_vpi_get_word(vop, 64, 0)));
        }
        valuep->value.str = const_cast<PLI_BYTE8*>(t_outDynamicStr.c_str());
        return;
    } else if (valuep->format == vpiHexStrVal) {
        const int chars = (varBits + 3) >> 2;
        t_outDynamicStr.resize(chars);
        for (size_t i = 0; i < chars; ++i) {
            const char val = vl_vpi_get_word(vop, 4, i * 4);
            t_outDynamicStr[chars - i - 1] = "0123456789abcdef"[static_cast<int>(val)];
        }
        valuep->value.str = const_cast<PLI_BYTE8*>(t_outDynamicStr.c_str());
        return;
    } else if (valuep->format == vpiStringVal) {
        if (varp->vltype() == VLVT_STRING) {
            if (varp->isParam()) {
                valuep->value.str = reinterpret_cast<char*>(varDatap);
                return;
            } else {
                t_outDynamicStr = *(vop->varStringDatap());
                valuep->value.str = const_cast<char*>(t_outDynamicStr.c_str());
                return;
            }
        } else {
            const int chars = VL_BYTES_I(varBits);
            t_outDynamicStr.resize(chars);
            for (size_t i = 0; i < chars; ++i) {
                const char val = vl_vpi_get_word(vop, 8, i * 8);
                // other simulators replace [leading?] zero chars with spaces, replicate here.
                t_outDynamicStr[chars - i - 1] = val ? val : ' ';
            }
            valuep->value.str = const_cast<PLI_BYTE8*>(t_outDynamicStr.c_str());
            return;
        }
    } else if (valuep->format == vpiIntVal) {
        valuep->value.integer = vl_vpi_get_word(vop, 32, 0);
        return;
    } else if (valuep->format == vpiRealVal) {
        valuep->value.real = *(vop->varRealDatap());
        return;
    } else if (valuep->format == vpiSuppressVal) {
        return;
    }
    VL_VPI_ERROR_(__FILE__, __LINE__, "%s: Unsupported format (%s) as requested for %s", __func__,
                  VerilatedVpiError::strFromVpiVal(valuep->format), fullname);
}

void vpi_get_value(vpiHandle object, p_vpi_value valuep) {
    VL_DEBUG_IF_PLI(VL_DBG_MSGF("- vpi: vpi_get_value %p\n", object););
    VerilatedVpiImp::assertOneCheck();
    VL_VPI_ERROR_RESET_();
    if (VL_UNLIKELY(!valuep)) return;

    if (const VerilatedVpioVar* const vop = VerilatedVpioVar::castp(object)) {
        vl_vpi_get_value(vop, valuep);
        return;
    } else if (const VerilatedVpioParam* const vop = VerilatedVpioParam::castp(object)) {
        vl_vpi_get_value(vop, valuep);
        return;
    } else if (const VerilatedVpioConst* const vop = VerilatedVpioConst::castp(object)) {
        if (valuep->format == vpiIntVal) {
            valuep->value.integer = vop->num();
            return;
        }
        VL_VPI_ERROR_(__FILE__, __LINE__, "%s: Unsupported format (%s) for %s", __func__,
                      VerilatedVpiError::strFromVpiVal(valuep->format), vop->fullname());
        return;
    }
    VL_VPI_ERROR_(__FILE__, __LINE__, "%s: Unsupported vpiHandle (%p)", __func__, object);
}

vpiHandle vpi_put_value(vpiHandle object, p_vpi_value valuep, p_vpi_time /*time_p*/,
                        PLI_INT32 flags) {
    VL_DEBUG_IF_PLI(VL_DBG_MSGF("- vpi: vpi_put_value %p %p\n", object, valuep););
    VerilatedVpiImp::assertOneCheck();
    VL_VPI_ERROR_RESET_();
    if (VL_UNLIKELY(!valuep)) {
        VL_VPI_WARNING_(__FILE__, __LINE__, "Ignoring vpi_put_value with nullptr value pointer");
        return nullptr;
    }
    const PLI_INT32 delay_mode = flags & 0xfff;
    if (const VerilatedVpioVar* const vop = VerilatedVpioVar::castp(object)) {
        VL_DEBUG_IF_PLI(
            VL_DBG_MSGF("- vpi:   vpi_put_value name=%s fmt=%d vali=%d\n", vop->fullname(),
                        valuep->format, valuep->value.integer);
            VL_DBG_MSGF("- vpi:   varp=%p  putatp=%p\n", vop->varp()->datap(), vop->varDatap()););

        if (VL_UNLIKELY(!vop->varp()->isPublicRW())) {
            VL_VPI_ERROR_(__FILE__, __LINE__,
                          "vpi_put_value was used on signal marked read-only,"
                          " use public_flat_rw instead for %s : %s",
                          vop->fullname(), vop->scopep()->defname());
            return nullptr;
        }
        if (!vl_check_format(vop->varp(), valuep, vop->fullname(), false)) return nullptr;
        if (delay_mode == vpiInertialDelay) {
            if (!VerilatedVpiPutHolder::canInertialDelay(valuep)) {
                VL_VPI_WARNING_(
                    __FILE__, __LINE__,
                    "%s: Unsupported p_vpi_value as requested for '%s' with vpiInertialDelay",
                    __func__, vop->fullname());
                return nullptr;
            }
            VerilatedVpiImp::inertialDelay(vop, valuep);
            return object;
        }
        VerilatedVpiImp::evalNeeded(true);
        const int varBits = vop->bitSize();
        if (valuep->format == vpiVectorVal) {
            if (VL_UNLIKELY(!valuep->value.vector)) return nullptr;
            if (vop->varp()->vltype() == VLVT_WDATA) {
                const int words = VL_WORDS_I(varBits);
                for (int i = 0; i < words; ++i)
                    vl_vpi_put_word(vop, valuep->value.vector[i].aval, 32, i * 32);
                return object;
            } else if (vop->varp()->vltype() == VLVT_UINT64 && varBits > 32) {
                const QData val = (static_cast<QData>(valuep->value.vector[1].aval) << 32)
                                  | static_cast<QData>(valuep->value.vector[0].aval);
                vl_vpi_put_word(vop, val, 64, 0);
                return object;
            } else {
                vl_vpi_put_word(vop, valuep->value.vector[0].aval, 32, 0);
                return object;
            }
        } else if (valuep->format == vpiBinStrVal) {
            const int len = std::strlen(valuep->value.str);
            CData* const datap = reinterpret_cast<CData*>(vop->varDatap());
            for (int i = 0; i < varBits; ++i) {
                const bool set = (i < len) && (valuep->value.str[len - i - 1] == '1');
                const size_t pos = vop->bitOffset() + i;

                if (set)
                    datap[pos >> 3] |= 1 << (pos & 7);
                else
                    datap[pos >> 3] &= ~(1 << (pos & 7));
            }
            return object;
        } else if (valuep->format == vpiOctStrVal) {
            const int len = std::strlen(valuep->value.str);
            for (int i = 0; i < len; ++i) {
                unsigned char digit = valuep->value.str[len - i - 1] - '0';
                if (digit > 7) {  // If str was < '0', then as unsigned, digit > 7
                    VL_VPI_WARNING_(__FILE__, __LINE__,
                                    "%s: Non octal character '%c' in '%s' as value %s for %s",
                                    __func__, digit + '0', valuep->value.str,
                                    VerilatedVpiError::strFromVpiVal(valuep->format),
                                    vop->fullname());
                    digit = 0;
                }
                vl_vpi_put_word(vop, digit, 3, i * 3);
            }
            return object;
        } else if (valuep->format == vpiDecStrVal) {
            char remainder[16];
            unsigned long long val;
            const int success = std::sscanf(valuep->value.str, "%30llu%15s",  // lintok-format-ll
                                            &val, remainder);
            if (success < 1) {
                VL_VPI_ERROR_(__FILE__, __LINE__, "%s: Parsing failed for '%s' as value %s for %s",
                              __func__, valuep->value.str,
                              VerilatedVpiError::strFromVpiVal(valuep->format), vop->fullname());
                return nullptr;
            }
            if (success > 1) {
                VL_VPI_WARNING_(__FILE__, __LINE__,
                                "%s: Trailing garbage '%s' in '%s' as value %s for %s", __func__,
                                remainder, valuep->value.str,
                                VerilatedVpiError::strFromVpiVal(valuep->format), vop->fullname());
            }
            vl_vpi_put_word(vop, val, 64, 0);
            return object;
        } else if (valuep->format == vpiHexStrVal) {
            const int chars = (varBits + 3) >> 2;
            const char* val = valuep->value.str;
            // skip hex ident if one is detected at the start of the string
            if (val[0] == '0' && (val[1] == 'x' || val[1] == 'X')) val += 2;
            const int len = std::strlen(val);
            for (int i = 0; i < chars; ++i) {
                char hex;
                // compute hex digit value
                if (i < len) {
                    const char digit = val[len - i - 1];
                    if (digit >= '0' && digit <= '9') {
                        hex = digit - '0';
                    } else if (digit >= 'a' && digit <= 'f') {
                        hex = digit - 'a' + 10;
                    } else if (digit >= 'A' && digit <= 'F') {
                        hex = digit - 'A' + 10;
                    } else {
                        VL_VPI_WARNING_(__FILE__, __LINE__,
                                        "%s: Non hex character '%c' in '%s' as value %s for %s",
                                        __func__, digit, valuep->value.str,
                                        VerilatedVpiError::strFromVpiVal(valuep->format),
                                        vop->fullname());
                        hex = 0;
                    }
                } else {
                    hex = 0;
                }
                // assign hex digit value to destination
                vl_vpi_put_word(vop, hex, 4, i * 4);
            }
            return object;
        } else if (valuep->format == vpiStringVal) {
            if (vop->varp()->vltype() == VLVT_STRING) {
                *(vop->varStringDatap()) = valuep->value.str;
                return object;
            } else {
                const int chars = VL_BYTES_I(varBits);
                const int len = std::strlen(valuep->value.str);
                for (int i = 0; i < chars; ++i) {
                    // prepend with 0 values before placing string the least significant bytes
                    const char c = (i < len) ? valuep->value.str[len - i - 1] : 0;
                    vl_vpi_put_word(vop, c, 8, i * 8);
                }
            }
            return object;
        } else if (valuep->format == vpiIntVal) {
            vl_vpi_put_word(vop, valuep->value.integer, 64, 0);
            return object;
        } else if (valuep->format == vpiRealVal) {
            if (vop->varp()->vltype() == VLVT_REAL) {
                *(vop->varRealDatap()) = valuep->value.real;
                return object;
            }
        }
        VL_VPI_ERROR_(__FILE__, __LINE__, "%s: Unsupported format (%s) as requested for %s",
                      __func__, VerilatedVpiError::strFromVpiVal(valuep->format), vop->fullname());
        return nullptr;
    } else if (const VerilatedVpioParam* const vop = VerilatedVpioParam::castp(object)) {
        VL_VPI_WARNING_(__FILE__, __LINE__, "%s: Ignoring vpi_put_value to vpiParameter: %s",
                        __func__, vop->fullname());
        return nullptr;
    } else if (const VerilatedVpioConst* const vop = VerilatedVpioConst::castp(object)) {
        VL_VPI_WARNING_(__FILE__, __LINE__, "%s: Ignoring vpi_put_value to vpiConstant: %s",
                        __func__, vop->fullname());
        return nullptr;
    }
    VL_VPI_ERROR_(__FILE__, __LINE__, "%s: Unsupported vpiHandle (%p)", __func__, object);
    return nullptr;
}

bool vl_check_array_format(const VerilatedVar* varp, const p_vpi_arrayvalue arrayvalue_p,
                           const char* fullname) {
    if (arrayvalue_p->format == vpiVectorVal) {
        switch (varp->vltype()) {
        case VLVT_UINT8:
        case VLVT_UINT16:
        case VLVT_UINT32:
        case VLVT_UINT64:
        case VLVT_WDATA: return true;
        default:;
        }
    } else if (arrayvalue_p->format == vpiIntVal) {
        switch (varp->vltype()) {
        case VLVT_UINT8:
        case VLVT_UINT16:
        case VLVT_UINT32: return true;
        default:;
        }
    } else if ((arrayvalue_p->format == vpiRawTwoStateVal)
               || (arrayvalue_p->format == vpiRawFourStateVal)) {
        switch (varp->vltype()) {
        case VLVT_UINT8:
        case VLVT_UINT16:
        case VLVT_UINT32:
        case VLVT_UINT64:
        case VLVT_WDATA: return true;
        default:;
        }
    } else if (arrayvalue_p->format == vpiShortIntVal) {
        switch (varp->vltype()) {
        case VLVT_UINT8:
        case VLVT_UINT16: return true;
        default:;
        }
    } else if (arrayvalue_p->format == vpiLongIntVal) {
        switch (varp->vltype()) {
        case VLVT_UINT8:
        case VLVT_UINT16:
        case VLVT_UINT32:
        case VLVT_UINT64: return true;
        default:;
        }
    }

    VL_VPI_ERROR_(__FILE__, __LINE__, "%s: Unsupported format (%s) as requested for %s", __func__,
                  VerilatedVpiError::strFromVpiVal(arrayvalue_p->format), fullname);

    return false;
}

template <typename T, typename K>
void vl_get_value_array_integrals(unsigned index, const unsigned num, const unsigned size,
                                  const unsigned packedSize, const bool leftIsLow, const T* src,
                                  K* dst) {
    static_assert(sizeof(K) >= sizeof(T), "size of type K is less than size of type T");
    for (int i = 0; i < num; ++i) {
        dst[i] = src[index];
        index = leftIsLow    ? index == (size - 1) ? 0 : index + 1
                : index == 0 ? size - 1
                             : index - 1;
    }
}

template <typename T, typename K>
void vl_put_value_array_integrals(unsigned index, const unsigned num, const unsigned size,
                                  const unsigned packedSize, const bool leftIsLow, const T* src,
                                  K* dst) {
    static_assert(std::is_integral<T>::value, "type T is not an integral type");
    static_assert(std::is_unsigned<T>::value, "type T is not unsigned");
    static_assert(sizeof(T) >= sizeof(K), "size of type T is less than size of type K");
    const unsigned element_size_bytes = VL_BYTES_I(packedSize);
    const T mask = element_size_bytes == sizeof(T)
                       ? static_cast<T>(-1)
                       : ~(static_cast<T>(-1) << (element_size_bytes * 8));
    for (unsigned i = 0; i < num; ++i) {
        dst[index] = src[i] & static_cast<T>(mask);
        index = leftIsLow    ? index == (size - 1) ? 0 : index + 1
                : index == 0 ? size - 1
                             : index - 1;
    }
}

template <typename T>
void vl_get_value_array_vectors(unsigned index, const unsigned num, const unsigned size,
                                const unsigned packedSize, const bool leftIsLow, const T* src,
                                p_vpi_vecval dst) {
    static_assert(std::is_unsigned<T>::value,
                  "type T is not unsigned");  // ensure logical right shift
    const unsigned element_size_words = VL_WORDS_I(packedSize);
    if (sizeof(T) == sizeof(QData)) {
        for (unsigned i = 0; i < num; ++i) {
            dst[i * 2].aval = static_cast<QData>(src[index]);
            dst[i * 2].bval = 0;
            dst[(i * 2) + 1].aval = static_cast<QData>(src[index]) >> 32;
            dst[(i * 2) + 1].bval = 0;
            index = leftIsLow    ? index == (size - 1) ? 0 : index + 1
                    : index == 0 ? size - 1
                                 : index - 1;
        }
    } else {
        for (unsigned i = 0; i < num; ++i) {
            const size_t dst_index = i * element_size_words;
            const size_t src_index = index * element_size_words;
            for (unsigned j = 0; j < element_size_words; ++j) {
                dst[dst_index + j].aval = src[src_index + j];
                dst[dst_index + j].bval = 0;
            }
            index = leftIsLow    ? index == (size - 1) ? 0 : index + 1
                    : index == 0 ? size - 1
                                 : index - 1;
        }
    }
}

template <typename T>
void vl_put_value_array_vectors(unsigned index, const unsigned num, const unsigned size,
                                const unsigned packedSize, const bool leftIsLow,
                                const bool fourState, const p_vpi_vecval src, T* dst) {
    static_assert(std::is_unsigned<T>::value, "type T is not unsigned");
    static_assert(std::is_integral<T>::value, "type T is not an integral type");
    const unsigned element_size_bytes VL_BYTES_I(packedSize);
    const unsigned element_size_words VL_WORDS_I(packedSize);
    if (sizeof(T) == sizeof(QData)) {  //destination is QDATA
        const QData mask = element_size_bytes == sizeof(T)
                               ? static_cast<QData>(-1)
                               : ~(static_cast<QData>(-1) << (element_size_bytes * 8));
        for (unsigned i = 0; i < num; ++i) {
            dst[index] = src[i * 2].aval;
            dst[index]
                |= (static_cast<QData>(src[(i * 2) + 1].aval) << (sizeof(PLI_UINT32) * 8)) & mask;
            index = leftIsLow    ? index == (size - 1) ? 0 : index + 1
                    : index == 0 ? size - 1
                                 : index - 1;
        }
    } else {
        for (unsigned i = 0; i < num; ++i) {
            unsigned bytes_stored = 0;
            for (unsigned j = 0; j < element_size_words; ++j) {
                if (bytes_stored >= element_size_bytes) break;
                const T mask
                    = (element_size_bytes - bytes_stored) >= sizeof(PLI_UINT32)
                          ? static_cast<T>(-1)
                          : ~(static_cast<T>(-1) << ((element_size_bytes - bytes_stored) * 8));
                dst[(index * element_size_words) + j]
                    = static_cast<T>(src[(i * element_size_words) + j].aval) & mask;
                bytes_stored += sizeof(PLI_UINT32);
            }
            index = leftIsLow    ? index == (size - 1) ? 0 : index + 1
                    : index == 0 ? size - 1
                                 : index - 1;
        }
    }
}

template <typename T>
void vl_get_value_array_rawvals(unsigned index, unsigned num, const unsigned size,
                                const unsigned packedSize, const bool leftIsLow,
                                const bool fourState, const T* src, PLI_BYTE8* dst) {
    static_assert(std::is_unsigned<T>::value,
                  "type T is not unsigned");  //ensure loigcal right shift
    const unsigned element_size_bytes VL_BYTES_I(packedSize);
    const unsigned element_size_repr = (element_size_bytes + sizeof(T) - 1) / sizeof(T);
    size_t dst_index = 0;
    while (num-- > 0) {
        const size_t src_offset = index * element_size_repr;
        unsigned bytes_copied = 0;
        for (unsigned j = 0; j < element_size_repr; ++j) {
            const T& src_data = src[src_offset + j];
            for (unsigned k = 0; k < sizeof(T); ++k) {
                if (bytes_copied++ == element_size_bytes) break;
                dst[dst_index++] = src_data >> (k * 8);
            }
        }
        if (fourState) {
            std::fill(dst + dst_index, dst + dst_index + element_size_bytes, 0);
            dst_index += element_size_bytes;
        }
        index = leftIsLow    ? index == (size - 1) ? 0 : index + 1
                : index == 0 ? size - 1
                             : index - 1;
    }
}

template <typename T>
void vl_put_value_array_rawvals(unsigned index, const unsigned num, const unsigned size,
                                const unsigned packedSize, const bool leftIsLow,
                                const bool fourState, const PLI_UBYTE8* src, T* dst) {
    const unsigned element_size_bytes VL_BYTES_I(packedSize);
    const unsigned element_size_repr = (element_size_bytes + sizeof(T) - 1) / sizeof(T);
    for (unsigned i = 0; i < num; ++i) {
        unsigned bytes_copied = 0;
        const size_t dst_offset = index * element_size_repr;
        const size_t src_offset = i * element_size_bytes;
        for (unsigned j = 0; j < element_size_repr; ++j) {
            T& dst_data = dst[dst_offset + j];
            for (unsigned k = 0; k < sizeof(T); ++k) {
                if (bytes_copied == element_size_bytes) break;
                const unsigned src_index
                    = fourState ? (src_offset * 2) + bytes_copied : (src_offset) + bytes_copied;
                dst_data &= ~((static_cast<T>(0xFF) & 0xFF) << (k * 8));
                dst_data |= ((static_cast<T>(src[src_index]) & 0xFF) << (k * 8));
                bytes_copied++;
            }
        }
        index = leftIsLow    ? index == (size - 1) ? 0 : index + 1
                : index == 0 ? size - 1
                             : index - 1;
    }
}

void vl_get_value_array(vpiHandle object, p_vpi_arrayvalue arrayvalue_p, const PLI_INT32* index_p,
                        PLI_UINT32 num) {
    const VerilatedVpioVar* const vop = VerilatedVpioVar::castp(object);
    if (!vl_check_array_format(vop->varp(), arrayvalue_p, vop->fullname())) return;

    const VerilatedVar* const varp = vop->varp();

    static thread_local EData out_data[VL_VALUE_STRING_MAX_WORDS * 2];

    const unsigned size = vop->size();
    if (VL_UNCOVERABLE(num > size)) {
        VL_VPI_ERROR_(__FILE__, __LINE__, "%s: requested elements (%u) exceed array size (%u)",
                      __func__, num, size);
        return;
    }

    const bool leftIsLow = vop->rangep()->left() == vop->rangep()->low();
    const int index
        = leftIsLow ? index_p[0] - vop->rangep()->left() : vop->rangep()->left() - index_p[0];

    if (arrayvalue_p->format == vpiShortIntVal) {
        if (VL_UNCOVERABLE((sizeof(PLI_INT16) * num) >= VL_VALUE_STRING_MAX_CHARS)) {
            VL_FATAL_MT(__FILE__, __LINE__, "",
                        "vpi_get_value_array with more than VL_VALUE_STRING_MAX_WORDS; "
                        "increase and recompile");
        }

        PLI_INT16* shortintsp = (PLI_INT16*)out_data;
        arrayvalue_p->value.shortints = shortintsp;

        if (varp->vltype() == VLVT_UINT8) {
            vl_get_value_array_integrals(index, num, size, varp->entBits(), leftIsLow,
                                         vop->varCDatap(), shortintsp);
        } else if (varp->vltype() == VLVT_UINT16) {
            vl_get_value_array_integrals(index, num, size, varp->entBits(), leftIsLow,
                                         vop->varSDatap(), shortintsp);
        }

        return;
    } else if (arrayvalue_p->format == vpiIntVal) {
        if (VL_UNCOVERABLE(num >= VL_VALUE_STRING_MAX_WORDS)) {
            VL_FATAL_MT(__FILE__, __LINE__, "",
                        "vpi_get_value_array with more than VL_VALUE_STRING_MAX_WORDS; "
                        "increase and recompile");
        }

        PLI_INT32* integersp = (PLI_INT32*)out_data;
        arrayvalue_p->value.integers = integersp;

        if (varp->vltype() == VLVT_UINT8) {
            vl_get_value_array_integrals(index, num, size, varp->entBits(), leftIsLow,
                                         vop->varCDatap(), integersp);
        } else if (varp->vltype() == VLVT_UINT16) {
            vl_get_value_array_integrals(index, num, size, varp->entBits(), leftIsLow,
                                         vop->varSDatap(), integersp);
        } else if (varp->vltype() == VLVT_UINT32) {
            vl_get_value_array_integrals(index, num, size, varp->entBits(), leftIsLow,
                                         vop->varIDatap(), integersp);
        }

        return;
    } else if (arrayvalue_p->format == vpiLongIntVal) {
        if (VL_UNCOVERABLE((sizeof(PLI_INT64) * num) >= VL_VALUE_STRING_MAX_CHARS)) {
            VL_FATAL_MT(__FILE__, __LINE__, "",
                        "vpi_get_value_array with more than VL_VALUE_STRING_MAX_WORDS; "
                        "increase and recompile");
        }

        PLI_INT64* longintsp = (PLI_INT64*)out_data;
        arrayvalue_p->value.longints = longintsp;

        if (varp->vltype() == VLVT_UINT8) {
            vl_get_value_array_integrals(index, num, size, varp->entBits(), leftIsLow,
                                         vop->varCDatap(), longintsp);
        } else if (varp->vltype() == VLVT_UINT16) {
            vl_get_value_array_integrals(index, num, size, varp->entBits(), leftIsLow,
                                         vop->varSDatap(), longintsp);
        } else if (varp->vltype() == VLVT_UINT32) {
            vl_get_value_array_integrals(index, num, size, varp->entBits(), leftIsLow,
                                         vop->varIDatap(), longintsp);
        } else if (varp->vltype() == VLVT_UINT64) {
            vl_get_value_array_integrals(index, num, size, varp->entBits(), leftIsLow,
                                         vop->varQDatap(), longintsp);
        }

        return;
    } else if (arrayvalue_p->format == vpiVectorVal) {
        if (VL_UNCOVERABLE((VL_WORDS_I(varp->entBits()) * 2 * num) >= VL_VALUE_STRING_MAX_WORDS)) {
            VL_FATAL_MT(__FILE__, __LINE__, "",
                        "vpi_get_value_array with more than VL_VALUE_STRING_MAX_WORDS; "
                        "increase and recompile");
        }

        p_vpi_vecval vectorsp = (p_vpi_vecval)out_data;
        arrayvalue_p->value.vectors = vectorsp;

        if (varp->vltype() == VLVT_UINT8) {
            vl_get_value_array_vectors(index, num, size, varp->entBits(), leftIsLow,
                                       vop->varCDatap(), vectorsp);
        } else if (varp->vltype() == VLVT_UINT16) {
            vl_get_value_array_vectors(index, num, size, varp->entBits(), leftIsLow,
                                       vop->varSDatap(), vectorsp);
        } else if (varp->vltype() == VLVT_UINT32) {
            vl_get_value_array_vectors(index, num, size, varp->entBits(), leftIsLow,
                                       vop->varIDatap(), vectorsp);
        } else if (varp->vltype() == VLVT_UINT64) {
            vl_get_value_array_vectors(index, num, size, varp->entBits(), leftIsLow,
                                       vop->varQDatap(), vectorsp);
        } else if (varp->vltype() == VLVT_WDATA) {
            vl_get_value_array_vectors(index, num, size, varp->entBits(), leftIsLow,
                                       vop->varEDatap(), vectorsp);
        }

        return;
    } else if (arrayvalue_p->format == vpiRawFourStateVal) {
        if (VL_UNCOVERABLE((VL_BYTES_I(varp->entBits()) * 2 * num) >= VL_VALUE_STRING_MAX_CHARS)) {
            VL_FATAL_MT(__FILE__, __LINE__, "",
                        "vpi_get_value_array with more than VL_VALUE_STRING_MAX_WORDS; "
                        "increase and recompile");
        }

        PLI_BYTE8* valuep = (PLI_BYTE8*)out_data;
        arrayvalue_p->value.rawvals = valuep;

        if (varp->vltype() == VLVT_UINT8) {
            vl_get_value_array_rawvals(index, num, size, varp->entBits(), leftIsLow, true,
                                       vop->varCDatap(), valuep);
        } else if (varp->vltype() == VLVT_UINT16) {
            vl_get_value_array_rawvals(index, num, size, varp->entBits(), leftIsLow, true,
                                       vop->varSDatap(), valuep);
        } else if (varp->vltype() == VLVT_UINT32) {
            vl_get_value_array_rawvals(index, num, size, varp->entBits(), leftIsLow, true,
                                       vop->varIDatap(), valuep);
        } else if (varp->vltype() == VLVT_UINT64) {
            vl_get_value_array_rawvals(index, num, size, varp->entBits(), leftIsLow, true,
                                       vop->varQDatap(), valuep);
        } else if (varp->vltype() == VLVT_WDATA) {
            vl_get_value_array_rawvals(index, num, size, varp->entBits(), leftIsLow, true,
                                       vop->varEDatap(), valuep);
        }

        return;
    } else if (arrayvalue_p->format == vpiRawTwoStateVal) {
        if (VL_UNCOVERABLE((VL_BYTES_I(varp->entBits()) * num) >= VL_VALUE_STRING_MAX_CHARS)) {
            VL_FATAL_MT(__FILE__, __LINE__, "",
                        "vpi_get_value_array with more than VL_VALUE_STRING_MAX_WORDS; "
                        "increase and recompile");
        }

        PLI_BYTE8* valuep = (PLI_BYTE8*)out_data;
        arrayvalue_p->value.rawvals = valuep;

        if (varp->vltype() == VLVT_UINT8) {
            vl_get_value_array_rawvals(index, num, size, varp->entBits(), leftIsLow, false,
                                       vop->varCDatap(), valuep);
        } else if (varp->vltype() == VLVT_UINT16) {
            vl_get_value_array_rawvals(index, num, size, varp->entBits(), leftIsLow, false,
                                       vop->varSDatap(), valuep);
        } else if (varp->vltype() == VLVT_UINT32) {
            vl_get_value_array_rawvals(index, num, size, varp->entBits(), leftIsLow, false,
                                       vop->varIDatap(), valuep);
        } else if (varp->vltype() == VLVT_UINT64) {
            vl_get_value_array_rawvals(index, num, size, varp->entBits(), leftIsLow, false,
                                       vop->varQDatap(), valuep);
        } else if (varp->vltype() == VLVT_WDATA) {
            vl_get_value_array_rawvals(index, num, size, varp->entBits(), leftIsLow, false,
                                       vop->varEDatap(), valuep);
        }

        return;
    }

    VL_VPI_ERROR_(__FILE__, __LINE__, "%s: Unsupported format (%s) as requested for %s", __func__,
                  VerilatedVpiError::strFromVpiVal(arrayvalue_p->format), vop->fullname());
}

void vpi_get_value_array(vpiHandle object, p_vpi_arrayvalue arrayvalue_p, PLI_INT32* index_p,
                         PLI_UINT32 num) {
    VL_DEBUG_IF_PLI(VL_DBG_MSGF("- vpi: vpi_get_value_array %p\n", object););
    VerilatedVpiImp::assertOneCheck();

    VL_VPI_ERROR_RESET_();
    if (VL_UNLIKELY(!object)) return;

    if (VL_UNLIKELY(!arrayvalue_p)) {
        VL_VPI_WARNING_(__FILE__, __LINE__,
                        "Ignoring vpi_get_value_array with null value pointer");
        return;
    }

    if (VL_UNLIKELY(!index_p)) {
        VL_VPI_WARNING_(__FILE__, __LINE__,
                        "Ignoring vpi_get_value_array with null index pointer");
        return;
    }

    const VerilatedVpioVar* const vop = VerilatedVpioVar::castp(object);
    if (VL_UNLIKELY(!vop)) {
        VL_VPI_ERROR_(__FILE__, __LINE__, "%s: Unsupported vpiHandle (%p)", __func__, object);
        return;
    }

    if (vop->type() != vpiRegArray) {
        VL_VPI_ERROR_(__FILE__, __LINE__, "%s: Unsupported type (%p, %s)", __func__, object,
                      VerilatedVpiError::strFromVpiObjType(vop->type()));
        return;
    }

    const int lowRange = vop->rangep()->low();
    const int highRange = vop->rangep()->high();
    if ((index_p[0] > highRange) || (index_p[0] < lowRange)) {
        VL_VPI_ERROR_(__FILE__, __LINE__, "%s: index %u for object %s is out of bounds [%u,%u]",
                      __func__, index_p[0], vop->fullname(), lowRange, highRange);
        return;
    }

    if (arrayvalue_p->flags & vpiUserAllocFlag) {
        VL_VPI_ERROR_(__FILE__, __LINE__, "%s: Unsupported vpiUserAllocFlag (%x)", __func__,
                      arrayvalue_p->flags);
        return;
    }

    vl_get_value_array(object, arrayvalue_p, index_p, num);
}

void vl_put_value_array(vpiHandle object, p_vpi_arrayvalue arrayvalue_p, const PLI_INT32* index_p,
                        PLI_UINT32 num) {
    const VerilatedVpioVar* const vop = VerilatedVpioVar::castp(object);
    if (!vl_check_array_format(vop->varp(), arrayvalue_p, vop->fullname())) return;

    const VerilatedVar* const varp = vop->varp();

    const int size = vop->size();
    if (VL_UNCOVERABLE(num > size)) {
        VL_VPI_ERROR_(__FILE__, __LINE__,
                      "%s: requested elements to set (%u) exceed array size (%u)", __func__, num,
                      size);
        return;
    }

    const bool leftIsLow = vop->rangep()->left() == vop->rangep()->low();
    const int index
        = leftIsLow ? index_p[0] - vop->rangep()->left() : vop->rangep()->left() - index_p[0];

    if (arrayvalue_p->format == vpiShortIntVal) {
        const PLI_UINT16* shortintsp
            = reinterpret_cast<PLI_UINT16*>(arrayvalue_p->value.shortints);

        if (varp->vltype() == VLVT_UINT8) {
            vl_put_value_array_integrals(index, num, size, varp->entBits(), leftIsLow, shortintsp,
                                         vop->varCDatap());
        } else if (varp->vltype() == VLVT_UINT16) {
            vl_put_value_array_integrals(index, num, size, varp->entBits(), leftIsLow, shortintsp,
                                         vop->varSDatap());
        }

        return;
    } else if (arrayvalue_p->format == vpiIntVal) {
        const PLI_UINT32* integersp = reinterpret_cast<PLI_UINT32*>(arrayvalue_p->value.integers);

        if (varp->vltype() == VLVT_UINT8) {
            vl_put_value_array_integrals(index, num, size, varp->entBits(), leftIsLow, integersp,
                                         vop->varCDatap());
        } else if (varp->vltype() == VLVT_UINT16) {
            vl_put_value_array_integrals(index, num, size, varp->entBits(), leftIsLow, integersp,
                                         vop->varSDatap());
        } else if (varp->vltype() == VLVT_UINT32) {
            vl_put_value_array_integrals(index, num, size, varp->entBits(), leftIsLow, integersp,
                                         vop->varIDatap());
        }

        return;
    } else if (arrayvalue_p->format == vpiLongIntVal) {
        const PLI_UINT64* longintsp = reinterpret_cast<PLI_UINT64*>(arrayvalue_p->value.longints);

        if (varp->vltype() == VLVT_UINT8) {
            vl_put_value_array_integrals(index, num, size, varp->entBits(), leftIsLow, longintsp,
                                         vop->varCDatap());
        } else if (varp->vltype() == VLVT_UINT16) {
            vl_put_value_array_integrals(index, num, size, varp->entBits(), leftIsLow, longintsp,
                                         vop->varSDatap());
        } else if (varp->vltype() == VLVT_UINT32) {
            vl_put_value_array_integrals(index, num, size, varp->entBits(), leftIsLow, longintsp,
                                         vop->varIDatap());
        } else if (varp->vltype() == VLVT_UINT64) {
            vl_put_value_array_integrals(index, num, size, varp->entBits(), leftIsLow, longintsp,
                                         vop->varQDatap());
        }

        return;
    } else if (arrayvalue_p->format == vpiVectorVal) {
        const p_vpi_vecval vectorsp = arrayvalue_p->value.vectors;

        if (varp->vltype() == VLVT_UINT8) {
            vl_put_value_array_vectors(index, num, size, varp->entBits(), leftIsLow, true,
                                       vectorsp, vop->varCDatap());
        } else if (varp->vltype() == VLVT_UINT16) {
            vl_put_value_array_vectors(index, num, size, varp->entBits(), leftIsLow, true,
                                       vectorsp, vop->varSDatap());
        } else if (varp->vltype() == VLVT_UINT32) {
            vl_put_value_array_vectors(index, num, size, varp->entBits(), leftIsLow, true,
                                       vectorsp, vop->varIDatap());
        } else if (varp->vltype() == VLVT_UINT64) {
            vl_put_value_array_vectors(index, num, size, varp->entBits(), leftIsLow, true,
                                       vectorsp, vop->varQDatap());
        } else if (varp->vltype() == VLVT_WDATA) {
            vl_put_value_array_vectors(index, num, size, varp->entBits(), leftIsLow, true,
                                       vectorsp, vop->varEDatap());
        }

        return;
    } else if (arrayvalue_p->format == vpiRawFourStateVal) {
        const PLI_UBYTE8* valuep = reinterpret_cast<PLI_UBYTE8*>(arrayvalue_p->value.rawvals);

        if (varp->vltype() == VLVT_UINT8) {
            vl_put_value_array_rawvals(index, num, size, varp->entBits(), leftIsLow, true, valuep,
                                       vop->varCDatap());
        } else if (varp->vltype() == VLVT_UINT16) {
            vl_put_value_array_rawvals(index, num, size, varp->entBits(), leftIsLow, true, valuep,
                                       vop->varSDatap());
        } else if (varp->vltype() == VLVT_UINT32) {
            vl_put_value_array_rawvals(index, num, size, varp->entBits(), leftIsLow, true, valuep,
                                       vop->varIDatap());
        } else if (varp->vltype() == VLVT_UINT64) {
            vl_put_value_array_rawvals(index, num, size, varp->entBits(), leftIsLow, true, valuep,
                                       vop->varQDatap());
        } else if (varp->vltype() == VLVT_WDATA) {
            vl_put_value_array_rawvals(index, num, size, varp->entBits(), leftIsLow, true, valuep,
                                       vop->varEDatap());
        }

        return;
    } else if (arrayvalue_p->format == vpiRawTwoStateVal) {
        const PLI_UBYTE8* valuep = reinterpret_cast<PLI_UBYTE8*>(arrayvalue_p->value.rawvals);

        if (varp->vltype() == VLVT_UINT8) {
            vl_put_value_array_rawvals(index, num, size, varp->entBits(), leftIsLow, false, valuep,
                                       vop->varCDatap());
        } else if (varp->vltype() == VLVT_UINT16) {
            vl_put_value_array_rawvals(index, num, size, varp->entBits(), leftIsLow, false, valuep,
                                       vop->varSDatap());
        } else if (varp->vltype() == VLVT_UINT32) {
            vl_put_value_array_rawvals(index, num, size, varp->entBits(), leftIsLow, false, valuep,
                                       vop->varIDatap());
        } else if (varp->vltype() == VLVT_UINT64) {
            vl_put_value_array_rawvals(index, num, size, varp->entBits(), leftIsLow, false, valuep,
                                       vop->varQDatap());
        } else if (varp->vltype() == VLVT_WDATA) {
            vl_put_value_array_rawvals(index, num, size, varp->entBits(), leftIsLow, false, valuep,
                                       vop->varEDatap());
        }

        return;
    }

    VL_VPI_ERROR_(__FILE__, __LINE__, "%s: Unsupported format (%s) as requested for %s", __func__,
                  VerilatedVpiError::strFromVpiVal(arrayvalue_p->format), vop->fullname());
}

void vpi_put_value_array(vpiHandle object, p_vpi_arrayvalue arrayvalue_p, PLI_INT32* index_p,
                         PLI_UINT32 num) {
    VL_DEBUG_IF_PLI(VL_DBG_MSGF("- vpi: vpi_put_value_array %p\n", object););
    VerilatedVpiImp::assertOneCheck();
    VL_VPI_ERROR_RESET_();

    if (VL_UNLIKELY(!arrayvalue_p)) {
        VL_VPI_WARNING_(__FILE__, __LINE__,
                        "Ignoring vpi_put_value_array with null value pointer");
        return;
    }

    if (VL_UNLIKELY(!index_p)) {
        VL_VPI_WARNING_(__FILE__, __LINE__,
                        "Ignoring vpi_put_value_array with null index pointer");
        return;
    }

    const VerilatedVpioVar* const vop = VerilatedVpioVar::castp(object);
    if (VL_UNLIKELY(!vop)) {
        VL_VPI_ERROR_(__FILE__, __LINE__, "%s: Unsupported vpiHandle (%p)", __func__, object);
        return;
    }

    if (vop->type() != vpiRegArray) {
        VL_VPI_ERROR_(__FILE__, __LINE__, "%s: Unsupported type (%p, %s)", __func__, object,
                      VerilatedVpiError::strFromVpiObjType(vop->type()));
        return;
    }

    const int lowRange = vop->rangep()->low();
    const int highRange = vop->rangep()->high();
    if ((index_p[0] > highRange) || (index_p[0] < lowRange)) {
        VL_VPI_ERROR_(__FILE__, __LINE__, "%s: index %u for object %s is out of bounds [%u,%u]",
                      __func__, index_p[0], vop->fullname(), lowRange, highRange);
        return;
    }

    if (VL_UNLIKELY(!vop->varp()->isPublicRW())) {
        VL_VPI_ERROR_(__FILE__, __LINE__,
                      "Ignoring vpi_put_value_array to signal marked read-only,"
                      " use public_flat_rw instead: %s",
                      vop->fullname());
        return;
    }

    if (arrayvalue_p->flags & (vpiPropagateOff | vpiOneValue)) {
        VL_VPI_ERROR_(__FILE__, __LINE__, "%s: Unsupported flags (%x)", __func__,
                      arrayvalue_p->flags);
        return;
    }

    vl_put_value_array(object, arrayvalue_p, index_p, num);
}

// time processing

void vpi_get_time(vpiHandle object, p_vpi_time time_p) {
    VerilatedVpiImp::assertOneCheck();
    VL_VPI_ERROR_RESET_();
    // cppcheck-suppress nullPointer
    if (VL_UNLIKELY(!time_p)) {
        VL_VPI_WARNING_(__FILE__, __LINE__, "Ignoring vpi_get_time with nullptr value pointer");
        return;
    }
    if (time_p->type == vpiSimTime) {
        const QData qtime = VL_TIME_Q();
        VlWide<2> itime;
        VL_SET_WQ(itime, qtime);
        time_p->low = itime[0];
        time_p->high = itime[1];
        return;
    } else if (time_p->type == vpiScaledRealTime) {
        double dtime = VL_TIME_D();
        if (const VerilatedVpioScope* const vop = VerilatedVpioScope::castp(object)) {
            const int scalePow10
                = Verilated::threadContextp()->timeprecision() - vop->scopep()->timeunit();
            const double scale = vl_time_multiplier(scalePow10);  // e.g. 0.0001
            dtime *= scale;
        }
        time_p->real = dtime;
        return;
    }
    VL_VPI_ERROR_(__FILE__, __LINE__, "%s: Unsupported type (%d)", __func__, time_p->type);
}

// I/O routines

PLI_UINT32 vpi_mcd_open(PLI_BYTE8* filenamep) {
    VerilatedVpiImp::assertOneCheck();
    VL_VPI_ERROR_RESET_();
    return VL_FOPEN_NN(filenamep, "wb");
}

PLI_UINT32 vpi_mcd_close(PLI_UINT32 mcd) {
    VerilatedVpiImp::assertOneCheck();
    VL_VPI_ERROR_RESET_();
    VL_FCLOSE_I(mcd);
    return 0;
}

PLI_BYTE8* vpi_mcd_name(PLI_UINT32 /*mcd*/) {
    VL_VPI_UNIMP_();
    return nullptr;
}

PLI_INT32 vpi_mcd_printf(PLI_UINT32 mcd, PLI_BYTE8* formatp, ...) {
    VerilatedVpiImp::assertOneCheck();
    VL_VPI_ERROR_RESET_();
    va_list ap;
    va_start(ap, formatp);
    const int chars = vpi_mcd_vprintf(mcd, formatp, ap);
    va_end(ap);
    return chars;
}

PLI_INT32 vpi_printf(PLI_BYTE8* formatp, ...) {
    VerilatedVpiImp::assertOneCheck();
    VL_VPI_ERROR_RESET_();
    va_list ap;
    va_start(ap, formatp);
    const int chars = vpi_vprintf(formatp, ap);
    va_end(ap);
    return chars;
}

PLI_INT32 vpi_vprintf(PLI_BYTE8* formatp, va_list ap) {
    VerilatedVpiImp::assertOneCheck();
    VL_VPI_ERROR_RESET_();
    return VL_VPRINTF(formatp, ap);
}

PLI_INT32 vpi_mcd_vprintf(PLI_UINT32 mcd, PLI_BYTE8* format, va_list ap) {
    VerilatedVpiImp::assertOneCheck();
    FILE* const fp = VL_CVT_I_FP(mcd);
    VL_VPI_ERROR_RESET_();
    // cppcheck-suppress nullPointer
    if (VL_UNLIKELY(!fp)) return 0;
    const int chars = vfprintf(fp, format, ap);
    return chars;
}

PLI_INT32 vpi_flush(void) {
    VerilatedVpiImp::assertOneCheck();
    VL_VPI_ERROR_RESET_();
    Verilated::runFlushCallbacks();
    return 0;  // Gcc coverage bug // LCOV_EXCL_LINE
}

PLI_INT32 vpi_mcd_flush(PLI_UINT32 mcd) {
    VerilatedVpiImp::assertOneCheck();
    FILE* const fp = VL_CVT_I_FP(mcd);
    VL_VPI_ERROR_RESET_();
    if (VL_UNLIKELY(!fp)) return 1;
    std::fflush(fp);
    return 0;
}

// utility routines

PLI_INT32 vpi_compare_objects(vpiHandle /*object1*/, vpiHandle /*object2*/) {
    VL_VPI_UNIMP_();
    return 0;
}
PLI_INT32 vpi_chk_error(p_vpi_error_info error_info_p) {
    // executing vpi_chk_error does not reset error
    // error_info_p can be nullptr, so only return level in that case
    VerilatedVpiImp::assertOneCheck();
    p_vpi_error_info const _error_info_p = VerilatedVpiImp::error_info()->getError();
    if (error_info_p && _error_info_p) *error_info_p = *_error_info_p;
    if (!_error_info_p) return 0;  // no error occurred
    return _error_info_p->level;  // return error severity level
}

#ifndef VL_NO_LEGACY
PLI_INT32 vpi_free_object(vpiHandle object) {
    // vpi_free_object is IEEE deprecated, use vpi_release_handle
    return vpi_release_handle(object);
}
#endif

PLI_INT32 vpi_release_handle(vpiHandle object) {
    VL_DEBUG_IF_PLI(VL_DBG_MSGF("- vpi: vpi_release_handle %p\n", object););
    VerilatedVpiImp::assertOneCheck();
    VerilatedVpio* const vop = VerilatedVpio::castp(object);
    VL_VPI_ERROR_RESET_();
    if (VL_UNLIKELY(!vop)) return 0;
    VL_DO_DANGLING(delete vop, vop);
    return 1;
}

PLI_INT32 vpi_get_vlog_info(p_vpi_vlog_info vlog_info_p) {
    // This is VL_MT_SAFE, but not marked as can't indicate it in the standardized header file
    VerilatedVpiImp::assertOneCheck();
    VL_VPI_ERROR_RESET_();
    const auto argc_argv = Verilated::threadContextp()->impp()->argc_argv();
    vlog_info_p->argc = argc_argv.first;
    vlog_info_p->argv = argc_argv.second;
    vlog_info_p->product = const_cast<PLI_BYTE8*>(Verilated::productName());
    vlog_info_p->version = const_cast<PLI_BYTE8*>(Verilated::productVersion());
    return 1;
}

// routines added with 1364-2001

PLI_INT32 vpi_get_data(PLI_INT32 /*id*/, PLI_BYTE8* /*dataLoc*/, PLI_INT32 /*numOfBytes*/) {
    VL_VPI_UNIMP_();
    return 0;
}
PLI_INT32 vpi_put_data(PLI_INT32 /*id*/, PLI_BYTE8* /*dataLoc*/, PLI_INT32 /*numOfBytes*/) {
    VL_VPI_UNIMP_();
    return 0;
}
void* vpi_get_userdata(vpiHandle /*obj*/) {
    VL_VPI_UNIMP_();
    return nullptr;
}
PLI_INT32 vpi_put_userdata(vpiHandle /*obj*/, void* /*userdata*/) {
    VL_VPI_UNIMP_();
    return 0;
}

PLI_INT32 vpi_control(PLI_INT32 operation, ...) {
    VL_DEBUG_IF_PLI(VL_DBG_MSGF("- vpi: vpi_control %d\n", operation););
    VerilatedVpiImp::assertOneCheck();
    VL_VPI_ERROR_RESET_();
    switch (operation) {
    case vpiFinish: {
        VL_FINISH_MT("", 0, "*VPI*");
        return 1;
    }
    case vpiStop: {
        VL_STOP_MT("", 0, "*VPI*");
        return 1;  // LCOV_EXCL_LINE
    }
    default: {
        VL_VPI_WARNING_(__FILE__, __LINE__, "%s: Unsupported type %s, ignoring", __func__,
                        VerilatedVpiError::strFromVpiProp(operation));
        return 0;
    }
    }
}

vpiHandle vpi_handle_by_multi_index(vpiHandle /*obj*/, PLI_INT32 /*num_index*/,
                                    PLI_INT32* /*index_array*/) {
    VL_VPI_UNIMP_();
    return nullptr;
}